CONSTRUCTION OF *Escherichia coli* ARGinine REPRESSOR
FUSION PROTEIN AND ANALYSIS OF ITS FUNCTION
IN XER SITE-SPECIFIC RECOMBINATION

KHOLIS ABDURACHIM

INSTITUTE OF BIOLOGICAL SCIENCES
FACULTY OF SCIENCE
UNIVERSITY OF MALAYA
KUALA LUMPUR
2000
Construction of *Escherichia coli* Arginine Repressor Fusion Protein and Analysis of Its Function in Xer Site-specific Recombination

KHOLIS ABDURACHIM

A dissertation submitted to the Faculty of Science University of Malaya for the Degree of Master of Science

Institute of Biological Sciences Faculty of Science University of Malaya Kuala Lumpur 2000
Declaration:

No portion of the work referred to in this dissertation, unless otherwise stated, has been submitted in support of an application for any other degree of this or any other university or institution of higher learning.

Kholis Abdurachim Audah
29 August 2000
This thesis is dedicated to "Those Who Possess Intelligence"

In the creation of the heavens and the earth, and the alteration of night and day, there are signs for those who possess intelligence.

They remember ALLAH while standing, sitting, and on their sides, and they reflect upon the creation of the heavens and the earth: Our “RABB”, You did not create all this in vain. Be You glorified. Save us from the contribution of Hell.

This thesis is specially dedicated to my parents, Umi and Abah and to my wife,

Rifia Amalia
ACKNOWLEDGEMENTS

In the name of Allah, Most Gracious, Most Merciful. Praise be to Allah, “Rabb” of the universe and peace be upon the Prophet Muhammad S. A. W., his family, and his followers.

I am greatly indebted to my supervisor, Dr Amir Feisal Merican bin Aljunid Merican for his invaluable guidance, encouragement, support and help throughout this project.

I would also like to thank the staffs of Institute of Biological Sciences, for their cooperation especially to Ms Chan Lee Choo, Mr Harun Kedol, Mr Abdul Kudus Abdullah, Mr Raizan, Ms Anusooaya, Shina, and Hazu. Thanks to the National Biotechnology Directorate (NBD), Ministry of Science, Technology and Environment, Malaysia for the research grants provided for this project, and the research assistantship granted to me during this project.

To all my lab mates, Faizul, Arul, Rowyna, Syantia, Talha, and Zali, for their support and help. Thanks to Yasota (Assoc. Prof. Dr. Rohana Yusuf’s Laboratory, Biochemistry Department, Faculty of Medicine) for helping out with Western blotting technique. A special thanks to my friends Mr. Meriksa Sembiring and family, Mr. Mahmud Zaki Fuad and family, Mr. Jamiludin Hidayat and family, and Ms. Lindayani for their support, help and advice. A very special thanks to Dr. Mohamad Dahlan Darip and family, Mr. Muhammad Audah and family, and Mrs. Jamilah Ali and family, for their help, encouragement and advice. Thanks to everyone who has directly and indirectly supported me throughout my study.

My gratitude also goes to my beloved wife, Rifia Amalia, my wonderful parents Umi and Abah, and family members for their love, faith, and continuous prayers throughout these hard years. I wouldn’t be able to make it without your support.

"Hasbunallaah wa ni’mal wakiil ni’mal maulaa wa ni’man nashiir".

Kuala Lumpur, Friday, 14 July 2000

Kholis Abdurachim Audah
CONSTRUCTION OF *Escherichia coli* ARGinine REPRESSOR FUSION PROTEIN AND ANALYSIS OF ITS FUNCTION IN XER SITE-SPECIFIC RECOMBINATION

ABSTRACT

In addition to its role in L-arginine biosynthesis in *Escherichia coli*, arginine repressor (ArgR), the product of the *argR* gene, also plays an essential role as an obligate accessory protein in Xer site-specific recombination system. A structure-function relationship study of ArgR was performed to understand more about its role in Xer site-specific recombination.

Fusion proteins between ArgRWT (wild-type ArgR) and a biotinylated peptide as well as between ArgRNV (a mutant ArgR) and a biotinylated peptide were constructed. The biotinylated peptide was fused in frame to the amino-terminus of ArgRWT and ArgRNV, respectively.

