INTRODUCTION

The main purpose of this thesis is to consider some
aspects of the geometry of CR-submanifolds of nearly Kaehler

and Kaehler manifolds.

Some basic concepts and well known results on
Riemannian geometry are reviewed in the first chapter. For
conveniece, we shall also fix notations and terminologies

for later use.

In Chapter 2 we shall characterize a CR-submanifold of
an almost Hermitian manifold. We also include some basic

formulas in CR-submanifolds.

The next chapter is focused on CR-submanifolds of a
nearly Kaehler manifold. A survey of some results on the
integrability conditions for the distributions D and DL as
well as the geometry of their leaves is given here. We also
generalize some results on D-parallel normal sections and
mixed foliate CR-submanifolds of a Kaehler manifold to the

setting of nearly Kaehler manifold.

In Chapter 4 we shall be mainly concern with the

geometry of CR-submanifolds of a 6-dimensional nearly



Kaehler manifold N. Some facts about nearly Kaehler
manifolds ofl;onstant type are given in the first section.
By using these results, we shall show that certain classes
of CR-submanifolds do not exist in a 6-dimensional nearly

Kaehler manifold.

In Chapter 5 we shall study some sufficient conditions
for a totally umbilical CR-submanifold of a nearly Kaehler
manifold to admit a nearly Sasakian structure. This leads us
to classify all connected totally umbilical CR-submanifolds

of a nearly Kaehler manifold.

In Chapter 6 we shall first characterize a CR-product
of a Kaehler manifold. We also have a section on the
geometry of normal CR-submanifolds of a Kaehler manifold.
The last section of this chapter is a discussion on Sasakian
CR-submanifolds of a Kaehler manifold. Here, we obtain some
consequences of the results of Sun-Li on Sasakian

anti-holomorphic submanifolds of a Kaehler manifold.
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(VxK)(X‘...,Xk) = VXK(xt""'xk) 1EiK(X1,...,VxXL,...,Xk)

for any XL e '(TN), i = 1,...,k.

For k 2 0, we define the exterior differentiation map

k k+1 k .
d : /\ (N) — /\ (N), where /\ (N) is the set of
differentiable k-forms on N, in the following manner:
o
(a) 1If £ e /\"(N) and X € T'(TN), then df(X) = Xf.
(b) For k > 1, letting w be a (k-1)-form on N and

xt""'xk € '(TN), then
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where X indicates that the field X is omitted as an argument

and [X,Y] is the Lie bracket of the vector fields X and Y.

Next, we shall define the curvature tensor R of type

(1,3) by
R(X,Y)Z = vayz = Vyvxz - V[x!”Z
for any X, Y, Z € "'(TN).
It can be easily verified that R satisfies the

following properties: (Hicks [17], p.72)



<i(x,¥)z,w> = —(i(y,x)z,w>
<ﬁ(x,y)z,w> = -<i(x,y)w,z>
<ﬁ(x,y)z,w> = <i(z,w)x,y>
i(x,y)z + i(Y,z)x + i(Z,x)Y =0
for any X, Y, Z, W e I'(TN).

The Ricci tensor field is defined by

~ n -~
Ric(X,Y) = § <R(E,X)Y,E>
i=1

where (%,...,En) is a local field of orthonormal frames on

N and X, Y € ['(TN)

A Riemannian manifold N is called an Einstein space if
Ric(X,Y) = A<X,Y>, for any X, Y € I'(TN)

where X is a constant.

For each plane ¥ spanned by orthogonal unit vectors X
and Y in the tangent space TxN’ x € N, the sectional
curvature R(r) is defined by

R(r) o i(x,y) = <E(x,y)¥,x>.
We note that R(r) is independent of the choice of the
orthonormal basis {X, Y} of y. If i(r) is a constant for all
planes ¥ and for all points x € N, then N is called a space

of constant curvature.



The following proposition is known.

Proposition 1.1 (Kobayashi-Nomizu [18], Vol.I, p.293)

Every 3-dimensional Einstein space is a space of

constant curvature.
1.2 Submanifolds of a Riemannian Manifold

Let N be an n-dimensional Riemannian manifold and let M
be an m-dimensional manifold isometrically immersed in N.
Denote by < , > both the Riemannian metric of N and M. Let ©
and V be the Levi-Civita connections on N and M
respectively. Then the Gauss and Weingarten formulas are
given respectively by
ny = ny + h(X,Y)
v = -AX 4+ VL
L s 14 K
1 L
for any X, Y € '(TM) and ¢ € '(T M), where TM denotes the
1
normal bundle of M in N, V the linear connection on the

L
normal bundle T M, called the normal connection and h the

second fundamental form of M. The linear operator Af is



called the fundamental tensor of Weingarten with respect to

the normal section ¢, and is related to h by

<AZX,Y> = <h(X,Y),&>.

