CHAPTER 3

CR-SUBMANIFOLDS OF A NEARLY KAEHLER MANIFOLD

The results of this chapter are generalized from the works of Bejancu and Chen. Bejancu [3] proved that under certain conditions, the normal subbundle ν of a CR-submanifold of a Kaehler manifold does not admit any D-parallel section. Chen [7] showed that if M is a mixed foliate CR-submanifold of a Kaehler manifold N then for any unit vector fields $X \in \Gamma(D)$ and $Z \in \Gamma(D^{\perp})$,

$$H_{B}(X,Z) = -2 \|A_{JZ}X\|^{2}$$

Using this fact, some results on mixed foliate CR-submanifolds are obtained.

We will first discuss some integrability conditions of the distributions D and $\overset{\perp}{D}$, and some geometrical properties of their leaves in the first section. In Section 2 we extend the result of Bejancu to nearly Kaehler manifold. In the last section we will proved that one of Chen's result is also true when N is a nearly Kaehler manifold.

3.1 Integrability of Distributions on a CR-submanifold of a Nearly Kaehler Manifold

In this section we will discuss the integrability condition for the distributions D and $\overset{\perp}{D}$ as well as the geometry of their leaves. We first start with the following theorem.

Theorem 3.1 (Bejancu [4], p.27)

Let M be a CR-submanifold of a nearly Kaehler manifold

N. Then the distribution D is integrable if and only if

$$h(X,JY) = h(JX,Y)$$

and

$$(\overline{\nabla}_X^J)Y \in \Gamma(D)$$

for any X, $Y \in \Gamma(D)$.

Kon-Tan [19] proved a necessary and sufficient condition for D to be integrable and its leaves to be totally geodesic in M.

Theorem 3.2 (Kon-Tan [19])

Let M be a CR-submanifold of a nearly Kaehler manifold

N. Then the distribution D is integrable and its leaves are totally geodesic in M if and only if

$$h(X,JY) = Jh(X,Y)$$
 (3.1)
 $(\tilde{\nabla}_{v}J)Y \in \Gamma(D)$

and

for any X, $Y \in \Gamma(D)$.

We have the following simple result on CR-submanifolds of a nearly Kaehler manifold.

Lemma 3.1

Let M be a CR-submanifold of a nearly Kaehler $\mbox{manifold}$ N. Then we have

(i)
$$\langle (\nabla_{\chi} J) Y, \xi \rangle = 0$$
 (3.2)

(ii)
$$\langle h(X,JY) - Jh(X,Y),\xi \rangle = 0$$
 (3.3)

for any X, $Y \in \Gamma(D)$ and $\xi \in \Gamma(\nu)$.

Proof:

For X, $Y \in \Gamma(D)$, we have JX, $JY \in \Gamma(D)$ since D is holomorphic, and so all [X,Y], [JX,JY], [X,JY] and [JX,Y] are in $\Gamma(TM)$. Hence

$$\langle [J,J](X,Y),\xi \rangle = \langle [JX,JY] - [X,Y] - J[JX,Y] - J[X,JY],\xi \rangle$$

=
$$\langle [JX,Y],J\xi \rangle + \langle [X,JY],J\xi \rangle$$

= 0, for any $\xi \in \Gamma(\nu)$.

By using Proposition 1.3, we have

$$4 < (\widetilde{\nabla}_{X} \mathbf{J}) Y, \xi \rangle = \langle 4 \mathbf{J} (\widetilde{\nabla}_{X} \mathbf{J}) Y, \mathbf{J} \xi \rangle$$

$$= -\langle [\mathbf{J}, \mathbf{J}] (X, Y), \mathbf{J} \xi \rangle$$

$$= 0$$

for any X, Y $\in \Gamma(D)$ and $\xi \in \Gamma(\nu)$. Moreover, from (3.2) and taking account of (2.19) we obtain

$$\langle h(X,JY) - Jh(X,Y),\xi \rangle = \langle fh(X,\phi Y) - Ch(X,Y) + f\nabla_X^{\perp}\omega Y,\xi \rangle$$

$$= \langle (\widetilde{\nabla}_X J)Y,\xi \rangle$$

$$= 0$$

for any X, $Y \in \Gamma(D)$ and $\xi \in \Gamma(\nu)$.

