CHAPTER 2

CR-SUBMANIFOLDS

The concept of CR-submanifolds of an almost Hermitian manifold is introduced in Section 1. In the next section we are able to improve on Bejancu's characterization theorem for a CR-submanifold in an almost Hermitian manifold by dropping one of his conditions. Some basic formulas in CR-submanifolds are given in the last section.

2.1 Basic Definitions

Let N be an n-dimensional almost Hermitian manifold and let M be an m-dimensional manifold isometrically immersed in N. M is called a complex (holomorphic) submanifold of N if T_M is invariant by J, that is

$$J(T_{\mathbf{v}}M) = T_{\mathbf{v}}M,$$
 for each $x \in M$.

Also, M is said to be a totally real (anti-invariant) submanifold of N if

$$J(T_X^M) \subseteq T_X^{\perp}M$$
, for each $x \in M$.

There are many results in the theory of holomorphic and

totally real submanifolds. For instance, results on the geometry of totally real submanifolds can be found in Yano-Kon [30] while a survey on the geometry of holomorphic submanifolds can be found in Ogiue [22]. In [2], Bejancu generalized the above two classes of submanifold to a new class of submanifolds, which is situated between the above two classes, called the CR-submanifolds.

Definition

M is said to be a CR-submanifold of N if there exists a differentiable distribution

$$D: x \longrightarrow D_x \subseteq T_xM$$

on M that satisfies the following conditions:

(i) D is holomorphic, that is,

$$J(D_x) = D_x$$
, for each $x \in M$

(ii) the complementary orthogonal distribution

$$D^{\perp}: x \longrightarrow D^{\perp}_{x} \subseteq T^{\perp}_{x}M$$

is anti-invariant, that is,

$$J(D^{\perp}) \subseteq T_{X}^{\perp}M$$
, for each $x \in M$.

In the sequel, we put dim D = 2p and dim D = q. If p =

0 then M becomes a totally real submanifold and when q=0, M becomes a holomorphic submanifold. If dim $T_X^\perp M=q$, the CR-submanifold M is called an anti-holomorphic submanifold. A proper CR-submanifold is a CR-submanifold which is neither a holomorphic submanifold nor a totally real submanifold.

Finally, a CR-submanifold is said to be mixed geodesic if

$$h(X,Z) = 0$$
, for any $X \in \Gamma(D)$ and $Z \in \Gamma(D^{\perp})$.

The following lemma characterizes a mixed geodesic CR-submanifold of an almost Hermitian manifold.

Lemma_2.1

Let M be a CR-submanifold of an almost Hermitian manifold N. Then the following statements are equivalent:

- (i) M is mixed geodesic
- (ii) $A_{p}X \in \Gamma(D)$
- (iii) $A_{\mu}Z \in \Gamma(D^{\perp})$

for any $X \in \Gamma(D)$, $Z \in \Gamma(D)$ and $\xi \in \Gamma(TM)$.

Proof :

First, we shall suppose that (i) holds. Then

$$\langle A_{\xi} X, Z \rangle = \langle h(X, Z), \xi \rangle = 0$$

for $X \in \Gamma(D)$, $Z \in \Gamma(D^{\perp})$ and $\xi \in \Gamma(T^{\perp}M)$. Hence, $A_{\xi}X \in \Gamma(D)$ and so (i) implies (ii).

We shall now show that (ii) implies (iii). For any $X \in \Gamma(D)$, $Z \in \Gamma(D^{\perp})$ and $\xi \in \Gamma(T^{\perp}M)$,

$$\langle A_{\xi}Z, X \rangle = \langle A_{\xi}X, Z \rangle = 0.$$

Hence, $A_{\mu}Z \in \Gamma(D^{\perp})$.

Suppose that (iii) holds. For any $X \in \Gamma(D)$, $Z \in \Gamma(D^{\perp})$ and $\xi \in \Gamma(TM)$, we have

$$\langle h(X,Z),\xi \rangle = \langle A_{\mu}Z,X \rangle = 0.$$

This shows that M is mixed geodesic and the proof is

Remark: A similar characterization for mixed geodesic CR-submanifold of a Kaehler manifold can be found in Bejancu, Kon and Yano [6].

