CHAPTER TWO

COMPUTER SIMULATIONS and PROPERTIES

2.1  Introduction to Comp Simul

Over the last two decadés, modern silicon technology has resulted in the
production of faster, larger and more powerful computers. Every year, newer and faster
machines appear. At present the trend is going from conventional serial Von Newmann

processors to a much faster parallel computers example supercomputer like "CRAY

T3E" which can have up to th d central pr ing unit. Computations which may
have taken several hours in the early sixties now take only a few seconds. This recent
dramatic upsurge in computer power has therefore spread beyond the confines of
statistical physics to include groups such as physical chemists, solid state physicists,

materials scientists and i ingly, biochemists and biophysicists to apply the technique

of computer simulation into thier studies.
Before discussing computer simulation in detail however, we must first of all
ask, why is the technique of computer simulation so important. From a theoretician's

"

point of view, this ique is extremely

1

in that it provides a tool to perform
‘exact experiments ' on well defined model systems thus enabling these "computer
experiments" to be compared directly with both real experimental data and predictions
from theories. For instance, we can modelled a system of nematic liquid crystals by
choosing a particular interaction potential. But in order to obtain properties for the

model system, some theory which is always in the form of approximation is needed.
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However in computer simulation we can use the same model system and simulate its
properties. This provides a mean to test the theory without affecting the validity of of
the model. Conventionally the theory is tested by comparing results from real
experiments. The disadvantages of this method is when results are not in agreement,
there is no way of knowing if both tiwory and the model are wrong or just one of them.
Therefore the best method to test a theory is to use both computer simulation and real
experiment, as illustrated in Figure 2.1[24].

The properties of dilute atomic gases can be obtained directly from an analytical
solution of a mathematical model, since the system can be regarded as consisting of

d.

totally indep entities, for le, particles or oscillators. However for more

condensed systems this analytical mathematical approach is not possible, since for
compressed gasses or liquids the atoms or molecules interact with each other giving a
many bodied, multi-interaction problem. To an extent this problem can be overcome by
resorting to the computer simulation techniques, at least for relatively simple systems,

dod 1

where the i ion p ial can be regarded as adopting a simple form, and consisting

of pairwise interactions only. In the case of the simulation of atomic liquids, for example

liquid argon, a high degree of agreement can be obtained between data measured

experi lly and that d from computer simulations [25,26], thus providing a

fairly rigorous test to the derived pair potentials. The same is true, although to a lesser
extent, in the simulation of the properties of molecular liquids, such as liquid nitrogen,
hydrogen chloride and even for simple triatomic molecules, like carbon disulphide and

water [27,28]. However, for more comp approximations have to be made
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Figure 2.1 The connection between experiment, theory, and computer simulations.
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to formulate the pair p ial before the simulation can be d. For sy

1 A, di

consisting of large molecules, it would be computati very to for

alli ions and so ptions related to the symmetry of molecules and to the form

of interaction potential have to be enforced. Even so, the simulation of such systems
does provide a very important probe into the understanding of the properties of such
molecular systems.

In conjunction with the di ic develop that have occurred in computer

h

logy, the use of simulation has greatly d the range of problem to which the
methods of statistical mechanics can be applied. Although the statistical mechanics of
any condensed phase which is complex, but modelling interactions among the liquidlike

properties and solid like properties of liquid crystalline systems is possible but

nevertheless is a challengi ise. This is especially true when idering the
dependence of liquid crystalline phase transition on the temperature and on the nature
of the molecular interactions. As a consequence, it is becoming a more common for
researchers to turn to computer simulation to gain better insight into the behaviour of
liquid crystals. Many liquid crystals may be considered as assemblages of rodlike
molecules that prefer to locally align themselves along a common "director axis ".
Nematic liquid crystals, are perhaps the simplest of liquid crystalline system, and are thus
the easiest to simulate, this will be discussed in detail later.