Xer recombination assays showed that the ArgRWT-biotinylated peptide fusion protein poorly supports *cer*-mediated recombination *in vivo*, whereas the ArgRNV-biotinylated peptide fusion protein proficiently supports *cer*-mediated recombination *in vivo*. A 30 kDa protein which is the expected size for ArgRWT and ArgRNV-biotinylated peptide fusion protein was succesfully expressed. ArgRNV-biotinylated peptide fusion protein was partially purified.
PEMBINAAN PROTEIN CANTUMAN DALAM *Escherichia coli*
DAN ANALISIS FUNGSIANYA DALAM REKOMBINASI
TAPAK KHUSUS XER

ABSTRAK

Tambahan daripada peranan dalam biosintesis L-arginine dalam *Escherichia coli*, protein repressor arginine (ArgR), iaitu hasilan ekspresi gene argr, juga mempunyai peranan penting sebagai protein aksessori mustahak dalam sistem rekombinasi tapak khusus Xer. Satu kajian berkaitan struktur fungsi ArgR telah dijalankan bagi memahami dengan lebih mendalam peranannya dalam sistem rekombinasi tapak khusus Xer.

Protein-protein cantuman diantara ArgRWT (ArgR jenis liar) dan peptida yang dibiotinilasikan dan juga antara ArgRNV (ArgR mutan) telah dibina. Peptida yang dibiotinilasikan telah dicantumkan dengan sempurna secara berasingan kepada kedua-dua hujung amino ArgRWT dan ArgRNV.

CONTENTS

ACKNOWLEDGEMENTS i
ABSTRACT ii
ABSTRAK iii
CONTENTS iv
ABBREVIATIONS viii

CHAPTER 1: General Introduction
1.1 Site-specific recombination 1
1.2 Xer-site specific recombination system 3
1.3 Arginine repressor of Escherichia coli K-12 (ArgR) 4
1.4 ArgR homologues 8
1.5 ArgR mutants 8
1.6 Fusion protein system 10
1.7 Objectives of study 10

CHAPTER 2: Materials and Methods
2.1 Bacterial strains and plasmids 12
2.2 Chemicals and reagents 12
2.3 Bacterial growth media 12
2.4 Growth and maintenance of bacterial culture 13
2.5 Amino acids, antibiotics, lac inducer, indicator, and vitamin 13
2.6 Isolation and purification of covalently closed circular plasmid DNA 14
2.6.1 Small-scale plasmid DNA preparation 14
2.6.2 Midi-scale plasmid DNA preparation 15
2.6.3 Large-scale plasmid DNA preparation 16
2.6.4 Purification of plasmid DNA with Cesium chloride/Ethidium bromide (CsCl-EtBr) density gradient centrifugation 17

2.7 In vitro DNA manipulation 18
2.7.1 Restriction endonuclease digestion of DNA 18
2.7.2 Dephosphorylation of DNA restriction fragment 19
2.7.3 Phenol extraction and ethanol precipitation of DNA 19
2.7.4 Ligation of DNA fragment 19

2.8 Bacterial transformation 20
(a) Preparation of competent cells 20
(b) Transformation 20

2.9 Rapid screening of plasmid DNA 20
(a) Phenol-chloroform-isopropanol method 20
(b) SCFSB method 21

2.10 DNA sequencing 21

2.11 Gel electrophoresis of DNA 22

2.11.1 Staining of DNA gel 22
2.11.2 Extraction of DNA from agarose gel 22

2.12 Protein expression and detection 23
2.12.1 Cell growth and induction 23
2.12.2 Cell lysis 24

2.13 SDS-PAGE analysis 24
2.14 Western blotting 25
2.14.1 Preparation of the gel for protein transfer 26
2.14.2 Preparation of the transfer membrane 26
2.14.3 Assembling of the transfer stack 26
2.14.4 Protein transfer 26
2.14.5 Visualization of the proteins 27
2.14.6 Drying of the blotted membrane 27
2.14.7 Detection of biotinylated protein 28
2.14.7.1 Blocking of the blotted membrane 28
2.14.7.2 Chromogenic substrate incubation 29
2.15 In vivo Xer-site specific recombination assay 29
2.16 Protein purification 30
2.17 Photography 31

