Chapter 3

The Simulation Code — XPDP1

3.1 Introduction

The simulation program used in this research is RPDan open source software
developed by the Plasma Theory and Simulation GreUpTSG at University of
California, Berkeley. It is running on Unix worksions with X-Windows, and PC
with an X-Windows emulator. XPDP1 is the X-Windowersion of PDP1, which
has the same physics kernel as PDP1. PDP1 is athenBDx1 codes from UC
Berkeley, where “x” stands for P (Planar), C (Cgfical), and S (Spherical)
electrodes. The codes are written in object-oe@nétyle, and in standard C (C

language).

PDP1 (Plasma Device Planar) simulates a plasmanwgianar electrodes, with or
without a uniform applied DC magnetic field in arbigrary direction. The two

electrodes in PDP1 are symmetric, as illustrateBligure 3.1. For other versions in
the same series, there are PDC1 and PDS1. PD@é&n{RI Device Cylindrical)

simulates a plasma within concentric (coaxial) raytical electrodes and allows an
axial DC magnetic field. PDS1 (Plasma Device Sighdrsimulates a plasma within
concentric spherical electrodes, without a magrfegid. The inner electrode of both

PDC1 and PDS1 is of finite size. They are useful dimulating discharges with

29

different electrode areas [5]. In this work, wdlwnly focus on the planar version,

PDP1.

oy o

Vi) or ift)

Figure 3.1: Schematic diagram of XPDP1 code [5].

PDP1 is the modified version of the W. S. LawsoABW1 code (1983). It is a
bounded electrostatic code, simulating one-dimeradiplasma devices. The code
simulates a bounded plasma with external circuftictv include R, L, C elements,
and AC, DC, ramped current/voltage sources. Thasaracteristics (including
particles and electrostatic fields) are specifigdh®e user at run time using an input
file. The code uses Particle-in-Cell (PIC) tecluigiqo simulate the electrons and
ions, leap-frog method for the integration of tlygi&ion of motion, and Monte-Carlo
collisional (MCC) model for electron-neutral andineutral collisions [15]. The PIC
technique, leap-frog method and MCC model are desdrin sections 3.2, 3.3 and
3.4 respectively. The simulation proceeds in temaé, and the user may view the
output as the code is running, in the form of vasiauser-specified diagnostic
windows. The diagnostic windows are updated ah égwe step (animation). The
applications of XPDP1 code range from collisionabacitive RF discharges, used in

materials processing to collisionless fusion protdg5].

30

3.3 Particle-in-Cell (PIC) Method

In reality, plasma is a collection of particles wlniconsist of electrons, ions with
various charge states, neutral atoms and moleculeshe Particle-in-Cell method,
there are computer particles (superparticles). hEaomputer particle is a
homogeneous collection of a large number of realigies (commonly 1bto 1¢

particles), which is having the same mass-to-chaagje as the real particles, thus

minimizing the amount of particles to be simulated.

In the PIC scheme, the physical volume is dividet icells by lines which run
parallel to the boundaries. The intersectionsheke lines are called mesh points or

grid points. An example of the grid is illustrated=igure 3.2.

S

< <
\\-(o, Ny nn \\\D
N v
~.

VN

e ®q
N

y'e ¥ 3 =N

,‘L

\ \\\\'\

NN

Figure 3.2: A mathematical grid of PIC scheme [16].

31

In Figure 3.2, A mathematical grid is set into ghlesma region, to measure the
charge densityp and current density J. From the measured changecarrent
densities, we will obtain the electric field E andhgnetic field B on the grid. The
particle quantities such as velocity and positidnaocharged particle at (x, y)
location will be counted in terms g at the nearby grid points (0, 0), (1, 0), (1, 1),

(0, 1) and in terms of J at the faces between thewsds [16].

The particle quantities, such as velocitiesnd positionx are known at the patrticle,
and may take on all values in the phase space.e&adn time step, the charge and
current densities on the grid are calculated. fiteeess to produce the charge and

current densities 4, J) on the grid from the particle positioxxs and velocitiesv;

implies someweighting (linear weighting) to the grid points that is degent on
particle position. Once the densities are estadtion the grid, thep andJ are used
to obtained the electric and magnetic fielé&s B) by solving the field equations.
Poisson’s equationis used to solve forE in electrostatic simulation. For
electromagnetic simulations, the full setMéxwell’'s equationss used to solve fdE
andB. With the fields on the grid, but particles seegtd around within the grid, the
force at the particl&; is obtained through interpolation of the fieldrfrahe grid to
the particles by again performingreighting Newton-Lorentz equation of motid
used for the calculation, and the particles areaaded to new positions and
velocities. Next, particle boundary conditions Isws absorption and emission are
applied. If the model is collisional, the Monte rfdaCollision (MCC) scheme is
applied. The flow of the PIC-MCC scheme within otiemestep is shown

schematically in Figure 3.3 [16, 17, 18].