Clearly computer simulation allows not only laboratory obtainable data to be

calculated such as heat capacity, etc. In addition it can also gives exact results, for

example it provides direct route from the microscopic details of a system (the mass of
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the atoms, the interaction between them, molecular geometry etc.), to macrosopic
properties of experimental interest (the equation of state, transport coefficients,
structural order). As well as being of academic interest, these type of information can
also be technologically useful (e.g polymer-dispersed liquid crystal (PDLC) film whereby
it has become the subject of much scientific investigation and commercial development).
It may be difficult or impossible to carry out experiments under extremes of temperature
and pressure, while a computer simulation of the material such as a shockwave, high
temperature plasma, a nuclear reactor, or a planetary core, would be perfectly feasible.
Quite subtle details of molecular motion and structure, for example in heterogeneous
catalysis, fast ion conduction, or enzyme action, are difficult to probe experimentally, but
can be extracted readily from a computer simulation. Finally, while the speed of
molecular events is itself an experimental difficulty, it present no hindrance to the

simulator.

2.1.1 Periodic Boundary Condition

There are two technique involved almost universally in computer simulation, the
Monte -Carlo technique, and the method of Molecular Dynamics. Before describing in
details of the two technique, we shall look at some problems associated with both
techniques.

Firstly and perhaps the biggest problem is associated with the size of the systems

studied. Computer simulations are usually performed on a small number of molecules,

q o

ypically from a few h dto a few d in the most favourable cases. The size
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of the system is limited by the available storage on the host computer and also the speed
of execution of the program. Several hundred particles does seem a small number indeed
when compared to the number, of the order of 10, present in a macroscpic system or
with those of real experiments. Indeed early computer simulation studies used as few
as 32 molecules [29] and even today, few simulations are performed on systems with
more than 1000 interacting atoms or molecules (particles). This therefore means that
in order to predicts the properties of essentially infinite systems from our small finite
system, a careful extrapolation has to be performed. However, bulk properties are only
weakly dependent on N, where N is the number of particles, for N greater than 100 [30]
except for properties calculated close to a phase transition, where, statistically a true
phase transition cannot occur except in infinite systems.

The fact that small systems have to be used, gives rise to a further problem, that
of surface effects. Clearly for a system of 1000 particles a relatively high proportion will
exist at or close to a surface, which, will produce adverse properties. To remove these
surface abnormalities, Metropolis et al, 1953; [31] introduced the so-called "perodic
boundary conditions". This involves surrounding the isolated system of N particles by
an infinite number of exact replicas of itself. Thus a particle at a position (x, y, z ) in the
cell will see exact replicas of itself at positions (x + n,a, y*mb, z+nc), where (n, n,,
n)) each adopt all integer values between 0 and =, and in this case the cell is defined
to be rectangular with dimensions (a, b, ¢). Also, when a particle is moved out through
one face of the cell it automatically reenters at the opposite face in order to preserve N.

This effect is depicted in Figure 2.2 for a two dimensional square system. In general any
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shaped cell can be used provided that on replication it fills all space. Thus in two
dimensions the cell could either be triangular, square, rectangular or hexagonal. In three
dimensions it is usual to use a cubic cell giving cubic periodic boundary conditions,
although other more complex cells have been used, for example, truncated octahedra
[32]. Recently a new alternative to common periodic boundary condition is proposed,
called "Nebula Boundary Condition" (NBC)[33]. The basic idea of the NBC method is
to sample the molecules close to the centre of the sphere more often than those close to
the surface. This preferential sampling method would therefore reduce enormous
computational requirements.

The major disadvantage with periodic boundary conditions is that it introduces
spurious periodic correlations with a regularity equal to cell dimensions, therefore in
calculating distance dependent correlation and distribution functions one must always be

aware of this effect.

Another problem d in computer simulati although not as severe
as the difficulty encountered using a finite number of particles, is the choice of a starting
configuration, which define the positions and orientations of the N particles in the cell
at the start of the calculation. Generally at a specific set of external conditions (for
example, temperature, pressure) the system will exist in its equilibrium state, therefore
unless the starting configuration for a specific simulation is an equilibrated one, a stage
during which the system allowed to equilibrate will have to be undertaken. This
equilibrium process can be minimised with judicious choice of starting configuration,

since it is unlikely that a fully equilibrated stste will always exist. For example, at low
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temperatures it is sensible to take a configuration representative of the degree of order
which would exist at low temperatures, in other words an ordered state, and similarly at
high temperatures where a totally random state would represent the high degree of

disorder present.