2.2 Characterization of a CR-submanifold

Let M be an arbitrary Riemannian manifold isometrically immersed in an almost Hermitian manifold N.

For each $X \in \Gamma(TM)$, we put

$$JX = \phi X + \omega X \tag{2.1}$$

where ϕX is the tangential part and ωX is the normal part of JX. Similarly, for each $\eta \in \Gamma(T^{\perp}M)$, we put

$$J\eta = B\eta + C\eta \qquad (2.2)$$

where $B\eta$ is the tangential part and $C\eta$ is the normal part of $J\eta$.

By applying J to (2.1) and using (2.1), also (2.2), we have

$$-X = \phi^{2}X + \omega\phi X + B\omega X + C\omega X.$$

By comparing the tangential and normal parts of the above equation, we have

$$-I - B \circ \omega = \phi^2 \tag{2.3}$$

$$\omega \circ \phi + C \circ \omega = 0. \tag{2.4}$$

Similarly, by applying J to (2.2) and using (2.1), also (2.2) again we have

$$-\eta = \phi B \eta + \omega B \eta + B C \eta + C^2 \eta.$$

By comparing the tangential and normal parts of the above equation, we have

$$-I - \omega \circ B = C^2 \tag{2.5}$$

$$\phi \circ B + B \circ C = 0. \tag{2.6}$$

We shall first recall two characterization theorems of a CR-submanifold, which can be found in Bejancu [4].

Theorem 2.1 (Bejancu [4], p.21)

The submanifold M of N is a CR-submanifold if and only $if \qquad \qquad rank(\phi) \ = \ constant$ and $\omega \circ \phi \ = \ 0 \, .$

Theorem 2.2 (Bejancu [4], p.22)

The submanifold M of N is a CR-submanifold if and only if rank(B) = constant and $\phi \circ B = 0.$

The following proposition is found in Ng [21], it is an improvement of Theorem 2.1.

Proposition 2.1 (Ng [21], p.27)

The submanifold M of N is a CR-submanifold if and only if $\omega \circ \phi = 0$. (2.7)

Proof:

If M is a CR-submanifold, then (2.7) is clearly true by Theorem 2.1. Conversely, suppose $\omega \circ \phi = 0$. We now prove that the rank of ϕ is a constant and therefore, by Theorem 2.1, M is a CR-submanifold.

Since $\omega \circ \phi$ = 0, (2.4) becomes $C \circ \omega$ = 0. For any $X \in \Gamma(TM)$ and $\eta \in \Gamma(TM)$, we have

$$\langle \omega \mathbf{X}, \eta \rangle + \langle \mathbf{X}, \mathbf{B} \eta \rangle = \langle \mathbf{J} \mathbf{X} - \phi \mathbf{X}, \eta \rangle + \langle \mathbf{X}, \mathbf{J} \eta - \mathbf{C} \eta \rangle$$

= $\langle \mathbf{J} \mathbf{X}, \eta \rangle + \langle \mathbf{X}, \mathbf{J} \eta \rangle = 0$

Thus, we have

$$\langle X, B\eta \rangle = -\langle \omega X, \eta \rangle$$

By replacing η by $C\eta$ in the above equation, it becomes

$$\langle X, BC\eta \rangle = -\langle \omega X, C\eta \rangle$$

 $= -\langle \omega X, J\eta - B\eta \rangle$
 $= -\langle \omega X, J\eta \rangle + \langle \omega X, B\eta \rangle$
 $= \langle J\omega X, \eta \rangle$

=
$$\langle B\omega X + C\omega X, \eta \rangle$$

= 0, since $C^{\circ}\omega = 0$.

Hence, B°C = 0. Together with (2.6) we have

$$\phi \circ B = 0.$$
From (2.3),
$$\phi^2 = -I - B \circ \omega$$

$$\phi^3 = -\phi - \phi \circ (B \circ \omega)$$

$$= -\phi, \quad \text{since } \phi \circ B = 0.$$
Therefore,
$$\phi^3 + \phi = 0.$$

Dr. a negult of Steen [20] the sect of A

By a result of Stong [26], the rank of ϕ is a constant and by Theorem 2.1, M is a CR-submanifold.

