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Chapter 3 

 

The Simulation Code – XPDP1 

 

3.1 Introduction 

 

The simulation program used in this research is XPDP1, an open source software 

developed by the Plasma Theory and Simulation Group – PTSG at University of 

California, Berkeley.  It is running on Unix workstations with X-Windows, and PC 

with an X-Windows emulator.  XPDP1 is the X-Windows version of PDP1, which 

has the same physics kernel as PDP1.  PDP1 is among the PDx1 codes from UC 

Berkeley, where “x” stands for P (Planar), C (Cylindrical), and S (Spherical) 

electrodes.  The codes are written in object-oriented style, and in standard C (C 

language). 

 

PDP1 (Plasma Device Planar) simulates a plasma within planar electrodes, with or 

without a uniform applied DC magnetic field in an arbitrary direction.  The two 

electrodes in PDP1 are symmetric, as illustrated in Figure 3.1.  For other versions in 

the same series, there are PDC1 and PDS1.  PDC1 (Plasma Device Cylindrical) 

simulates a plasma within concentric (coaxial) cylindrical electrodes and allows an 

axial DC magnetic field.  PDS1 (Plasma Device Spherical) simulates a plasma within 

concentric spherical electrodes, without a magnetic field.  The inner electrode of both 

PDC1 and PDS1 is of finite size.  They are useful for simulating discharges with 
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different electrode areas [5].  In this work, we will only focus on the planar version, 

PDP1. 

 

Figure 3.1: Schematic diagram of XPDP1 code [5]. 

 

PDP1 is the modified version of the W. S. Lawson’s PDW1 code (1983).  It is a 

bounded electrostatic code, simulating one-dimensional plasma devices.  The code 

simulates a bounded plasma with external circuit, which include R, L, C elements, 

and AC, DC, ramped current/voltage sources.  These characteristics (including 

particles and electrostatic fields) are specified by the user at run time using an input 

file.  The code uses Particle-in-Cell (PIC) technique to simulate the electrons and 

ions, leap-frog method for the integration of the equation of motion, and Monte-Carlo 

collisional (MCC) model for electron-neutral and ion-neutral collisions [15].  The PIC 

technique, leap-frog method and MCC model are described in sections 3.2, 3.3 and 

3.4 respectively.  The simulation proceeds in real time, and the user may view the 

output as the code is running, in the form of various user-specified diagnostic 

windows.  The diagnostic windows are updated at each time step (animation).  The 

applications of XPDP1 code range from collisional capacitive RF discharges, used in 

materials processing to collisionless fusion problems [5]. 
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3.3 Particle-in-Cell (PIC) Method 

 

In reality, plasma is a collection of particles which consist of electrons, ions with 

various charge states, neutral atoms and molecules.  In the Particle-in-Cell method, 

there are computer particles (superparticles).  Each computer particle is a 

homogeneous collection of a large number of real particles (commonly 104 to 106 

particles), which is having the same mass-to-charge ratio as the real particles, thus 

minimizing the amount of particles to be simulated. 

 

In the PIC scheme, the physical volume is divided into cells by lines which run 

parallel to the boundaries.  The intersections of these lines are called mesh points or 

grid points.  An example of the grid is illustrated in Figure 3.2. 

 

 
 

Figure 3.2: A mathematical grid of PIC scheme [16]. 
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In Figure 3.2, A mathematical grid is set into the plasma region, to measure the 

charge density ρ  and current density J.  From the measured charge and current 

densities, we will obtain the electric field E and magnetic field B on the grid.  The 

particle quantities such as velocity and position of a charged particle q at (x, y) 

location will be counted in terms of ρ  at the nearby grid points (0, 0), (1, 0), (1, 1), 

(0, 1) and in terms of J at the faces between these points [16]. 

 

The particle quantities, such as velocities, v and position, x are known at the particle, 

and may take on all values in the phase space.  For each time step, the charge and 

current densities on the grid are calculated.  The process to produce the charge and 

current densities (ρ , J) on the grid from the particle positions xi and velocities vi 

implies some weighting (linear weighting) to the grid points that is dependent on 

particle position.  Once the densities are established on the grid, the ρ  and J are used 

to obtained the electric and magnetic fields (E, B) by solving the field equations.  