2.2 Simulation Technique

There are wide range of simulation techniques, from straight forward solution

s g0
P

d stastistical

of Newton's equations of motion, Molecular Dy ics, to more
mechanical sampling methods , usually termed Monte-Carlo. Thier common feature
is the fact that they are based on a molecular description of the system of interest; the
main part in each case is the law that describes the interactions between the constituent
particles, whether they are atoms, molecules or ions. The different versions of the
Monte -Carlo method are schemes for sampling from a probability distribution
appropriate to one of the ensembles of equilibrium statistical mechanics. In the
Molecular Dynamics, the particles are allocated initial coordinates and momenta, and
thier subsequent trajectories are mapped out by integration of the classical equations of
motion. Observable properties of the system are then obtained as time averages over the
trajectories. Hence Molecular Dynamics, at least in its conventional form, represents a

realization of Boltzmann's approach to statistical mechanics, whereas the Monte -Carlo

method is rooted in Gibbs formulation of the problem. Molecular Dynamics can be used
in the study of time -dependent process. However the Monte -Carlo method has its own

advantages and is often simple to apply. The result reported in this thesis are all based
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on Monte-Carlo simulation, so we shall on this techniques further.

2.3 The Monte -Carlo Method

The canonical ensemble average of a N-particle system can be written in general

(M) =[MX™) PMXN)d XV, @.1)

where PY(X™) is the N- particle probability distribution function, A particular
example of an average like (2.1) might be the average configurational internal energy of

an ensemble of N particles, which can be written as
()= [UXMPMXMYd XY, 22)

X" denotes the N configurational variables D, D R , Xy, where X, represent the
variable in space and orientation (X;, Y;, Z, o, B, ¥ ). dX™ represent dot product

where dX; dX,dX;.......... dX\ is a function of all the coordinates of N particles, where

PGy = SRCUK YT
N

Q s the partition function, with,

Oy = [exp(-UX MYkT)(ax ™),
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U(XY) will typically be the sum of potential energies between pairs of particles although,

of course, many -body forces or external forces can be included. However it is usually

approximated to be sum of pairs potential,

UuxVy=x U”(X‘.X!)
i%j

The intergral in eq (2.2) can be replace by a sum ,

(U)= lim % U,xMpPNxY), 2.3)

M- -]

where U; (X") is the potential energy of the configuration denoted by the symbol i and
M s the total number of configurations, in a set , say S, for N particles in a volume V.
Because Mis so large it follows that any attempt to compute <U> directly from eq. (2.3)
is a hopeless task. On the other hand, by averaging over a smaller number of

configurations, m say, we could hope to obtain an estimate for <U> from,

(U)= f U™y PNy, 2.4)
i=1

The crudest Monte -Carlo method is designed to do precisely this. In practice it does

not work because any randomly selected confi ion is likely to be a highly improbable

one, contributing very little to the sum in eq. (2.4).Futhermore estimation of an average

<U>in eq. (2.4) is not quite correct, because the partition function, Q, must be the sum
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over all state.

It is therefore essential to use some form of " importance sampling " whereby
configurations are selected according to a prescribed probability distribution function,
and when averaging over the m configurations in the sample, a weight is attached to each
which has the effect of eliminating the bias in the selection was mention by Metropolis

et al in 1958[31]. A flow chart of the scheme is given in Figure 2.3 overleaf. This

amounts to choosing the prescribed probability distribution function equal to the

Boltzmann distribution. In this case the average is obtained simply as,
m
(U)=m™ Yu ;(XN), 2.5)
i=1

where U/( X ™) is a weighted sample set.

The answer to the question of how to sample according to the required
distribution is best formulated in the language of Markov processes (30,34,35). The
problem is that of forming a sample by generating a Markov chain in which the
successive states are configurations drawn from set S. Although no physical time is
involved, it is useful for descriptive purpose to speak of the states of chain occurring at
"times" t, t+1, t+2,......etc. From eq. (2.5) we see that the aim is to generate the cha_in
in such a way that the weighted average of U over all states of the chain converges, for
sufficiently large m, to the canonical ensemble average <U>. Clearly this equivalence
between the two averages will be assured if asymtotically a state i recurs in the chain

with a frequency proportional to the Boltzmann factor. For this to be true the one - step
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Figure 2.3 A schematic representation of the Monte - Carlo algorithm.
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transition probabilities which characterize the Markov process must have the following

properties.