As an easy consequence of Proposition 2.1 and (2.4) we have the following proposition.

Proposition_2.2 (Ng [21], p.30)

The submanifold M of N is a CR-submanifold if and only $C^{\circ}\omega \; = \; 0 \, . \label{eq:condition}$

Now, by using Proposition 2.1, we can improve on Theorem 2.2.

Proposition_2.3

The submanifold M of N is a CR-submanifold if and only if $\phi \circ B = 0$. (2.8)

Proof:

Suppose M is a CR-submanifold. Then by using Theorem 2.2 we obtain that $\phi \circ B = 0$.

For any
$$X \in \Gamma(TM)$$
 and $\eta \in \Gamma(T^{\perp}M)$, we have $\langle \eta, \omega \phi X \rangle = \langle \eta, J \phi X \rangle - \langle \eta, \phi^2 X \rangle$

$$= -\langle J \eta, \phi X \rangle$$

$$= -\langle B \eta, \phi X \rangle - \langle C \eta, \phi X \rangle$$

$$= -\langle B \eta, J X \rangle - \omega X \rangle$$

$$= -\langle B \eta, J X \rangle$$

$$= \langle J B \eta, X \rangle$$

$$= \langle J B \eta, X \rangle$$

$$= \langle \phi B \eta, X \rangle + \langle \omega B \eta, X \rangle$$

$$= \langle \phi B \eta, X \rangle = 0, \quad \text{by } (2.8).$$

Thus, $\omega \circ \phi$ = 0. According to Proposition 2.1, M is a CR-submanifold.

From Proposition 2.3 and (2.6), we obtain the following corollary.

Corollary 2.1

The submanifold M of N is a CR-submanifold if and only if $B^{\circ}C \,=\, 0 \,.$

2.3 Some Basic Formulas in CR-submanifolds

Throughout this section, let N be an almost Hermitian manifold and let M be a CR-submanifold of N. Denote by P and Q the projections of TM to D and \overline{D}^{\perp} respectively. Thus, from (2.1) we have

$$J(PX + QX) = \phi X + \omega X$$

$$JPX + JQX = \phi X + \omega X.$$

Since $PX \in \Gamma(D)$ and $QX \in \Gamma(D^{\perp})$, $JPX \in \Gamma(D)$ and $JQX \in \Gamma(T^{\perp}M)$. Thus by comparing the tangential and normal parts of the above equation, we have

$$JPX = \phi X \tag{2.9}$$

$$JQX = \omega X. \qquad (2.10)$$

By applying ϕ on (2.9),we obtain

$$\phi(\phi X) = \phi(JPX) = JP(JPX) = J(JPX) = -PX$$
.

Hence, we have

$$\phi^2 = -P$$
.

Also, by applying J on (2.10), we obtain

$$J(JQX) = J\omega X$$

 $-QX = B\omega X + C\omega X$.

From Proposition 2.2, we have $C^{\circ}\omega$ = 0. Thus, we obtain

$$B^{\circ}\omega = -Q. \tag{2.11}$$

Now, from (2.9) we get that

 $\operatorname{Im} \phi_{\mathbf{x}} \subseteq D_{\mathbf{x}}$, for each $\mathbf{x} \in M$.

On the other hand, since $P = -\phi^2$ we have $D_X \subseteq Im \phi_X$. Accordingly, we conclude that

 $D_{v} = Im \phi_{v}$, for each $x \in M$.

Moreover, from (2.11) we obtain that $D_X^{\perp} \subseteq \operatorname{Im} B_X$. Conversely, by using (2.1) and taking into account (2.8), we obtain that $\operatorname{Im} B_X$ is orthogonal to D_X . In other words, $\operatorname{Im} B_X \subseteq D_X^{\perp}$. Hence, we have

Im $B_x = D_x^{\perp}$, for each $x \in M$.

Next, we let ν be the complementary orthogonal subbundle of JD^{\perp} in TM and denoted by t and f the projections of TM on JD^{\perp} and ν respectively.