Poisson’s equation is used to solve for E in electrostatic simulation.  For 

electromagnetic simulations, the full set of Maxwell’s equations is used to solve for E 

and B.  With the fields on the grid, but particles scattered around within the grid, the 

force at the particle Fi is obtained through interpolation of the field from the grid to 

the particles by again performing a weighting.  Newton-Lorentz equation of motion is 

used for the calculation, and the particles are advanced to new positions and 

velocities.  Next, particle boundary conditions such as absorption and emission are 

applied.  If the model is collisional, the Monte Carlo Collision (MCC) scheme is 

applied.  The flow of the PIC-MCC scheme within one timestep is shown 

schematically in Figure 3.3 [16, 17, 18]. 
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Figure 3.3: Flow chart for an explicit PIC-MCC scheme [16]. 

 

3.3 Integration of the Particle Equations of Motion 

 

The integration method used in the code is called the leap-frog method.  The two 

first-order differential equations to be integrated are 

F
dt

dv
m =  ,         …………………………………………………………………...(3.1) 

v
dt

dx =  .         ……………………………………………………………...………(3.2) 

 

These equations are replaced by the finite-difference equations 
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In the leap-frog method, as shown in Figure 3.4, v(0) is pushed back to v(- 2/t∆ ) 

using the force F calculated at t = 0.  Consequently, the finite difference equations of 

the leap-frog method are 

F
t

vv
m

tttt

=
∆
− ∆−∆+ 2/2/

 ,         ……………………………………………………...(3.5) 

v
t

xx ttt

=
∆
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  .        ……………………………………………………………....(3.6) 

 

 

Figure 3.4: Scheme of the leap-frog integration method [4]. 

 

Therefore, 

2/2/ tttt vt
m

F
v ∆−∆+ +







 ∆×=  ,         ……………………………………………...….(3.7) 

ttt xtvx +∆×=∆+   .        …………………………………………………………..(3.8) 

 

where force, )( BVEqF ×+= .  The leap-frog method is “explicit” since 2/ttv ∆+  and 

ttx ∆+  are determined only from values at earlier time levels.  The stability and 
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accuracy of the leap-frog method can be tested by applying it to the simple harmonic 

oscillator model 

x
dt

xd 2
02

2

ω−= .          ………………………………………………………………..(3.9) 

 

Equation (3.9) is substituted into the finite difference scheme to obtain 

t
ttttt

x
t

xxx 2
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2 ω−=
∆
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 .         ……………………………………………….(3.10) 

 

The solutions of the equation are of the form 

)exp( tiCxt ω−=  ,         ………………………………………………………….(3.11) 

)](exp[ ttiCx tt ∆+−=∆+ ω  .         ………………………………………………...(3.12) 

 

Using Euler’s formula, the finite difference becomes 

22
sin 0 tt ∆

±=






 ∆ ωω
 .         ……………………………………………………….(3.13) 

 

For 1
2

<<∆tω
, 0ωω ≈  as desired.  If 20 >∆tω , the real solution for ω  becomes 

complex with growing and decaying roots, indicating numerical instability.  For 

simulations which use the leap-frog mover, typically 2.00 ≤∆tω  is taken for stability 

[16, 17, 18].  More details on the accuracy and stability requirements for PIC are 

stated in section 3.5. 
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3.4 Monte Carlo Collision Model 

 

In the Monte Carlo Collision (MCC) model, random numbers are being used to 

decide whether or not a particle is subjected to a collision, and what type of collision 

is to occur. 

 

The MCC model statistically describes the collision processes, using cross sections 

for each type of collision.  Consider a set of particles incident on another set of 

particles (targets).  The probability, Pi of a collision event for the ith incident particle 

of energy 2

2

1
ii mv=ε  can be written as, 

( ) ( ) ]exp[1 tvxnP iiTgi ∆−−= εσ  ,         …………………………………………...(3.14) 

 

where the total cross section is the sum over all processes,  

( ) ( )ijjiT εσεσ ∑=  .         ……………………………………………………….(3.15) 

 

Here ng(x) is the spatially varying target density, vi is the incident speed, and t∆  is the 

time interval. 

 

For example, assume the particle specie s has N types of collisions with the target 

specie, the kinetic energy of the ith particle of the incident s specie is given by 

2

2

1
isi vm=ε  ,         ……………………………………………………………….(3.16) 
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where iε  is needed in calculating the collision cross sections.  The total cross section 

is ( ) ( )ijjiT εσεσ ∑=  ,         ……………………………………………………..(3.17) 

 

where ( )ij εσ  for Nj ≤≤1 , is the cross section of the jth type of collision between 

the s specie and the target specie.  The collision probability for the ith particle is 

calculated based on the distance tvs ii ∆=∆  traveled in each time step, t∆ .  