The following corollary is derived from Theorem 3.2 and Lemma 3.1.

Corollary 3.1

Let M be a CR-submanifold of a nearly Kaehler manifold

N. Then the distribution D is integrable and its leaves are
totally geodesic in M if and only if

$$(\nabla_{\mathbf{Y}}^{\mathbf{J}})\mathbf{Y} \in \Gamma(\mathbf{D})$$

and Bh(X,Y) = 0 (3.4)

for any X, $Y \in \Gamma(D)$.

Proof:

It suffices to show that the equation (3.1) and (3.4) are equivalent. Suppose (3.1) is satisfied. Then by taking the tangential part of (3.1) we obtain (3.4).

Now suppose that Bh(X,Y) = 0 for all X, Y \in $\Gamma(D)$. After applying ω to the above equation, from Proposition 2.4 we obtain

$$-th(X,Y) = \omega Bh(X,Y) = 0$$

which means $h(X,Y) \in \Gamma(\nu)$ for any $X,Y \in \Gamma(D)$. It follows that both h(X,JY) and Jh(X,Y) are in $\Gamma(\nu)$ since ν is invariant by J. Hence, by Lemma 3.1 we obtain

h(X,JY) - Jh(X,Y) = 0, for any $X, Y \in \Gamma(D)$.

Thus, the corollary is proved.■

The integrability of the distribution $\overset{\perp}{D}$ of a CR-submanifold is characterized in the following theorems.

Theorem 3.3 (Bejancu [4], p.28)

Let M be a CR-submanifold of a nearly Kaehler manifold N. Then the distrubution D is integrable if and only if $\langle (\tilde{\nabla}_2 \mathbf{J}) \mathbf{W}, \mathbf{X} \rangle = 0$

for $X \in \Gamma(D)$ and $W, Z \in \Gamma(D^{\perp})$.

Theoren 3.4 (Bejancu [4], p.28)

Let M be a CR-submanifold of a nearly Kaehler manifold N. Then the distribution D^{\perp} is integrable if and only if $\langle h(Z,X),JW\rangle = \langle h(W,X),JZ\rangle$

for any $X \in \Gamma(D)$ and Z, $W \in \Gamma(D)$.

Theorem 3.5 (Bejancu [4], p.28)

Let M be a CR-submanifold of a nearly Kaehler manifold N. If D^{\perp} is integrable then each leaf of D^{\perp} is immersed in M as a totally geodesic submanifold if and only if

$$\langle h(Z,X),JW \rangle = 0$$
 (3.5)

for any $X \in \Gamma(D)$ and $Z, W \in \Gamma(D^{\perp})$.

We note that if equation (3.5) is satisfied, then D is

integrable follows by Theorem 3.4. Together with Theorem 3.5 we have the following analog of a result of Chen ([7], Lemma 3.5).

Corollary_3.2

Let M be a CR-submanifold of a nearly Kaehler manifold N. Then the distribution $\overset{\perp}{D}$ is integrable and its leaves are totally geodesic in M if and only if

$$\langle h(Z,X),JW \rangle = 0$$

for any $X \in \Gamma(D)$ and Z, $W \in \Gamma(D^{\perp})$.

As an immediate consequence we have the following corollary.

Corollary 3.3

Let M be an anti-holomorphic submanifold of a nearly Kaehler manifold. Then M is mixed geodesic if and only if D^{\perp} is integrable and its leaves are totally geodesic in M.

3.2 D-parallel Normal Sections on a CR-submanifold

The main purpose of this section is to obtain a

generalization of a result of Bejancu [3] on CR-submanifold of a Kaehler manifold to the setting of nearly Keahler manifold. We begin with the following definition.

Definition

A normal section ξ (\neq 0) is said to be *D-parallel* if $\nabla^{\perp}_{X}\xi$ = 0, for each $X\in\Gamma(D)$.

We now give some simple results that will be needed later.

Lemma_3.2

Let M be a CR-submanifold of a nearly Kaehler manifold N. Then

$$\phi A_{\xi} X = PA_{J\xi} X$$

for any $X \in \Gamma(D)$ and $\xi \in \Gamma(\nu)$.