Now we shall show that ν is invariant by J, that is $J(\nu_{_{_{\bf Y}}})=\nu_{_{_{\bf Y}}}, \mbox{ for } {\bf x}\in {\bf M}.$

For any $\xi \in \Gamma(\nu)$ and $Z \in \Gamma(D)$,

$$0 = \langle J\xi, Z \rangle = \langle B\xi + C\xi, Z \rangle = \langle B\xi, Z \rangle.$$

Thus, B $\xi=0$ and so $J\xi=C\xi\in\Gamma(T^\perp M)$ for any $\xi\in\Gamma(\nu)$. We note that, for any $\xi\in\Gamma(\nu)$ and $Z\in\Gamma(D^\perp)$

$$\langle C\xi, JZ \rangle = \langle J\xi, JZ \rangle = \langle \xi, Z \rangle = 0$$

That is $C\xi \in \Gamma(\nu)$. Therefore we have

$$J(v_{j}) \subseteq v_{j}$$
, for each $x \in M$.

Since $J\xi = C\xi \in \Gamma(\nu)$, we have $\xi = -JC\xi \in \Gamma(J\nu)$. It follows that $\nu_{\chi} \subseteq J(\nu_{\chi})$ for each $\chi \in M$. Hence $J(\nu_{\chi}) = \nu_{\chi}$.

From (2.2), we have

$$J(t\eta + f\eta) = B\eta + C\eta$$
$$Jt\eta + Jf\eta = B\eta + C\eta.$$

By comparing the tangential and normal parts, we have

$$Jt\eta = B\eta \qquad (2.12)$$

$$Jf\eta = C\eta. \qquad (2.13)$$

By applying J to (2.12), we obtain

$$-t\eta = \phi B \eta + \omega B \eta$$
.

By using Proposition 2.3, we obtain that

$$\omega B = -t. \qquad (2.14)$$

Similarly, after applying J on (2.13), we have

$$-fn = BCn + c^2n$$
.

By using Corollary 2.1, we obtain that

$$C^2 = -f$$
. (2.15)

We summarize our observations in the following proposition.

Proposition 2.4

(i)
$$D_{x} = Im \phi_{x}$$

(ii)
$$D_{\mathbf{x}}^{\perp} = Im B_{\mathbf{x}}$$

(iii)
$$J(\nu_x) = \nu_x$$

$$(iv) \qquad \phi^2 = -P$$

$$(v) \qquad B^{\circ}\omega = -Q$$

(vi)
$$\omega \circ B = -t$$

(vii)
$$C^2 = -f$$
.

Let Z be any vector field tangent to N, we denote by Z and Z its tangential part and normal part to M respectively.

For any U, V $\in \Gamma(TM)$ and taking account of the Gauss and Weingarten equations, we have

$$(\tilde{\nabla}_{U}^{\mathbf{J}})V = \tilde{\nabla}_{U}^{\mathbf{J}}V - J\tilde{\nabla}_{U}^{\mathbf{V}}V$$
$$= \tilde{\nabla}_{U}^{\mathbf{V}}\phi V + \tilde{\nabla}_{U}^{\mathbf{U}}V - J(\nabla_{U}^{\mathbf{V}}V + h(U,V))$$

$$\begin{split} &= \nabla_{\mathbf{U}} \phi \mathbf{V} \; + \; \mathbf{h}(\mathbf{U}, \phi \mathbf{v}) \; - \; \mathbf{A}_{\omega \mathbf{V}} \mathbf{U} \; + \; \nabla_{\mathbf{U}}^{\perp} \omega \mathbf{V} \; - \; \mathbf{J} \nabla_{\mathbf{U}} \mathbf{V} \; - \; \; \mathbf{J} \mathbf{h}(\mathbf{U}, \mathbf{V}) \\ &= \; \mathbf{P} \nabla_{\mathbf{U}} \phi \mathbf{V} \; + \; \mathbf{Q} \nabla_{\mathbf{U}} \phi \mathbf{V} \; + \; t \; \mathbf{h}(\mathbf{U}, \phi \mathbf{V}) \; + \; f \; \mathbf{h}(\mathbf{U}, \phi \mathbf{V}) \; - \; \mathbf{P} \mathbf{A}_{\omega \mathbf{V}} \mathbf{U} \\ &- \; \mathbf{Q} \mathbf{A}_{\omega \mathbf{V}} \mathbf{U} \; + \; t \nabla_{\mathbf{U}}^{\perp} \omega \mathbf{V} \; + \; f \nabla_{\mathbf{U}}^{\perp} \omega \mathbf{V} \; - \; \phi \nabla_{\mathbf{U}} \mathbf{V} \; - \; \omega \nabla_{\mathbf{U}} \mathbf{V} \; - \; \mathbf{B} \mathbf{h}(\mathbf{U}, \mathbf{V}) \\ &- \; \mathbf{C} \mathbf{h}(\mathbf{U}, \mathbf{V}) \; . \end{split}$$