CHAPTER 3: Construction of ArgRWT and ArgRNV-Biotinylated peptide fusion protein

3.1 Introduction 32
3.2 Preparation of cloning vector and DNA insert 33
3.2.1 Isolation of plasmid DNA 33
3.2.2 Purification of plasmid DNA 34
3.2.3 Digestion of plasmid DNA 35
3.3 Construction of ArgRWT-biotinylated peptide fusion protein 36
3.3.1 Subcloning of argRWT gene into PinPoint™ Xa-3 cloning vector 36
3.3.2 Analysis of argRWT-biotinylated peptide fusion recombinant DNA 36
3.4 Construction of ArgRNV-biotinylated peptide fusion protein 37
3.4.1 Subcloning of argRNV gene into PinPoint™ Xa-3 cloning vector 38
3.4.2 Analysis of argRNV-biotinylated peptide fusion recombinant DNA 38
3.5 Characterization of recombinant plasmids 39
3.5.1 Restriction endonucleases analysis for argRWT fusion derivative 39
3.5.2 Restriction endonuclease analysis for argRNV fusion derivative 40
3.5.3 DNA sequence analysis 41
CHAPTER 4: Determination of the Xer phenotype of ArgRWT- and ArgRNV-biotinylated peptide fusion protein

4.1 Introduction 42
4.2 \textit{In vivo cer}-mediated recombination using pCS202 as reporter plasmid 43
4.3 \textit{In vivo cer}-mediated recombination using pSH10 as reporter plasmid 44

CHAPTER 5: Protein expression and analysis

5.1 Introduction 46
5.2 Small-scale expression of ArgRWT-biotinylated peptide fusion protein 46
5.3 Small-scale expression of ArgRNV-biotinylated peptide fusion protein 47
5.4 Partial purification of fusion proteins 48
5.4.1 Expression conditions 48
5.4.2 Fractionation of cellular proteins 48
5.4.2.1 Purification by Batch capture method 49
5.4.2.2 Purification by Column capture method 49

CHAPTER 6: Discussion

6.1 Introduction 51
6.2 Effects of additional amino acids residues to ArgR structure and activity 53
6.3 Expression of \textit{argR} fusion genes and the related properties of the fusion products 55
6.3.1 Protein degradation systems 56
6.3.2 Potential toxicity of the protein 58
6.4 Use of ArgR fusion protein 58
6.5 Possible experiments to be carried out 60
6.6 Conclusions and suggestions 60

REFERENCES vii
ABBREVIATIONS

(a) Buffers/Chemicals/Enzymes/Reagents

APS ammonium persulphate
ATP adenosine triphosphate
BSA bovine serum albumin
DNA deoxyribonucleic acid
DMF dimethylformamide
DNase I deoxyribonuclease I
dNTP deoxynucleoside triphosphate
DTT dithiothreitol
EDTA ethylenediaminetetraacetic acid (disodium salt)
EtBr ethidium bromide
EtOH ethanol
FSB final sample buffer
IPTG isopropyl-β-D-thiogalactopyranoside
NaCl sodium chloride
PMSF phenylmethanesulfonyl fluoride
RNA ribonucleic acid
RNase A ribonuclease A
SCFSB single colony final sample buffer
SDS sodium dodecyl sulphate
TAE Tris-acetate-EDTA buffer
TBE Tris-borate-EDTA buffer
TE Tris-EDTA buffer
TEMED NNN’N’- tetramethylethylenediamine
TM Tris-magnesium buffer
Tris tris (hydroxymethyl) amino ethane
X-gal 5-bromo-4-chloro-3-indolyl-β-D galactoside

