CHAPTER 2
CR-SUBMANIFOLDS

The concept of CR-submanifolds of an almost Hermitian
manifold is introduced in Section 1. In the next section we
are able to improve on Bejancu's characterization theorem
for a CR-submanifold in an almost Hermitian manifold by
dropping one of his conditions. Some basic formulas in

CR-submanifolds are given in the last section.
2.1 Basic Definitions

Let N be an n-dimensional almost Hermitian manifold and
let M be an m-dimensional manifold isometrically immersed in
N. M is called a complex (holomorphic) submanifold of N if
TxM is invariant by J, that is

J(T M) = T M, for each x € M.
x x
Also, M is said to be a totally real (anti-invariant)
submani fold of N if

L
J(TXM) < TXM. for each x € M.

There are many results in the theory of holomorphic and



totally real submanifolds. For instance, results on the
geometry of ‘;otally real submanifolds can be found in
Yano-Kon [30] while a survey on the geometry of holomorphic
submanifolds can be found in Ogiue [22]. In [2], Bejancu
generalized the above two classes of submanifold to a new

class of submanifolds, which is situated between the above

two classes, called the CR-submanifolds.

Definition
M is said to be a CR-submanifold of N if there exists a
differentiable distribution
D: x —> D STM
x x
on M that satisfies the following conditions:
(i) D is holomorphic, that is,
Jp)=p , for each x € M
x x
(ii) the complementary orthogonal distribution
L L L
D :x —m> D _ETM
x x

is anti-invariant, that is,

L L
J(b ) € TxM N for each x € M.

L
In the sequel, we put dim D = 2p and dim D = q. If p =



0 then M becomes a totally real submanifold and when q = 0,
L

M becomes a holomorphic submanifold. If dim TxM = q, the

CR-submanifold M is called an anti-holomorphic submanifold.

A proper CR-submanifold is a CR-submanifold which is neither

a holomorphic submanifold nor a totally real submanifold.

Finally, a CR-submanifold is said to be mixed geodesic
if
L
h(X,z) = o0, for any X € '(D) and Z € I'(D ).
The following lemma characterizes a mixed geodesic

CR-submanifold of an almost Hermitian manifold.

emma_ 2.

Let M be a CR-submanifold of an almost Hermitian
manifold N. Then the following statements are equivalent:
(i) M is mixed geodesic
(ii) AEX € I'(p)
(iii) A,
4
L L
for any X € '(D), 2 € '(D ) and & € I'(T M).

L
Zel(D)



Proof :

First, we shall suppose that (i) holds. Then

<AtX,Z> = <h(X,Z2),E> = 0

L L
for X €I'(D), Z€e€'(D ) and £ € I'(T M). Hence, A

(X e I'(p)

and so (i) implies (ii).

We shall now show that (ii) implies (iii). For any
L L
Xel(D), ZeTI'(D ) and § € I'(T M),

<A,Z,X> = <A X,2> =0.
[ [

L
Hence, AtZ el'(p ).

L
Suppose that (iii) holds. For any X € '(D), Z € I'(D)
L
and £ € (T M), we have
<h(X,2),E> = (A:Z,X) = 0.

This shows that M is mixed geodesic and the proof is

completed.m

Remark: A similar characterization for mixed geodesic
CR-submanifold of a Kaehler manifold can be found in

Bejancu, Kon and Yano [6].



2.2 Characterization of a CR-submanifold

Let M be an arbitrary Riemannian manifold isometrically

immersed in an almost Hermitian manifold N.

For each X € '(TM), we put
JX = ¢X + wX (2.1)
where ¢X is the tangential part and wX is the normal part of
JX. Similarly, for each n € F(TLM), we put
Jn = Bn + Cn (2.2)
where Bn is the tangential part and Cnp is the normal part of
an.
By applying J to (2.1) and using (2.1), also (2.2), we
have
-X = ¢°X + oX + BuX + CuX.
By comparing the tangential and normal parts of the above
equation, we have

-1 - B°w =¢2

(2.3)
wog + Cow = 0. (2.4)
Similarly, by applying J to (2.2) and using (2.1), also

(2.2) again we have

-0 = ¢Bn + wBn + BCy + Con.