By comparing the tangential and normal parts, we obtain the

$$P(\overrightarrow{\nabla}_{U}J)V^{\top} = P\overrightarrow{\nabla}_{U}\phi V - \phi\overrightarrow{\nabla}_{U}V - PA_{\omega V}U$$
 (2.16)

$$Q(\tilde{\nabla}_{U}^{T})V^{T} = Q\nabla_{U}\phi V - QA_{\omega V}U - Bh(U,V)$$
 (2.17)

$$t(\tilde{\nabla}_{II}J)V^{\perp} = th(U,\phi V) + t\nabla^{\perp}_{II}\omega V - \omega\nabla_{II}V$$
 (2.18)

$$\int_{U, \mathbf{U}} \mathbf{v} = f \mathbf{h}(\mathbf{U}, \phi \mathbf{v}) + f \nabla_{\mathbf{u}} \mathbf{\omega} \mathbf{v} - \mathbf{C} \mathbf{h}(\mathbf{U}, \mathbf{v}). \tag{2.19}$$

Similarly, for any $U \in \Gamma(TM)$, $\eta \in \Gamma(T^{\perp}M)$ and taking account of the Gauss and Weingarten equations, we have

$$\begin{split} (\vec{\nabla}_{\underline{U}}\mathbf{J})\eta &= \vec{\nabla}_{\underline{U}}J\eta - J\vec{\nabla}_{\underline{U}}\eta \\ &= \vec{\nabla}_{\underline{U}}B\eta + \vec{\nabla}_{\underline{U}}C\eta - J(\vec{\nabla}_{\underline{U}}^{\perp}\eta - A_{\eta}U) \\ &= \nabla_{\underline{U}}B\eta + h(U,B\eta) - A_{C\eta}U + \vec{\nabla}_{\underline{U}}^{\perp}C\eta - J\vec{\nabla}_{\underline{U}}^{\perp}\eta + JA_{\eta}U \\ &= P\nabla_{\underline{U}}B\eta + Q\nabla_{\underline{U}}B\eta + th(U,B\eta) + fh(U,B\eta) - PA_{C\eta}U \\ &- QA_{C\eta}U + t\vec{\nabla}_{\underline{U}}^{\perp}C\eta + f\vec{\nabla}_{\underline{U}}^{\perp}C\eta - B\vec{\nabla}_{\underline{U}}^{\perp}\eta - C\vec{\nabla}_{\underline{U}}^{\perp}\eta + \phi A_{\eta}U \\ &+ \omega A_{\eta}U \end{split}$$

By comparing the tangential and normal parts, we obtain the

following:-

$$P(\tilde{\nabla}_{U}^{J})\eta^{T} = P\nabla_{U}^{B}\eta - PA_{C\eta}U + \phi A_{\eta}U \qquad (2.20)$$

$$Q(\tilde{\nabla}_{U}^{J})\eta^{T} = Q\nabla_{U}^{B}\eta - QA_{C\eta}^{U} - B\nabla_{U}^{J}\eta \qquad (2.21)$$

$$t(\tilde{\nabla}_{U}J)\eta^{\perp} = th(U,B\eta) + t\nabla^{\perp}_{U}C\eta + \omega A_{\eta}U$$
 (2.22)

$$f(\tilde{\nabla}_{\underline{U}}J)\eta^{\perp} = fh(\underline{U},B\eta) + f\nabla_{\underline{U}}^{\perp}C\eta - c\nabla_{\underline{U}}^{\perp}\eta.$$
 (2.23)