2.3.1 The Theory of Markov C.hains

Let P;; = P;; [36] be the conditional probability that if the system in the state
i at time t will be in the state j at time t+1, P, ; is called the one step transition
probability. The transition matrix [ P;;] is independent of time and its elements must

satisfy the conditions,

P, >0, (2.6)

M
Y P =1, @7

An n-step transition probability is defined by the recurrence relation,
M

PP = El PP, (2.8)

It is known that if every state can be reached from any other state with a certain

sequency of steps (the system is ergodic) then the limit,

5 (n)
lim P = W, 2.9)

n-w
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exists for every pair, i, j and is independent of the starting state i. In addition it is found

that the asymptotic frequency factor w; obey the relations,

w.)0, (2.10)

Y W= 1, (2.11)
j=1
from eqs (2.8) and (2.9)
W= ); WPy (2.12)

In our case we know that the asymptotic frequency factors should be; if every
configuration represents a state of a Markov chain, then we require

W &xp(- U(/')/kT),

J ZN

(2.13)

where U is the energy of the j " configuration. Eq.(2.10) and (2.1 1) are
automatically satisfied by this choice of w; and our problem is to select a transition
matrix P ,; 50 as to obey eq.(2.12). This can be achieved by imposing the condition of

microscopic reversibility, that is

W Py=w,P,, (2.19)

whatever j and k . In this case eq.(2.12) follows from
);_‘. W Py = % wPy=w, %P,-;F w,.
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where the last equality is obtained with the aid of eq.(2.11). From eq. (2.14) we find

now the constraint on the transition probabilities,

P Uk
o A1 %0} @.15)
P, kT

Eq. (2.15) still does not specify a unique Markov process. The prescription proposed

by Metropolis et. al. [31] is to choose,

ij=a/k" if U(")(U(j),
1 .
Py=a exp(-(UP- UD), FU®) U,
and
P, = I‘E,-P”" (2.16)

where a;, are constantsand a;, = a,;

2.3.2  Realization of the Metropolis Monte-Carlo
In practice for simulation of liquid crystal properties this process can be realized
in the following way. The state of the system is defined by the set of particle

orientations, and the initial state is chosen in some suitable way. A particle is selected
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at random (see Appendix 2.1) or sequentially and a trial move is attempted in which the
particle is rotated to a new orientation, usually distributed uniformly in a fixed ranged,
say A, centred at the old orientation of the particle. The change in energy of the system
due to this trial move is calculated. -If the energy is increased (by an amount AU, say)
the move is accepted with probability exp (-AU /kT) and rejected with probability 1 -
exp (|AU /kT). This is achieved by comparing exp (-AU /kT) with a random number
uniformly distributed in (0,1). If the Boltzmann factor is greater than the random number
the move is accepted, otherwise it is rejected. A sequence of configurations is generated
and discarded until the initial energy of the system reaches an equilibrium value at which
point a stage known as the production phase is entered. At this stage the process is
repeated to form a sequence of states that are a realization of Markov chain.

The above procedure does not specify how rapidly the canonical distribution can

be approached. It may be ioned in this ion that the i displ

A must be chosen with some care. Iftoo large, most moves will be forbidden, and if too
small, the configuration will not change sufficiently. In either case it will then take longer
to come to equilibrium. A suitable value of A is one that can give an acceptance -
rejection ratio of unity.

In computer simulations the estimation of errors is of extreme importance.
Clearly, properties can be recalculated at each new configuration generated by the Monte
~Carlo chain thus providing very accurate averages. However, in general, the individual
values forming the averages will be correlated with each other, thus any attemp to

estimate the standard deviation will prove inaccurate. To overcome this problem, the
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simultaneous are normally broken up to steps (sometimes called 'macrosteps'’) over
which time averages are calculated. The total averages of the property is then the

averages of all the steps, and now assuming the sub averages to be uncorrelated,

dard deviations can be evaluated. The length of each steps determines whether they
are uncorrelated or not. Clearly they should be as long as possible, yet throughout the

entire simulation there should be sufficient to provide a reasonable estimate of the

d m q

d deviation. G the number calcul rep a compromise between

these two factors.

