CONTENTS

Abstract iv

Abstrak v

Acknowledgements vi

CHAPTER ONE

INTRODUCTION of LIQUID CRYSTALS 1

1.1. Historical Background 1

1.2. The Position and Types of Liquid Crystals 3

Lyotropic

Thermotropic

1.3. Description of Thermotropic Liquid Crystals 4

1.3.1 Calamitic Liquid Crystals 5

Nematic phases

Cholesteric phases

Smectic phases

1.3.2 Discotic Liquid Crystals 10

1.3.3 Sanidic Liquid Crystals 10

1.4. General Structural Features of Mesogen 15
CHAPTER TWO

COMPUTER SIMULATIONS and PROPERTIES

2.1. Introduction to Computer Simulation 24
 2.1.1 Periodic Boundary Condition 28

2.2. Simulation Technique 32

Monte-Carlo and Molecular Dynamic

2.3. The Monte-Carlo Method 33
 2.3.1 The Theory of Markov Chain 37
 2.3.2 Realization of the Metropolis Monte-Carlo 39
 2.3.3 Isothermal-Isobaric Monte-Carlo Method 41

2.4. Thermodynamic Properties 43

Isothermal Compressibility

Heat Capacity

Thermal Expansion Coefficient

Orientational Order Parameter

2.5. Structural Properties 47

The Radial Distribution Function
CHAPTER THREE

COMPUTER SIMULATION STUDY of THE GAY-BERNE MESOGEN.

3.1 Introduction 51

Review of Liquid Crystals Simulations

The Gay - Berne Potential

3.2 The Simulation Details 59

3.3 Results and Discussion 64

3.3.1 Phase Identification and Artefact 64

3.3.2 Thermodynamic Results 71

Volume Per Particle

Internal Energy

Entalpy

Second Rank -Orientational Order Parameter

Heat Capacity

3.4 Cooling "Time" 87

3.5 Conclusion and Future Works 94

Appendixs 96

References 100