By comparing the tangential and normal parts of the above
equation, we have
2
-1 - w°B = C (2.5)

¢°B + B°C = 0. (2.6)

We shall first recall two characterization theorems of

a CR-submanifold, which can be found in Bejancu [4].

Theorem 2.1 (Bejancu [4], p.21)

The submanifold M of N is a CR-submanifold if and only

if rank(¢) = constant
and weg = 0.
Theorem 2.2 (Bejancu [4], p.22)

The submanifold M of N is a CR-submanifold if and only
if rank(B) = constant

and @°B = 0.

The following proposition is found in Ng [21], it is an

improvement of Theorem 2.1.



Proposition 2.1 (Ng [21], p.27)

The submanifold M of N is a CR-submanifold if and only

if weg = 0. (2.7)

Proof:

If M is a CR-submanifold, then (2.7) is clearly true by
Theorem 2.1. Conversely, suppose w°¢ = 0. We now prove that
the rank of ¢ is a constant and therefore, by Theorem 2.1, M

is a CR-submanifold.

Since w°¢ = 0, (2.4) becomes C°w = 0. For any X € '(TM)
and ) € F(TLM), we have
<wX,m> + <X,Bn> = <JIX - @X,n> + <X,dn - Cp>
= JX,n> + <X,dn> = 0
Thus, we have
<X,Bn> = -<wX,n>
By replacing ) by Cn in the above equation, it becomes

<X,BCn> = -<wX,Cn>

n

-<wX,dn - B>

-<wX,dn> + <wX,Bn>

<CIwX,n>



= <BwX + CwX,n>
=0, since C°w = 0.

Hence, B°C = 0. Together with (2.6) we have

¢°B = 0.
From (2.3), ¢ = -1 - Bow
¢ = ¢ - ¢o(Bw)
= -p, since ¢°B = 0.
Therefore, ¢ +¢ =o0.

By a result of Stong [26], the rank of ¢ is a constant and

by Theorem 2.1, M is a CR-submanifold.m

As an easy consequence of Proposition 2.1 and (2.4) we

have the following proposition.

Proposition 2.2 (Ng [21], p.30)

The submanifold M of N is a CR-submanifold if and only

if C°w = 0.

Now, by using Proposition 2.1, we can improve on

Theorem 2.2.



Proposition 2.3

The submanifold M of N is a CR-submanifold if and only

if ¢°B = 0. (2.8)

Proof:

Subpose M is a CR-submanifold. Then by using Theorem

2.2 we obtain that ¢°B = 0.
L
For any X € '(TM) and n € '(T M), we have

DywpX> = M,IPX> - <n,d°X>

= =<Jn,¢X>

-<BN,@X> - <Cn,¢x>

-<BN,JX - WX>

-<BY,JX>
= <JBn,X>
= <@Bn,X> + <WBn,X>
= <{¢Bn,X> = 0, by (2.8).
Thus, w°¢$ = 0. According to Proposition 2.1, M is a

CR-submanifold.m

From Proposition 2.3 and (2.6), we obtain the following

corollary.



Corol 2.1

The submanifold M of N is a CR-submanifold if and only

if B°C = 0.
2.3 Some Basic Formulas in CR-submanifolds

Throughout this section, let N be an almost Hermitian
manifold and let M be a CR-submanifold of N. Denote by P and
Q the projections of T™M to D an@ DL respectively. Thus, from
(2.1) we have

J(PX + QX) = ¢X + wX
JPX + JQX = ¢X + wX.
Since PX € I'(D) and QX € r‘(DJ'), JPX € I'(D) and JQX € r(TJ'M).
Thus by comparing the tangential and normal parts of the
above equation, we have
JPX = ¢X (2.9)
JQX = wX. (2.10)
By applying ¢ on (2.9),we obtain
P(PX) = $(JPX) = JP(JPX) =J(JPX) = -PX.

Hence, we have



Also, by applying J on (2.10), we obtain
J(JQX) = JwX
-QX = BwX + CwX.
From Proposition 2.2, we have C°w = 0. Thus, we obtain
B°w = -Q. (2.11)
Now, from (2.9) we get that

Im¢_ <D , for each x € M.
x x

On the other hand, since P = —¢z we have Dx S Im ¢x.