32

Integration of equations Particle lossigain
of mation, moving particles || at the boundaries
(emission, absorption, etc.)

F —-v:—-—x__
i i i

Weighting
(E.B) —=F af

Integration of field Weighting
eqguations on grid ———

K ? (5, ¥), == (5, J),
(p:d), = (E,B) :

Monte-Carlo Collisions

v, —- v,

S |

Figure 3.3: Flow chart for an explicit PIC-MCC scheame [16].

3.3 Integration of the Particle Equations of Motion

The integration method used in the code is calfedldap-frog method. The two

first-order differential equations to be integrated

dv

ma T (3.2)
% TV e e e e e s (3.2)
These equations are replaced by the finite-diffegeaguations

m% S Fyy © e e (3.3)
X“eWAt Xoa = Viw © eeeeeeeee e e e et e e e e (3.4)

33

In the leap-frog method, as shown in Figure 3¥{P) is pushed back te(-At/2)
using the force F calculatedtat 0. Consequently, the finite difference equatiohs

theleap-frogmethod are

tHALI2 _ \ t=Dt/2

\'% \'

M T 3.5
m (3.5)
Xt+At —x!
VL 3.6
At (3.6)
-l-.\
VELOCITY
Vold Vnew .
—
POSITION
Xold Xrow time
Fc:ald Fl:\ew
At At
- K t+3 t+At
Figure 3.4: Scheme of théeap-frog integration method [4].
Therefore,
t+At /2 F t-At/2
v = (—XAtJ +v L e e e s (3.7)
m

X S VX AL+ X e, (3.8)

t+At/2

where force,F = q(E +V xB). Theleap-frogmethod is “explicit” sincev and

x** are determined only from values at earlier timeele. The stability and

34

accuracy of théeap-frogmethod can be tested by applying it to the sirhpliemonic

oscillator model

d?x

pre O X . e e (3.9)

Equation (3.9) is substituted into the finite difece scheme to obtain

t+At _ t-At

X 2x' + X
e S X (3.10)

The solutions of the equation are of the form

X S CEXPEIGR) oo e (3.11)

X = CexplHa(t + A)] e (3.12)

Using Euler’s formula, the finite difference becane

For %« 1, « =a, as desired. I, At >2, the real solution for. becomes

complex with growing and decaying roots, indicatingmerical instability. For

simulations which use the leap-frog mover, typicall At < 0.2 is taken for stability

[16, 17, 18]. More details on the accuracy andikta requirements for PIC are

stated in section 3.5.

35

3.4 Monte Carlo Collision Model

In the Monte Carlo Collision (MCC) model, randomnmeers are being used to
decide whether or not a particle is subjected ¢olksion, and what type of collision

is to occur.

The MCC model statistically describes the collismocesses, using cross sections
for each type of collision. Consider a set of jgés incident on another set of

particles (targets). The probability, of a collision event for thih incident particle

of energye, = % mv’ can be written as,

P =1-expl-n, (X)or (& MAL . o, (3.14)

where the total cross section is the sum overratigsses,

Or(6)=2,0,(6) 0 (3.15)

Hereny(x) is the spatially varying target densityjs the incident speed, art is the

time interval.

For example, assume the particle spechasN types of collisions with the target
specie, the kinetic energy of thb particle of the inciderd specie is given by

£ =%msvi2 L e e (3.16)

36

where ¢, is needed in calculating the collision cross sesti The total cross section

iS00 (6)=2,0,(6)) (3.17)

whereo, () for 1< j < N, is the cross section of tfjign type of collision between

the s specie and the target specie. The collision phitibafor the ith particle is
calculated based on the distanfs =v,At traveled in each time stept .
Consequently, P =1-exp[-n, (x)o, (& v.At] =1-exp[-n, ()0, (£)As] . If a
uniformly distributed random number on the relatede step is less thaR;, a
collision will take place. Then another random iemis chosen to determine the

type of collision. Every computer particle mustew@luated in every time step of the

simulation.