Proof:

For any X,
$$Y \in \Gamma(D)$$
 and $\xi \in \Gamma(\nu)$,

$$\langle \phi A_{\xi} X - P A_{J\xi} X, Y \rangle = \langle J A_{\xi} X, Y \rangle - \langle A_{J\xi} X, Y \rangle$$

$$= -\langle A_{\xi} X, JY \rangle - \langle h(X,Y), J\xi \rangle$$

$$= -\langle h(X,JY), \xi \rangle + \langle Jh(X,Y), \xi \rangle$$

$$= -\langle h(X,JY) - Jh(X,Y), \xi \rangle$$

$$= 0, \quad \text{by Lemmn 3.1.}$$

Therefore,

$$\phi A_{\xi} X = PA_{J\xi} X.$$

Lemma 3.3

Let M be a CR-submanifold of a nearly Kaehler manifold
N. Then

$$\phi A_{\xi} X = -PA_{\xi} JX$$

for any $X \in \Gamma(D)$ and $\xi \in \Gamma(\nu)$.

Proof:

For any X, Y
$$\in \Gamma(D)$$
, $\xi \in \Gamma(\nu)$ and by using Lemma 3.1
$$\langle \phi A_{\xi} X + P A_{\xi} J X, Y \rangle = \langle J A_{\xi} X, Y \rangle + \langle A_{\xi} J X, Y \rangle$$

$$= -\langle A_{\xi} X, J Y \rangle + \langle h(Y, J X), \xi \rangle$$

$$= -\langle h(X, J Y), \xi \rangle + \langle h(Y, J X), \xi \rangle$$

$$= -\langle J h(Y, X), \xi \rangle + \langle J h(Y, X), \xi \rangle$$

$$= 0.$$
Therefore,
$$\phi A_{\xi} X = -P A_{\xi} J X. \blacksquare$$

Lemma 3.4

Let M be a CR-submanifold of a nearly Kaehler manifold N. Suppose that $\xi\in\Gamma(\nu)$ is a D-parallel normal section then

$$QA_{\xi}JX = -2QA_{J\xi}X$$

for any $X \in \Gamma(D)$.

Proof:

For any $X\in\Gamma(D)$ and $Z\in\Gamma(D^{\perp})$, since N is nearly Kaehler we have

$$\langle (\overset{\sim}{\nabla}_{\mathbf{Z}} \mathbf{J}) \mathbf{X}, \xi \rangle = -\langle (\overset{\sim}{\nabla}_{\mathbf{X}} \mathbf{J}) \mathbf{Z}, \xi \rangle$$

= $\langle (\overset{\sim}{\nabla}_{\mathbf{Y}} \mathbf{J}) \xi, \mathbf{Z} \rangle$.

By using the fact that ξ is D-parallel and equation (2.19) and (2.21), we obtain

$$\langle fh(\mathbf{Z},\phi\mathbf{X}),\xi\rangle - \langle ch(\mathbf{Z},\mathbf{X}),\xi\rangle = -\langle QA_{C\xi}\mathbf{X},\mathbf{Z}\rangle$$

$$\langle h(\mathbf{Z},\mathbf{J}\mathbf{X}),\xi\rangle - \langle \mathbf{J}h(\mathbf{Z},\mathbf{X}),\xi\rangle = -\langle QA_{J\xi}\mathbf{X},\mathbf{Z}\rangle$$

$$\langle A_{\xi}\mathbf{J}\mathbf{X},\mathbf{Z}\rangle + \langle h(\mathbf{Z},\mathbf{X}),\mathbf{J}\xi\rangle = -\langle QA_{J\xi}\mathbf{X},\mathbf{Z}\rangle$$

$$\langle A_{\xi}\mathbf{J}\mathbf{X},\mathbf{Z}\rangle + \langle QA_{J\xi}\mathbf{X},\mathbf{Z}\rangle = -\langle QA_{J\xi}\mathbf{X},\mathbf{Z}\rangle$$
or,
$$\langle QA_{\xi}\mathbf{J}\mathbf{X},\mathbf{Z}\rangle = -2\langle QA_{J\xi}\mathbf{X},\mathbf{Z}\rangle .$$
Thus,
$$QA_{y}\mathbf{J}\mathbf{X} = -2\langle QA_{J\xi}\mathbf{X},\mathbf{Z}\rangle .$$

From Lemma 3.2, Lemma 3.3 and Lemma 3.4, we are able to

prove the following theorem.