Consequently, ( ) ( ) ])()(exp[1]exp[1 iiTgiiTgi sxntvxnP ∆−−=∆−−= εσεσ .  If a 

uniformly distributed random number on the related time step is less than Pi, a 

collision will take place.  Then another random number is chosen to determine the 

type of collision.  Every computer particle must be evaluated in every time step of the 

simulation. 

 

Another approach is the null collision method, which is computationally more 

efficient.  In this method, only one collision probability, which is energy independent, 

is used to model all the particles.  The simulation program will randomly select a 

number of particles based on the collision probability, and concentrate on evaluating 

this selected fraction particles, then deciding which collision they are to undergo.  

The null collision model has a significant speed advantage over other collision 

models which query each of the fraction of particles for collisions at every time step. 
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3.5 Accuracy and Stability Requirements for PIC 

 

The basic discretization parameters for “explicit” PIC method are mesh spacing, x∆ , 

time step, t∆ , and number of particles per cell, PPC.  Trying to increase the mesh 

spacing, x∆  and time step, t∆  is often done for speeding-up the simulations.  

However, there are certain constraints on x∆  and t∆  in order to maintain accuracy 

and stability.  For electrostatic PIC, the x∆  and t∆  are determined by 

2.0≤∆tpω  and  1≥
∆x

Dλ
, 
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In these equations, T is the plasma temperature in electron volts, n is the plasma 

density, 0ε  is the permittivity of free space (≈ 8.854×10-12 F m-1), e is the electronic 

charge, and m is the mass of the lightest species involved in the collision [18, 19]. 
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3.6 Boundary Conditions 

 

The boundary conditions of the code include surface charge on the electrodes, which 

are connected to a series RLC circuit with driving voltage, V(t) or current, I(t).  The 

general form of the applied source is 

)2sin()( 00 θπ +⋅⋅+⋅+= tfACtRampDCtS .          …………………………….(3.18) 

 

An external circuit has its own intrinsic time scales which are not related to the 

plasma time scales.  The simulation time step must be small enough to resolve these 

time scales, or the circuit simulation will produce inaccurate results regardless of the 

plasma parameters [20]. 

 

Referring to Figure 3.1, the current in the external circuit interacts with the plasma via 

the surface charge on the electrodes.  The potential within the plasma region is 

affected by the distribution and motion of space charge, the electrode surface charge, 

and the current in the external circuit [21]. 

 

By applying Gauss’ law to the system, the boundary conditions for the potential 

equation are obtained [21]. 

0=
+

+=⋅∫ ∫
−−++

S V

AA
dVdSE

ε
σσ

ε
ρ

 ,         ………………………………......(3.19) 

 

where the surface S encloses the plasma and electrodes.  A+ and A- refer to the left 

and right electrode respectively, and σ  is the surface charge in the respective 
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electrode. ρ  has units of charge/volume and σ  has units of charge/area.  Using the 

definition of potential, we obtain 

ε
ρ jjjj

x
−=

∆
Φ+Φ−Φ −+

2

11 2
 ,         ……………………………………………….(3.20) 

for planar electrodes [21]. 

 

For one dimensional system, the boundary conditions can be written as [21] 

0=Φ nc           ……………………………………………………………………(3.21) 

and 

ε
σ +=0E .          ………………………………………………………………..…(3.22) 

 

Equation (3.21) can be written at one-half grid cell from the boundary, in conjunction 

with a central difference applied to the definition of potential, which gives 


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
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∆
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1
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x
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ε
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for planar electrodes [24]. 

 

The charge conservation equation at each wall, 

QQA conv ∆+=∆σ           ………………………………………………………...(3.24) 

 

becomes 

A

QQQ tttt
convttt

∆−
∆− −+

+= σσ  .         …………………………………………...(3.25) 

 

where Q is the charge on one plate of the external circuit capacitor [21]. 
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In the code, there are four cases which cover the full range of external circuit 

parameters [21]:  

 

(1) General Series RLC Circuit (Voltage-Driven Circuit) 

 

For the general voltage-driven series RLC circuit, the capacitor charge Q is advanced 

using Kirchhoff’s voltage law, 

02

2
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c

Q
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dQ
R

dt

Qd
L  .         ……………………………………(3.26) 

where ncΦ is the reference potential fixed at zero, which to be the potential of the 

grounded electrode, and 0Φ  is the potential at time zero. 