(b) Antibiotics

Ap ampicillin
Cm chloramphenicol
Km kanamycin
Tc tetracycline

(c) Units

bp base pair
°C degree Celsius
Da dalton
g gram
hr hour
kb kilobase pairs (10^3 bp)
kDa kilodalton
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>l</td>
<td>litre</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>molar</td>
<td></td>
</tr>
<tr>
<td>mA</td>
<td>milliampere</td>
<td></td>
</tr>
<tr>
<td>min</td>
<td>minutes</td>
<td></td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
<td></td>
</tr>
<tr>
<td>µg</td>
<td>microgram</td>
<td></td>
</tr>
<tr>
<td>ml</td>
<td>millilitre</td>
<td></td>
</tr>
<tr>
<td>µl</td>
<td>microlitre</td>
<td></td>
</tr>
<tr>
<td>mol</td>
<td>moles</td>
<td></td>
</tr>
<tr>
<td>nm</td>
<td>nanometer</td>
<td></td>
</tr>
<tr>
<td>rpm</td>
<td>revolutions per minute</td>
<td></td>
</tr>
<tr>
<td>sec</td>
<td>seconds</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>volts</td>
<td></td>
</tr>
</tbody>
</table>

(d) **Amino acids and genetic code**

<table>
<thead>
<tr>
<th>Letter</th>
<th>Amino Acid</th>
<th>Genetic Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Ala alanine</td>
<td>GCT, GCC, GCA, GCG</td>
</tr>
<tr>
<td>C</td>
<td>Cys cysteine</td>
<td>TGT, TGC</td>
</tr>
<tr>
<td>D</td>
<td>Asp aspartic acid</td>
<td>GAT, GAC</td>
</tr>
<tr>
<td>E</td>
<td>Glu glutamic acid</td>
<td>GAA, GAG</td>
</tr>
<tr>
<td>F</td>
<td>Phe phenylalanine</td>
<td>TTT, TTC</td>
</tr>
<tr>
<td>G</td>
<td>Gly glycine</td>
<td>GGT, GGC, GGA, GGG</td>
</tr>
<tr>
<td>H</td>
<td>His histidine</td>
<td>CAT, CAC</td>
</tr>
<tr>
<td>I</td>
<td>Ile isoleucine</td>
<td>ATT, ATC, ATA</td>
</tr>
<tr>
<td>K</td>
<td>Lys lysine</td>
<td>AAA, AAG</td>
</tr>
<tr>
<td>L</td>
<td>Leu leucine</td>
<td>TTG, TTA, CTT, CTC, CTA, CTG</td>
</tr>
<tr>
<td>M</td>
<td>Met methionine</td>
<td>ATG</td>
</tr>
<tr>
<td>N</td>
<td>Asn asparagine</td>
<td>AAT, AAC</td>
</tr>
<tr>
<td>P</td>
<td>Pro proline</td>
<td>CCT, CCC, CCA, CCG</td>
</tr>
<tr>
<td>Q</td>
<td>Gln glutamine</td>
<td>CAA, CAG</td>
</tr>
<tr>
<td>R</td>
<td>Arg arginine</td>
<td>CGT, CGC, CGA, CGG, AGA, AGG</td>
</tr>
<tr>
<td>S</td>
<td>Ser serine</td>
<td>TCT, TCC, TCA, TCG, AGT, AGC</td>
</tr>
<tr>
<td>T</td>
<td>Thr threonine</td>
<td>ACT, ACC, ACA, ACG</td>
</tr>
<tr>
<td>V</td>
<td>Val valine</td>
<td>GTT, GTC, GTA, GTG</td>
</tr>
<tr>
<td>W</td>
<td>Trp tryptophan</td>
<td>TGG</td>
</tr>
<tr>
<td>Y</td>
<td>Tyr tyrosine</td>
<td>TAT, TAC</td>
</tr>
</tbody>
</table>

(e) **Genotype and phenotype**

- **Xer**
 - strain proficient in Xer site-specific recombination
- **Xer**
 - strain deficient in Xer site-specific recombination
- **argR**
 - *argR* null mutant
(f) Miscellaneous

~ approximately
i.e. (Latin *id est*) that is to say, in other words
LB Luria-Bertani
MW molecular weight
OD$_x$ optical density at x nm
ori origin of replication
ORF open reading frame
% percentage
PAGE polyacrylamide gel electrophoresis
Tn transposon
UV ultra violet
(v/v) volume to volume ratio
WT wild-type
(w/v) weight to volume ratio
X' resistance to X
X^s sensitivity to X