Another approach is thaull collision method, which is computationally more
efficient. In this method, only one collision padhlity, which is energy independent,
is used to model all the particles. The simulagwagram will randomly select a
number of particles based on the collision proligbibind concentrate on evaluating
this selected fraction particles, then deciding cihcollision they are to undergo.
The null collision model has a significant speed advantage over atbBision

models which query each of the fraction of partidier collisions at every time step.

37

3.5 Accuracy and Stability Requirements for PIC

The basic discretization parameters for “expli€tC method are mesh spacin,
time step,At, and number of particles per cédAPC. Trying to increase the mesh
spacing, Ax and time stepAt is often done for speeding-up the simulations.
However, there are certain constraintsfonandAt in order to maintain accuracy

and stability. For electrostatic PIC, th& and At are determined by

@, At< 02 and A—Dzl,
AX
1
e’n |2 &T)2
where the plasma frequenay, :(j , the Debye length), =(LJ and
g,M en

interelectrale gaplength
numberof spatial cells nc’

the mesh spacing\x =

In these equationg] is the plasma temperature in electron vatigs the plasma

density, £, is the permittivity of free space=8.854x10™" F mi"), e is the electronic

charge, ananis the mass of the lightest species involved enabllision [18, 19].

38

3.6 Boundary Conditions

The boundary conditions of the code include surfdwage on the electrodes, which
are connected to a series RLC circuit with driviridtage,V(t) or current|(t). The
general form of the applied source is

S(t) = DC + Rampit + ACISIN@7E, [t+6,) . woveeeeeeeeeeeeeee e, (3.18)

An external circuit has its own intrinsic time smlwhich are not related to the
plasma time scales. The simulation time step roessmall enough to resolve these
time scales, or the circuit simulation will producaccurate results regardless of the

plasma parameters [20].

Referring to Figure 3.1, the current in the exteam&uit interacts with the plasma via
the surface charge on the electrodes. The poteniibin the plasma region is
affected by the distribution and motion of spacargk, the electrode surface charge,

and the current in the external circuit [21].

By applying Gauss’ law to the system, the boundaogditions for the potential
eqguation are obtained [21].

iEmS:Lgdv+w:O, .. (3.19)

where the surface S encloses the plasma and @lestroA and A refer to the left

and right electrode respectively, awmd is the surface charge in the respective

39

electrode.p has units of charge/volume amdhas units of charge/area. Using the
definition of potential, we obtain

R B T (3.20)
Ax? g’

for planar electrodes [21].

For one dimensional system, the boundary conditiamsbe written as [21]

B 20 e (3.21)

and

By =t e, (3.22)
I

Equation (3.21) can be written at one-half grid freim the boundary, in conjunction
with a central difference applied to the definitminpotential, which gives

O, -D 1 AX
E,,=—2 1 :;(m + 0, 7} e (3.23)

AX

for planar electrodes [24].

The charge conservation equation at each wall,

AAG = Q +DQ e e, (3.24)

conv

becomes

a.t - a.t—At +

QI + Qt _ QI—AI
A .

whereQ is the charge on one plate of the external cicaacitor [21].

40

In the code, there are four cases which cover thlerénge of external circuit

parameters [21]:

Q) General Series RLC Circuit (Voltage-Driven ity

For the general voltage-driven series RLC cirdhi, capacitor charge Q is advanced

using Kirchhoff's voltage law,

d’Q, ,dQ_ Q
L TR—+==VA)+D — Dy . 3.26
dtz dt C () nc 0 ()

where ® _is the reference potential fixed at zero, whichb&the potential of the

grounded electrode, ard, is the potential at time zero.

One second order difference is

V() + Bl - -K!

Q RSOOSR (3.27)
aO
where
K'za,Q™ +0,Q"" +a,Q"™ +a,Q"™ ., (3.28)
9L 3R 1
Ay =——F+_-—+—
4 At 2At C
a. =-— L_ B
! NG
11 L 1R
P N i
2 At 2 At
L
a, =-2——
3 At?
_1L
42

41

(2) Open Circuit

When C—> 0. the impedance approaches infinity, therefore éxternal circuit
becoming an open circuit. The potentials on thanbaries are floating, and the
surface charges on the electrodes influence thenpat as always, but the electrodes

cannot exchange charge via external current. Tihege conservation equation is

o, =™ +Q! PPN (3.29)

conv

3) Short-Circuit

When R=L=0 and & o, the external circuit is a short circuit, with

Dy =D TV © et (3.30)

The short-circuit case is applied when

(4) Current-Driven Circuit

In this case, an ideal current source is assumeduoetdriving the specified time-
varying current I(t). The external circuit elem@iR, L, and C are ignored since an

ideal current source is an open circuit.