Theorem_3.6

Let M be a CR-submanifold of a nearly Kaehler manifold N. Suppose the distribution D is integrable. If there exists a unit vector field $X \in \Gamma(D)$ such that for all normal sections $\xi \in \Gamma(\nu)$, the holomorphic bisectional curvatures $H_B(X,\xi)$ are positive, then the normal subbundle ν does not admit D-parallel normal section.

Proof:

Suppose ξ is a D-parallel normal section in $\nu.$ For any $X\in\Gamma(D) \text{ we have }$

$$\mathbf{R}^{\perp}(\mathbf{X},\mathbf{J}\mathbf{X})\boldsymbol{\xi} \ = \ \boldsymbol{\nabla}_{\mathbf{X}}^{\perp}\boldsymbol{\nabla}_{\mathbf{J}\mathbf{X}}^{\perp}\boldsymbol{\xi} \ - \ \boldsymbol{\nabla}_{\mathbf{J}\mathbf{X}}^{\perp}\boldsymbol{\nabla}_{\mathbf{X}}^{\perp}\boldsymbol{\xi} \ - \ \boldsymbol{\nabla}_{[\mathbf{X},\mathbf{J}\mathbf{X}]}^{\perp}\boldsymbol{\xi} \ = \ \mathbf{0} \,.$$

From the Ricci equation,

$$\begin{split} \tilde{\langle \mathbf{R}}(\mathbf{X},\mathbf{J}\mathbf{X})\boldsymbol{\xi},\mathbf{J}\boldsymbol{\xi}\rangle &= \langle \mathbf{R}^{\perp}(\mathbf{X},\mathbf{J}\mathbf{X})\boldsymbol{\xi},\mathbf{J}\boldsymbol{\xi}\rangle + \langle [\mathbf{A}_{\mathbf{J}\boldsymbol{\xi}},\mathbf{A}_{\boldsymbol{\xi}}]\mathbf{X},\mathbf{J}\mathbf{X}\rangle \\ &= \langle [\mathbf{A}_{\mathbf{J}\boldsymbol{\xi}},\mathbf{A}_{\boldsymbol{\xi}}]\mathbf{X},\mathbf{J}\mathbf{X}\rangle \\ &= \langle \mathbf{A}_{\mathbf{J}\boldsymbol{\xi}}\,\mathbf{A}_{\boldsymbol{\xi}}\mathbf{X},\mathbf{J}\mathbf{X}\rangle - \langle \mathbf{A}_{\boldsymbol{\xi}}\,\mathbf{A}_{\mathbf{J}\boldsymbol{\xi}}\,\mathbf{X},\mathbf{J}\mathbf{X}\rangle \\ &= \langle \mathbf{A}_{\boldsymbol{\xi}}\,\mathbf{X},\mathbf{A}_{\mathbf{J}\boldsymbol{\xi}}\,\mathbf{J}\mathbf{X}\rangle - \langle \mathbf{A}_{\mathbf{J}\boldsymbol{\xi}}\,\mathbf{X},\mathbf{A}_{\boldsymbol{\xi}}\,\mathbf{J}\mathbf{X}\rangle \\ &= \langle \mathbf{P}\mathbf{A}_{\boldsymbol{\xi}}\,\mathbf{X},\mathbf{P}\mathbf{A}_{\mathbf{J}\boldsymbol{\xi}}\,\mathbf{J}\mathbf{X}\rangle + \langle \mathbf{Q}\mathbf{A}_{\boldsymbol{\xi}}\,\mathbf{X},\mathbf{Q}\mathbf{A}_{\mathbf{J}\boldsymbol{\xi}}\,\mathbf{J}\mathbf{X}\rangle \\ &- \langle \mathbf{P}\mathbf{A}_{\mathbf{J}\boldsymbol{\xi}}\,\mathbf{X},\mathbf{P}\mathbf{A}_{\boldsymbol{\xi}}\,\mathbf{J}\mathbf{X}\rangle - \langle \mathbf{Q}\mathbf{A}_{\mathbf{J}\boldsymbol{\xi}}\,\mathbf{X},\mathbf{Q}\mathbf{A}_{\boldsymbol{\xi}}\,\mathbf{J}\mathbf{X}\rangle. \quad (3.6) \end{split}$$