2.3.3 Isothermal -Isobaric Monte Carlo Method

The simulation carry out in this thesis involved the application of the isothermal-
isobaric ensemble . This NpT- method is applied to the system study of 500 particles
interacting through Gay -Berne potential . This method will be consider in detail.

An advantage of the Monte Carlo method is that it can be readily adapted to the
calculation of averages in any ensemble. Wood [37,38] first showed that the method
could be extended to the isothermal-isobaric ensemble. In this ensembles the number of
molecules, the temperature, and the pressure are held fixed while the volume of the
simulation box is allowed to fluctuate. These original constant-NPT simulations were
performed on hard spheres and disks, but McDonald [39,40] extended the technique
to cover continuous potentials in his the study of Lennard-Jones mixtures. This

ensemble was thought to be apopropriate for simulating mixtures since experimental
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measurements of excess properties are recorded at constant pressure and theories of
mixing are often formulated with this assumption. The method has also been used in the
simulation of single-component fluids [41] and also in the study of phase transitions [42].
In addition recently Luckhurst [43] had undertaken the NpT Monte-Carlo simulation

in order to avoid the influenced of periodic images of the phase structure on Gay -Berne

model mesogen, which initially was done on molecular dy at
volume.
The NpT Ensemble

In the constant-NPT ensemble in which an average quantity is defined by,

<M> [dVlidsMexp(- HIkT) i

. (2.17)

where Z is the configurational partition function; the integration is over the volume
element dV and also over the volume element for the scaled coordinates ds. H is the

energy function defined as,
H=U+ pV-kIN InV. (2.18)
The criteria for acceptance or rejection in the Metropolis biased sampling method

depends upon AH, the difference in the energy function between two consecutive ; This

s,

AH = AU + pAV-KIN InV. .19
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Since in the simulation, the box was kept orthogonal but the lengths of the three were
allowed to vary independently hence changing the shape of the orthogonal box and its
volume. In an isobaric move, uniform sampling of the log of the length was performed
[44,45], choosing one side at a time. The function AH appropriate for this type of

sampling scheme is,

AH = AU +pAV-KI(N+1) InV. (2.20)

This allows the box to expand or contract efficiently. An isobaric move was performed
once every 250 canonical moves each of these consisted of changing the position and the

orientation of a particle simultaneously while keeping the box volume constant.

2.4  Thermodynamic Properties
The basic thermodynamic properties of a model system may be calculated as
averages in any convenient ensemble.

The isothermal compressibility, B ,

B =-V"'(@VIaP),, @21

At constant T and P, both volume and energy fluctuations may occur. The volume

fluctuations are related to the isothermal compressibility B ,

<8V = Vky T, (2.22)
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The p heat ity is defined as ,

—)p» (2.23)

In isothermal -isobaric ensemble the simplest specific heat at constant pressure Cp,

formula may be obtained by calculating the ' instantaneous' entalpy (H + PV ),

<8 (H+PV 2>y, = k,T7Cp,

= SSE P>y

2.24)
i kyT? (

This equation can be split into the separate terms involving  <8H?>, <3 V? > and
<6H 8V >.

The thermal expansion coefficient is defined as ,
av.
o, =VI(=),. 225
P ( aT)p (2.25)

Finally, the thermal expansion coefficient «, may be calculated from the cross

correlations of 'entalpy ' and volume .
<OV O(H+PV) >Nt =kBTZVap. (2.26)

Other quantities may be obtained by standard thermodynamic manipulations .
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Ori ional Order Par:

The calculation of orientational order parameters is of particular importance in

1p imulations of systems expected to exhibit liquid crystal phases. For a uniaxial

mesophase where the orientation of the director is known, the second rank order

parameter is simply,
1.x
(P2> = (ﬁ)‘xl Pz(cosﬁi). (2.27)