The stability of the circuit with I=> 0 is given by the characteristic equation

EZ(BH2M/RO) —AE+L1= 0, oo e (3.32)

42

where |£ K1 is required. The roots are

_2++1-2At/RC

¢ 3+ 2At/RC

3.7 Particle Conditions - Loading Initial Distributions

In order to calculate the particle energy distridait the following equations are used

[17]:

The Maxwell-Boltzmann distribution,

£
F(E) = f X == |, et 3.34
(e) = f, F{ ij (3.34)
£= 1mut2 = §kT .. (3.35)

In one dimension, equations (3.34) and (3.35) besom

v?
fu)="1, ex;{——'zJ L e e (3.36)
Uti
1 mu = 1 KT e e e (3.37)
2 2

Invert the cumulative distribution function (3.38),

Ei expv?/v?)du
fexp(—u2 [v?)du .

F)= cverennn(3.38)

43

By using Box-Muller method [35], we choose two pdewandom numbers

(-1<wv, v, <1) discarding them iR* =/ +Vv >1. Then

In(R?

U = V|- ;2) e (3.39)
in(R?

Uy, =V, [~ ;2) ... (3.40)

Equation (3.38) must be inverted numerically fongml cutoffs.

3.8 General Structure of the Code

XPDP1 code is implemented with an object-orientedcture in standard C in order
to facilitate enhancements. The code is separateda physics application and the
windowing core. Therefore, new physics and diagosscan be added without
altering the windowing core. The interaction bedwevingraphics manager and the

physics kernel is illustrated in Figure 3.5.

44

INIT

WinGraphics
Manager

PHYSICS
KEENEL

l

REFRESH
SCREEN

EUN=Fzalse
STEP=Fzlse

Figure 3.5: Schematic representation of the interdmn between WinGraphics and the physics kernel [15

45

Using the windowing core, all diagnostics are updatlynamically in time. The
diagnostics can also update in individual time-stemd pausing for keystroke before

continuing the simulation [15].

PDP1 can run indefinitely without a time step liatibn. Time histories are combed
periodically in such a way that there are neveremiian HISTMAX (a constant)

value stored [15].

PDP1 employs four circuit solvers to handle thel fainge of external circuit
parameters. (i) The genenabltage-driven series RLCase. (ii) Theopen circuit
case, where ©0. (iii) The short circuit case, when © o and R=L=0. (iv) The

ideal current sourcease. More details have been described previdusigction 3.6.

A Monte Carlo Collisional model for electron-neutemnd ion-neutral collisions is

used in PDP1. All components of velocity can bec#fied independently in the input

file.

The main flow of the code is shown in Figure 3Table 3.1 is the description of the

XPDP1 code main flow.

46

——

display_title -
Display
KPDP1 title

XGlnit -
Initialize
KGrafix stuff

start - Allocate
arrays and
initialize

RUN

TRUE

InitWindows -

cciaotnit Jinitialize

Initialize MCC

FALSE

!

setrho - Set

: ; di ti
rate diagnostic 1agnostic

windows

'y

initial charge
density

fields -
Initialize field
arrays

RUN

TRUE

history -

FALSE

I

XGStart -

Initialize history

arrays

'y

Start XGrafix
main loop

XGMainLoop

*moveptr -
Advance
position and
velocity

adjust -
Remove
particles that
Cross
boundaries

I

*mecptr -
Mante Carlo
collisions for
species isp
(ion species)

gather -
Assign charge
densities to
the grid

fields - Field
arrays

Initialization
WinGraphics Manager

Physics Kemnel

ssssssssanss Steps flowin WinGraphics
Manager are not shown

RUN

TRUE

FALSE

history
arrays

- History

Figure 3.6: Main
flow of XPDP1 code.

47

Table 3.1: Description of XPDP1 code main flow.

The description of the XPDP1 program main flow

display title

The code starts with the display of the prograrte ténd the

general information of the program developer, etc..

Xd ni t Initialize the window graphics (XGrafix) stu Here, the windov
manager will get the code and the input file nanmread, then
initialize the window array.

Start

The start function opens files and read the general input
parameters in the input file, then checks for exrorhe program
will exit, when there is an error. If no erroretiprogram will

proceed to allocate field parameters and diagreatiays.