 

One second order difference is 
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(2) Open Circuit 

 

When C � 0. the impedance approaches infinity, therefore the external circuit 

becoming an open circuit.  The potentials on the boundaries are floating, and the 

surface charges on the electrodes influence the potential as always, but the electrodes 

cannot exchange charge via external current.  The charge conservation equation is 

t
conv

tt Q+= ∆−
++ σσ     .      …………………………………………………………(3.29) 

 

(3) Short-Circuit 

 

When R=L=0 and C � ∞ , the external circuit is a short circuit, with 

)(0 tVnc =Φ−Φ   .        …………………………………………………………..(3.30) 

 

The short-circuit case is applied when 

510
/

>
lA

C

ε
 .         ………………………………………………………………..(3.31) 

 

(4) Current-Driven Circuit 

 

In this case, an ideal current source is assumed to be driving the specified time-

varying current I(t).  The external circuit elements R, L, and C are ignored since an 

ideal current source is an open circuit. 

 

The stability of the circuit with L � 0 is given by the characteristic equation 

014)/23(2 =+−∆+ ξξ RCt  ,         ……………………………………………..(3.32) 
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where 1|| ≤ξ  is required.  The roots are 

RCt

RCt

/23

/212

∆+
∆−±=ξ   .        …………………………………………………….(3.33) 

 

3.7 Particle Conditions - Loading Initial Distributions  

 

In order to calculate the particle energy distribution, the following equations are used 

[17]: 

 

The Maxwell-Boltzmann distribution, 








−=
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ff
εε exp)( 0   ,        ……………………………...…………...…………(3.34) 
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In one dimension, equations (3.34) and (3.35) becomes, 
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Invert the cumulative distribution function (3.38), 
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By using Box-Muller method [35], we choose two pseudo-random numbers 

( 1,1 21 ≤<− vv )  discarding them if 12
2

2
1

2 >+= vvR .  Then 

2

2

11

)ln(

R

R
v −=υ ,          ………………………………………………………...(3.39) 

2

2

22

)(

R

Rin
v −=υ .         …………………………………………………….….(3.40) 

 

Equation (3.38) must be inverted numerically for general cutoffs. 

 

3.8 General Structure of the Code 

 

XPDP1 code is implemented with an object-oriented structure in standard C in order 

to facilitate enhancements.  The code is separated into a physics application and the 

windowing core.  Therefore, new physics and diagnostics can be added without 

altering the windowing core.  The interaction between wingraphics manager and the 

physics kernel is illustrated in Figure 3.5. 
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Figure 3.5: Schematic representation of the interaction between WinGraphics and the physics kernel [15]. 
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Using the windowing core, all diagnostics are updated dynamically in time.  The 

diagnostics can also update in individual time-steps, and pausing for keystroke before 

continuing the simulation [15]. 

 

PDP1 can run indefinitely without a time step limitation.  Time histories are combed 

periodically in such a way that there are never more than HISTMAX (a constant) 

value stored [15]. 

 

PDP1 employs four circuit solvers to handle the full range of external circuit 

parameters.  (i) The general voltage-driven series RLC case.  (ii) The open circuit 

case, where C�0.  (iii) The short circuit case, when C�∞  and R=L=0.  (iv) The 

ideal current source case.  More details have been described previously in section 3.6.  

 

A Monte Carlo Collisional model for electron-neutral and ion-neutral collisions is 

used in PDP1.  All components of velocity can be specified independently in the input 

file. 

 

The main flow of the code is shown in Figure 3.6.  Table 3.1 is the description of the 

XPDP1 code main flow. 
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Figure 3.6: Main 
flow of XPDP1 code. 
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Table 3.1: Description of XPDP1 code main flow. 

The description of the XPDP1 program main flow 

display_title The code starts with the display of the program title and the 

general information of the program developer, etc.. 

XGInit Initialize the window graphics (XGrafix) stuff.  Here, the window 

manager will get the code and the input file names, read, then 

initialize the window array. 

Start The start function opens files and read the general input 

parameters in the input file, then checks for errors.  The program 

will exit, when there is an error.  If no error, the program will 

proceed to allocate field parameters and diagnostics arrays.   

DiagArray Allocate diagnostic arrays.  This 

function will allocate space for all the 

diagnostics.  The diagnostics are also 

group into time history diagnostics and 

average diagnostics. 