By using Lemma 3.2 and Lemma 3.3, we have

$$\langle PA_{\xi}X, PA_{J\xi}JX \rangle = \langle PA_{J\xi}X, PA_{\xi}JX \rangle$$

$$= \langle PA_{\xi}X, \phi A_{\xi}JX \rangle - \langle PA_{J\xi}X, -\phi A_{\xi}X \rangle$$

$$= \langle PA_{\xi}X, -PA_{\xi}J^{2}X \rangle - \langle PA_{J\xi}X, -PA_{J\xi}X \rangle$$

$$= \|PA_{\xi}X\|^{2} + \|PA_{J\xi}X\|^{2}.$$

$$(3.7)$$

Also, by using Lemma 3.4 we obtain

$$\begin{split} \langle \mathsf{QA}_{\zeta} \mathsf{X}, \mathsf{QA}_{\mathsf{J}\zeta} \mathsf{J} \mathsf{X} \rangle &- \langle \mathsf{QA}_{\mathsf{J}\zeta} \mathsf{X}, \mathsf{QA}_{\zeta} \mathsf{J} \mathsf{X} \rangle \\ &= \langle \mathsf{QA}_{\zeta} \mathsf{X}, -\frac{1}{2} \, \mathsf{QA}_{\zeta} \, \mathsf{J}^2 \mathsf{X} \rangle \, - \, \langle -\frac{1}{2} \, \mathsf{QA}_{\zeta} \, \mathsf{J} \mathsf{X}, \mathsf{QA}_{\zeta} \, \mathsf{J} \mathsf{X} \rangle \\ &= \, \frac{1}{2} \, \{ \big\| \mathsf{QA}_{\zeta} \, \mathsf{X} \big\|^2 \, + \, \big\| \mathsf{QA}_{\zeta} \, \mathsf{J} \mathsf{X} \big\|^2 \} \, . \end{split}$$

By substituting (3.7) and (3.8) into (3.6), we obtain

$$\begin{split} \langle \tilde{\mathbf{R}}(\mathbf{X}, \mathbf{J} \mathbf{X}) \xi, \mathbf{J} \xi \rangle &= \left\| \mathbf{P} \mathbf{A}_{\xi} \mathbf{X} \right\|^{2} + \left\| \mathbf{P} \mathbf{A}_{\mathbf{J} \xi} \mathbf{X} \right\|^{2} \\ &+ \frac{1}{2} \left\{ \left\| \mathbf{Q} \mathbf{A}_{\xi} \mathbf{X} \right\|^{2} + \left\| \mathbf{Q} \mathbf{A}_{\xi} \mathbf{J} \mathbf{X} \right\|^{2} \right\} \\ &\geq 0. \end{split}$$

Therefore.

$$\widetilde{H}_{\mathbf{B}}(X,\xi) = \langle \widetilde{\mathbf{R}}(X,\mathbf{J}X)\mathbf{J}\xi,\xi \rangle$$

$$= -\langle \widetilde{\mathbf{R}}(X,\mathbf{J}X)\xi,\mathbf{J}\xi \rangle \leq 0.$$

But this contradicts the hypothesis. Thus, the theorem is proved.■

Remark: When M is mixed geodesic and N is a Kaehler manifold, then Theorem 3.6 becomes [3, Theorem 2.1].

3.3 Mixed Foliate CR-submanifolds of a Nearly Kaehler Manifold

The results of this section are straightfoward generalizations from the case of mixed foliate CR-submanifold of a Kaehler manifold to that of a nearly Kaehler manifold. The definition of a mixed foliate CR-submanifold is given by

Definition

A CR-submanifold of an almost Hermitian manifold is mixed foliate if it is mixed geodesic and D is integrable.

Firstly, we have the following simple result.

Lemma_3.5

Let M be a CR-submanifold of a nearly Keahler manifold
N. If D is integrable then

$$P\nabla_{X}Z = \phi A_{JZ}X$$

for any $X \in \Gamma(D)$ and $Z \in \Gamma(D^{\perp})$.