D agArray Allocate diagnostic arrays. This
function will allocate space for all the
diagnostics. The diagnostics are also
group into time history diagnostics and

average diagnostics.

Then the program will setup the parameters for espaties, e.d.

ion, electron, etc..

speci es Read species parameters from the input
file, and assign input parameters |to

arguments.

Scaling factors to convert from physical units ¢a@e unit and vis

versa. Next, allocate particle arrays.

Speci esDi agArray | This is the diagnostic arrays of the

species. The program will allocate

48

functions arrays.

Calculate the coefficient for the mover in the prese of a
magnetic field. Then, the program will load in a&pecies’
particles, which is properly distributed. This Wwdtart with a
“dump file” with all the record of a distributiomr if a dump file

is not given, it will load the system with the ialtdistribution.

Restore Running the dump file if given.

space for velocities distribution, and

allocate space for the distribution

| oad Load one species and one direction at a

and loader for thermal distributio

Maxwellian distribution function is used

time. There are loader for a cold beam

)

in the code. (More details in section 3.7
and Chapter 2 - section 2.6)
ncedi ag_i nit Initialize Monte Carlo Collision rate diagnostidAllocate array:
for diagnostic rates.
I ni t Wndows Initialize diagnostic windows. Setup each winddmeture.
setrho Set initial charge density, includes smoothingdharge density of
each species.
fields Initialize field arrays.
field_init Initializing the arrays and parameters for

the field solve. Here, the program wi
setup the arrays for the poisson sol

Then, decide which circuit solver to ug

49

There are four options of circuit solver:

(More details in section 3.6)

=

when C>0, open circuit
when current source |s
applied

when L=R=0, Cinfinity,
short circuit

the general case with

external voltage source

Calculate the external circuit.

Hi story Initialize history arrays. This is the time histaccumulator. |
calculates and stores all history values, and pegacombing on
history values when low on memory.

XGSt ar t This will start the XGrafix main loop, which is theingraphics

manager. It will then link to the main physics poavhich is the

XGwvai nLoop.

XGWai nLoop For a no subcycling loop, initially tt

position and velocity it * noveptr) .

program will proceed to advance time

for the species isp (ion). Then advance

adj ust

—

Remove particles tha

cross boundaries. This

—

is the routine to adjus

(initialize, re-pack and

D

inject) particles to the

50

desired boundary
conditions. There are

four parts of simulation

U

process. First, initialize
array for computing
positions of injected
particles. Then, it wil

go to left hand sid¢

1%

(LHS) wall diagnostics

mid system diagnostics
and injection of new

particles at walls (on

D

species at a time).

(*nceptr)

- e.g.:

argonnctc

Monte Carlo Collisions
for species isp (ion

This is the part of Monte

D

Carlo Collision for
electron-neutrals and
ion-neutrals. Here, the
program will be
calculating the nul
collision probability,
then the electron
collisions with argon

For the collisions, ther

(1)

51

are five types o

collisions: elastiq
collision, excitation,
ionization, scattering

and charge exchange
collision. The program
will determine the type
of collision, and follow

with the calculation

—

(More details in sectio

3.4 and Chapter 2

section 2.7)

gat her

Assign charge densitit
to the grid. This

function is in separat

4%

loop, because new
particles might be
created in ncc and
adj ust that might not

have been weighted.

Then the program will run thiei el ds,
andhi st ory. Lastly back to the flow
in XGStart

manager.

in the wingraphics

52

XPDP1 is available in the zipped form from the PTS®ebsite at
http://ptsg.eec.berkeley.edu [22]. The wingraphitanager (XGrafix) is available
separately at the same website. The installatiodegis available in the website at

http://ptsg.eecs.berkeley.edu/~jhammel/gdptsg. 28]l

XPDP1 fully support a mouse for selection of iteimsttons, etc.. The buttons on the
main menu include RUN, STOP, STEP, SAVE, and QUThe diagnostic window

has four buttons, which are RESCALE, TRACE, PRIEigd CROSS-HAIR.

The input file is used to specify the parametergtie simulation. The description of
the input file is provided in the user manual [1&hich comes together with the

XPDP1 distribution.

There are “implicit” and “explicit” schemes in XPDP In this work, “explicit”
scheme is used for all the simulations due toittgkcity as we are dealing with DC
discharges. For the RF discharges we continue s “explicit” scheme for

comparison.

53