The covariant derivative of h is defined by
1
(Vxh)(Y,Z) = Vx(h(Y,Z)) - h(VxY,Z) - h(Y,VXZ)

for all X, Y, Z € T"(T™M).

The equations of Gauss and Codazzi are then given
respectively by
(;(X,Y)Z,W) = <R(X,Y)Z,W> + <h(X,Z),h(Y,W)>
- <h(Y,Z),h(X,W)>

~ L
(R(X,Y)2) = (Vyh)(Y,2) - (Vyh) (X,2)

L
for all X, Y, Z, W € '(TM), where U denotes the normal part
of the vector U in TxN’ x € M and R the curvature tensor of

We define the curvature tensor of the normal connection
L
vV by
L _ vaL VLVL VL
RIGOE = U@ - T9x - O g
L L
for all X, Y, € '(TM) and ¢ € I'(T M). For ¢, { € T(T M) we

define



and by using the Gauss and Weingarten formulas, we have

ROGYIELL = R(XNEL> + <Uap oA 1>

L
for any X, Y € '(TM) and ¢, { € '(T M). The above equation

is called the Ricci equation.

1f Rl = 0, we say that the normal connection on M is
flat. A normal vector field £ on M is said to be parallel if
V;E = 0 for any X € '(TM). The following proposition gives a
necessary and sufficient condition for a submanifold to have

a flat normal connection (see Chen [8], p.99).

Proposition 1.2

Let M be an m-dimensional submanifold of an
n-dimensional Riemannian manifold N. Then the normal
connection VL of M in N is flat if and only if there exist
locally n - m mutually orthogonal unit normal vector fields
tt such that each of the { is parallel in the normal

i

bundle.

A submanifold M is totally geodesic if its second



fundamental form vanishes identically, that is h = 0 or for

1
any £ € '(T M) we have At = 0.
Let (El,...,E } be an orthonormal basis in TXM. The
m

mean curvature vector H of M is defined by

= L r(h)

m
where Tr(h) = } h(Ei’Ei)’ which is independent of the choice
i=1

of basis. We say that M is a totally wumbilical submanifold
if

h(X,Y) = <X,Y>H
for any X, Y € '(TM). We note that M is totally umbilical if
and only if

i

L
for any X € '(TM) and ¢ € I'(T M).

X = <H,E>X

Finally, M is called an extrinsic sphere if it is

totally umbilical and has non-zero parallel mean curvature

vector.

1.3 Distributions on a Manifold

A k-dimensional distridbution on a manifold N is a



mapping D that assigns to each x € N a k-dimensional vector
subspace Dx of TxN‘ We say that D is differentiable if for
each x € N there are k independent differentiable vector
fields X1,...,Xk which span Dy for all y in some
neighborhood of x. A vector field X is said to belong to D
if Xx € Dx for all x € N. We denote this by X € TI(D). A
distribution D is said to be involutive if for X, Y € I'(D),

we have [X,Y] € I'(D).

A submanifold M of N is an integral manifold of D if
TxM = Dx for all x € M. If there exists no integral manifold
of D which properly contains M, then M is called a maxinal
integral manifold or leaf of D. A distribution D is said to
be integrable if for every x € N, there exists an integral
manifold of D containing x. It 1is well known that a
distribution is integrable if and only if it is involutive.
The following is the classical theorem of Frobenius (see

[10], p.94).

Theorem 1.1

Let D be an involutive distribution on a manifold N.



Through each point x € N, there passess a unique maximal
integral manifold of D. Any integral manifold through x is

an open submanifold of the maximal one.
1.4 Almost Hermitian Manifolds

Let N be a real differentiable manifold. An almost
complex structure on N is a tensor field J of type (1,1)
which is at every point x € N, an endomorphism of TxN such
that Jz = -I. A manifold N with a fixed almost complex
structure is called an almost complex manifold. Every almost
complex manifold is of even dimension and is orientable (see

Kobayashi-Nomizu [18], Vol.II, p.121).