Then the program will setup the parameters for each species, e.g. 

ion, electron, etc..   

species Read species parameters from the input 

file, and assign input parameters to 

arguments. 

Scaling factors to convert from physical units to code unit and vis 

versa.  Next, allocate particle arrays. 

SpeciesDiagArray This is the diagnostic arrays of the 

species.  The program will allocate 
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space for velocities distribution, and 

allocate space for the distribution 

functions arrays. 

Calculate the coefficient for the mover in the presence of a 

magnetic field.  Then, the program will load in all species’ 

particles, which is properly distributed.  This will start with a 

“dump file” with all the record of a distribution, or if a dump file 

is not given, it will load the system with the initial distribution. 

Restore Running the dump file if given. 

load Load one species and one direction at a 

time.  There are loader for a cold beam 

and loader for thermal distribution.  

Maxwellian distribution function is used 

in the code. (More details in section 3.7 

and Chapter 2 - section 2.6) 

mccdiag_init Initialize Monte Carlo Collision rate diagnostic.  Allocate arrays 

for diagnostic rates. 

InitWindows Initialize diagnostic windows.  Setup each window structure. 

setrho Set initial charge density, includes smoothing the charge density of 

each species. 

fields Initialize field arrays.   

field_init Initializing the arrays and parameters for 

the field solve.  Here, the program will 

setup the arrays for the poisson solve.  

Then, decide which circuit solver to use.  
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There are four options of circuit solver: 

(More details in section 3.6) 

i. when C�0, open circuit 

ii.  when current source is 

applied 

iii.  when L=R=0, C�infinity, 

short circuit 

iv. the general case with 

external voltage source 

Calculate the external circuit. 

History Initialize history arrays.  This is the time history accumulator.  It 

calculates and stores all history values, and performs combing on 

history values when low on memory.     

XGStart This will start the XGrafix main loop, which is the wingraphics 

manager.  It will then link to the main physics loop, which is the 

XGMainLoop. 

XGMainLoop For a no subcycling loop, initially the 

program will proceed to advance time 

for the species isp (ion).  Then advance 

position and velocity in (*moveptr). 

adjust Remove particles that 

cross boundaries.  This 

is the routine to adjust 

(initialize, re-pack and 

inject) particles to the 
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desired boundary 

conditions.  There are 

four parts of simulation 

process.  First, initialize 

array for computing 

positions of injected 

particles.  Then, it will 

go to left hand side 

(LHS) wall diagnostics, 

mid system diagnostics, 

and injection of new 

particles at walls (one 

species at a time). 

(*mccptr) 

– e.g.: 

argonmcc 

Monte Carlo Collisions 

for species isp (ion).  

This is the part of Monte 

Carlo Collision for 

electron-neutrals and 

ion-neutrals.  Here, the 

program will be 

calculating the null 

collision probability, 

then the electron 

collisions with argon.  

For the collisions, there 
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are five types of 

collisions: elastic 

collision, excitation, 

ionization, scattering 

and charge exchange 

collision.  The program 

will determine the type 

of collision, and follow 

with the calculation. 

(More details in section 

3.4 and Chapter 2 - 

section 2.7) 

gather Assign charge densities 

to the grid.  This 

function is in separate 

loop, because new 

particles might be 

created in mcc and 

adjust that might not 

have been weighted. 

Then the program will run the fields, 

and history.  Lastly back to the flow 

in XGStart in the wingraphics 

manager. 
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XPDP1 is available in the zipped form from the PTSG website at 

http://ptsg.eec.berkeley.edu [22].  The wingraphics manager (XGrafix) is available 

separately at the same website.  The installation guide is available in the website at 

http://ptsg.eecs.berkeley.edu/~jhammel/qdptsg.html [23]. 

 

XPDP1 fully support a mouse for selection of items, buttons, etc..  The buttons on the 

main menu include RUN, STOP, STEP, SAVE, and QUIT.  The diagnostic window 

has four buttons, which are RESCALE, TRACE, PRINT, and CROSS-HAIR. 

 

The input file is used to specify the parameters for the simulation.  The description of 

the input file is provided in the user manual [15], which comes together with the 

XPDP1 distribution. 

 

There are “implicit” and “explicit” schemes in XPDP1.  In this work, “explicit” 

scheme is used for all the simulations due to its simplicity as we are dealing with DC 

discharges.  For the RF discharges we continue to use “explicit” scheme for 

comparison. 

 

 

 

 

 

 

 

 