Accordingly, we conclude that
Dx = Im ¢x N for each x € M.
L
Moreover, from (2.11) we obtain that Dx S Im Bx. Conversely,
by using (2.1) and taking into account (2.8), we obtain that

L
Im Bx is orthogonal to Dx' In other words, Im B S D..

x x
Hence, we have

L
ImB =D , for each x € M.
x x

Next, we let v be the complementary orthogonal
L 1
subbundle of JD in TM and denoted by t and f the

L L
projections of T M on JD and v respectively.

Now we shall show that v is invariant by J, that is

J(vx) = vx, for x € M.

L
For any { € '(v) and 2 € "'(D ),



0 = <J¢,2> = <Bf + C¢,2> = <BY,Z>.
L

Thus, B = 0 and so J§ = ¢f € I'(T M) for any ¥ € [(v). We

L
note that, for any { € '(v) and Z € I'(D )

<CE,JIZ> = <JE,d2> = <& ,2> = 0.
That is C{ € '(v). Therefore we have
Jwv )csv , for each x € M.
x x

Since J§ = ¢ € '(»v), we have § = -JCf € '(Jv). It follows

that v € J(v_) for each x € M. Hence J(v_) = v .
x x x x

From (2.2), we have
J(tn + fn) = By + Cn
Jtn + Jdfn = Bn + Cn.
By comparing the tangential and normal parts, we have
Jtn = By (2.12)
Jfn = Cn. (2.13)
By applying J to (2.12), we obtain
-ty = ¢Bn + wBy.
By using Proposition 2.3, we obtain that
wB = -t. (2.14)
Similarly, after applying J on (2.13), we have
-fn = Bey + Cn.

By using Corollary 2.1, we obtain that



c = -f. (2.15)

We summarize our observations in the following

proposition.

Proposition 2.4

(i) D = Im ¢x
L

(ii) D = Im B
x x

(iii) J(Dx) = vx

(iv) ¢ = -P
(v) B°w = -Q
(vi) weB = -t

(vii) c = -f.

T
Let Z be any vector field tangent to N, we denote by Z
L
and Z its tangential part and normal part to M

respectively.

For any U, V € '(TM) and taking account of the Gauss
and Weingarten equations, we have
(VUJ)V = VUJV - JVUV

= TBV TV - J(TV + h(U,Y))



1
= vu¢v + h(U,pV) - AmVU + Vumv - JVUV - Jh(u,v)
= PVU¢V + Qvu¢v + th(U,pV) + fh(U,pv) - PA LU
V_L Vl v v
- QAU+ VeV + f Y - ) oV~ @YV - Bh(U,V)

- Ch(u,V).
By comparing the tangential and normal parts, we obtain the

following equations:-

P(euJ)VT = PVU¢V - ¢VUV - PvaU (2.16)

Q(VUJ)VT = QVU¢V - QAQVU - Bh(uU,V) (2.17)
~ 1 1

LGV = th(U,¢V) + VgV - WV v (2.18)

/(GUJ)VJ‘ = fh(U,@V) + /Vtwv - ch(u,v). (2.19)

L
Similarly, for any U € '(TM), n» € TI(T M) and taking
account of the Gauss and Weingarten equations, we have

(VUJ)n = VUJn - JVUn

- - L
= VUBn + Vucn - J(Vun - Anu)

1 L
IyBn + h(U,BN) - ACnU + 940 - 9+ JAnU

PVUBn + QVUBn + th(U,Bn) + fh(U,Bn) - PACnU

+ tVL + Vl V‘L CVL
- QACnU Ucn f Ucn - B Un - o + ¢AnU
+ WA U .

n

By comparing the tangential and normal parts, we obtain the



following:-
P(é J)nT
u
Q(e J)nT
u
~ L
t(VUJ)n

6 L
F(Vyam

PV Bn - PA_U + ¢A U
" o’ t Py,

1
Qv By - QAU - BV, n

1
th(u,By) + tV cp + A U

ot L
fh(u,Bn) + 9, Cn - CVn.

28

(2.20)

(2.21)

(2.22)

(2.23)