Next we define the torsion (or Nijenhuis) tensor field
of type (1,2) of an almost complex structure J by
[3,3)(X,Y) = [JIX,dY] - [X,Y] - J[JX,Y] -J[X,JY]
for all X, Y € '(TN). If the torsion tensor of J vanishes
identically on N, then J is called a complex structure and N

is called a complex manifold.

A Hermitian metric on an almost complex manifold N is a

Riemannian metric < , > such that



<IX,JY> = <X,Y>
for any X, Y € '(TN). An almost complex manifold with a
Hermitian metric is called an almost Hermitian manifold. 1t
is easy to show that every almost complex manifold with a
Riemannian metric g admits a Hermitian metric < , >.

The holomorphic bisectional curvature of an almost
Hermitian manifold N is defined for any pair of unit vectors
X and Y on N by

I;B(x,Y) = <i(x,Jx)JY,Y>.

The fundamental 2-form Q of an almost Hermitian

manifold N is defined by
Q(X,Y) = <X,JY>, for any X, Y € ['(TN).
Then we have

3d0(X,Y,2) = ((VXJ)Z,Y) + ((VYJ)X,Z> + ((VZJ)Y,X>

(VxJ)JY + J(VXJ)Y =0 (1.1)
((VXJ)Y,Z) + <(VxJ)Z,Y> =0 (1.2)
and <(VXJ)Y,Y> = ((VXJ)JY,Y> =0 (1.3)

for all X, Y, Z € "'(TN).

An almost Hermitian manifold N is said to be a Kaehler



mant fold if (QXJ)Y = 0 for any X, Y € '(TN). N is called a

nearly Kaehler manifold if for any X, Y € '(TN) we have
(GXJ)Y + (Gya)x =0

or equivalently, (GXJ)X = 0.

Thus, we can see that every Kaehler manifold is nearly

Kaehlerian but the converse is not true in general, for

instance, the six-dimensional sphere Sd is a non-Kaehlerian,

nearly Kaehler manifold (see Gray [15]).

Before we end this section, we give some well known

results on nearly Kaehler manifold (see Yano-Kon [31]).

Proposition 1.3

Let N be a nearly Kaehler manifold. Then we have the
following
(D) 3,301 = 437,y
(ii) <R(X,Y)Z,W> = (R(X,Y)JZ,JW) - ((QXJ)Y.(GZJ)W>
(iii) (i(x,Y)Z,W) = (i(Jx,JY)JZ,JW)

for any X, Y, Z, W € T(TN).



1.5 Almost Contact Metric Manifolds

Let N be a real (2n+l)-dimensional manifold and ¢, ¢, n
be a tensor field of type (1,1), a vector field and a 1-form
respectively on N satisfying

n(E) = 13 ¢°x = X + (¢

for any X € '(TN). Then N is called an almost contact

manifold and (¢, £, n) the almost contact structure on N.

Now, suppose there is given a Riemannian metric < , >
on N such that
<PX,PY> = <X,Y> - n(X)n(Y)
for any X, Y € '(TN). Then N is said to have an almost
contact metric structure (¢, £, n, < , >) and is called an
almost contact metric manifold. The Riemannian metric
mentioned above is called an associated metric with respect

to the almost contact structure (¢, &, n).

An almost contact metric manifold N is said to be a
nearly Sasakian manifold if
(vx¢)y + (VY¢)X = N(Y)X + n(X)Y - 2<X,Y>¢

for any X, Y € '(TN). It is known that in a nearly Sasakian



manifold the vector field ¢ is killing, that is

DY + <X, 98> = 0
for any X, Y € '(TN). Moreover, N is said to be a Sasakian
mantifold if

(5x¢)y = n(Y)X - <X,Y>¢

for any X, Y € '(TN).

We close this section with the following known result

(see Okumura [23]; Yamaguchi, Nemoto and Kawabata [29]).

Let N be a Riemannian manifold. If N admits a killing
vector field { of constant length satisfying
2 o v ~" =
AMUTZE - Vg &) = <rE0X - <X, 0¢
X
for a non-zero constant A and any X, Y € F'(TN), then N is

homothetic to a Sasakian manifold.

mark: The definition of Sasakian manifold in some
literatures differs from the definition of this thesis by a
sign. However, it does not effect the result in the

preceeding theorem.