P, is the second Legendre polynomial where P; is the angle between the orientation
and the direction of a particle. The director could be fixed along a particular direction
by, for example, the application of an external field. However in practice the director
orientation is not known prior to the simulation. The usual route to the order parameter

involves maximising the expression ,

N
(P = (% )L Po(g,.m), (.28)

with respect to the unit vector n. Here q; represents the unit vector of the it

molecule in the laboratory frame. This is acheived by rewritting as,

(P) = (%) (n.Q.m), 2.29)
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where the tensor Q is

0-LTaa-yr @30)
N7 3 '

Lis the moment of inertia tensor which derives from the equations of classical rotational

dynamics [46 ] and so, for example,
1
0.~ (ﬁ»:"‘*"‘z’ (2.31)

where Q tensor with respect to the laboratory axis. In order to locate the director it is
important to diagonalised the Q- tensor into the director frame. In the situation that n
is parallel to the z axis, Q is then symmectric and traceless and for cylindrical phase the

tensor takes the form of

-Gxpy 0 0
0 -(%)(13) 0 2.32)
0 0 Gxey

It is clear then that the orientation of the director in the space fixed axes is the
eigenvector corresponding to the largest eigenvalue, A mae Obtained from the

diagonalisation of Q. The second rank order parameter is obtained from the largest
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eigenvalue as,
3
(Pz>= (-z-)le (2.33)

Ideally, theQ tensor should be constructed and diagonalised at each time step and <P,>
calculated from the value of A . averaged over the whole simulation. But this is of
course a time consuming. Therefore the Q is collected and averaged over a macro-step.
The macrostep size must be appreciably small enough to avoid significant director
fluctuation [47]. A problem with the above procedure is that it necessarily predicts a
non -zero order parameter for the isotropic phase due to finite size system. Eppenga and
renkel [48] have shown that the use of A ,,, leads to an isotropic order parameter of
order 1/ VN while that obtained from the middle order parameter has associated errors
of order 1/N. However, A ,,, is a more accurate indication of the order in the nematic

phase and is the one normally preferred.

2.5  Structural Properties
The Radial Distribution Function

The structure of simple m ic fluids is ch ized by a set of distribution

functions for the atomic positions , the simplest of which is the pair distribution function
8 (r,,r;) , or g (5) or simply g( r). It is defined by intergrating the configurational

distribution function over all but two of the atomic coordinates [ 49],
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&(r,r)=N(N-1)/p*Z, v [exp-U(r,,r,,.. I VkIldr,. dry,, (2.34)

where p is the number density . This function gives the probability of finding a pair
of atoms at a distance r apart , relative to the probability expected in an ideal gas . It is
worth considering a few limiting situations . At large separations , the position of atoms
are uncorrelated and 50 g (r) tends to the the ideal gas value of one . For atoms with a
hard impenetrable core there is a vanishing probability of finding a second atom nearer

than a minimum distance ¢ from the first one , that is

g =0, r<e (2.35)

Aplot of g () will roughly take the form shown in Figure 2.4. An example of a typical
pair distribution function for the Lennard- Jones liquid close to it triple point shown in
Figure 2.5[24]. The sucessive peaks provide an indication of the short range order and
can be used to identify average shells of neighbours . These peak gradually decay as the
atomic positions become uncorrelated . For a solid the peaks continue to oscillate even
at large separations . In an idealized solid they would be delta functions but thermal
oscillations will obviously tend to smear them out .

In the simulation, the pair distribution function is calculated by

g.a
histogram of all the minimum image particle separations where each bin has a width of
8rand extends from r- 8r/2 tor + 8r/2. To obtain g(r) each bin is divided by the

average number of atoms in the same interval in an ideal gas at the same density. This

is calculated from,

48



2.0
g(r*)

1.5¢

05f

r*

Figure 2.4 A typical Radial distribution function for a liquid.
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Figure 2.5 Pair distribution function for the Lennard - Jones fluid close to the trip
point. :
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n=4wp/3)[(r+8r/2)*~(r-87/2)%
— (4 p/3)[3r26r + 5rY/4), (2.36)

Since &r is small the term involving 8’ is often neglected.
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