Proof:

For any X, $Y \in \Gamma(D)$ and $Z \in \Gamma(D^{\perp})$, since D is integrable we have $(\nabla_{X}^{-}J)Y \in \Gamma(D)$ from Theorem 3.1. Thus we have

$$\langle (\tilde{\nabla}_{X}J)Z, Y \rangle = -\langle (\tilde{\nabla}_{X}J)Y, Z \rangle = 0$$

$$\langle P\nabla_{X}\phi Z - PA_{\omega Z}X - \phi\nabla_{X}Z, Y \rangle = 0 \qquad \text{by (2.16)}$$

$$-\langle A_{JZ}X, Y \rangle - \langle J\nabla_{X}Z, Y \rangle = 0$$

$$-\langle JA_{JZ}X, JY \rangle + \langle \nabla_{X}Z, JY \rangle = 0$$

$$-\langle \phi A_{JZ}X, JY \rangle + \langle P\nabla_{X}Z, JY \rangle = 0$$

$$\langle P\nabla_{X}Z - \phi A_{JZ}X, JY \rangle = 0.$$

$$P\nabla_{Y}Z = \phi A_{JZ}X. \blacksquare$$

Therefore.

Next, we will generalize a result on mixed foliate CR-submanifold (see [6] Lemma 3).

Lemma 3.6

Let M be a mixed foliate CR-submanifold of a nearly

Kaehler manifold N. Then we have

$$A_{\xi}\phi U + \phi A_{\xi}U = 0$$

for any $U \in \Gamma(TM)$ and $\xi \in \Gamma(TM)$.

Proof:

From the hypothesis and by using Theorem 3.1, we have

$$h(X,\phi Y) = h(\phi X,Y)$$

and

$$h(X,Z) = 0$$

for any X, $Y \in \Gamma(D)$ and $Z \in \Gamma(D)$.

Moreover, we know that $PU \in \Gamma(D)$ and $QU \in \Gamma(D^{\perp})$ for any vector field $U \in \Gamma(TM)$. Consequently, for any $U, V \in \Gamma(TM)$ we have

$$h(U,\phi V) = h(PU,\phi V) + h(QU,\phi V)$$

$$= h(PU,\phi PV)$$

$$= h(\phi PU,PV)$$

$$= h(\phi U,PV)$$

$$= h(\phi U,V).$$

Thus, for any U, $V \in \Gamma(TM)$ and $\xi \in \Gamma(TM)$, we have

$$\langle A_{\xi} \phi U + \phi A_{\xi} U, V \rangle = \langle A_{\xi} \phi U, V \rangle - \langle A_{\xi} U, \phi V \rangle$$

= $\langle h(\phi U, V), \xi \rangle - \langle h(U, \phi V), \xi \rangle$
= 0.

Accordingly,

$$A_{\mu}\phi U + \phi A_{\mu}U = 0. \blacksquare$$

The following lemma will also be needed for our investigation. This result generalizes [7, Lemma 9.1].

Lemma_3.7

Let M be a mixed foliate CR-submanifold of a nearly Kaehler manifold N. Then for any unit vector fields $X \in \Gamma(D)$ and $Z \in \Gamma(D)$, we have

$$H_{B}(X,Z) = -2 \|A_{JZ}X\|^{2}.$$

Proof:

Consider unit vector fields $X \in \Gamma(D)$ and $Z \in \Gamma(D^{\perp})$. From the Codazzi equation

$$\begin{split} \widetilde{R}(X,JX)Z^{\perp} &= (\nabla_{X}h)(JX,Z) - (\nabla_{JX}h)(X,Z) \\ &= \nabla_{X}^{\perp}h(JX,Z) - h(\nabla_{X}JX,Z) - h(JX,\nabla_{X}Z) \\ &- \nabla_{JX}^{\perp}h(X,Z) + h(\nabla_{JX}X,Z) + h(X,\nabla_{JX}Z) \\ &= h(\nabla_{JX}X - \nabla_{X}JX,Z) - h(JX,\nabla_{X}Z) + h(X,\nabla_{JX}Z) \\ &= h([JX,X],Z) - h(JX,\nabla_{X}Z) + h(X,\nabla_{JX}Z). \quad (3.9) \end{split}$$

Since M is mixed geodesic and D is integrable, we have

$$h([JX,X],Z) = h(JX,Q\nabla_YZ) = h(X,Q\nabla_{IY}Z) = 0.$$

Thus, equation (3.9) becomes

$$\tilde{R}(X,JX)Z^{\perp} = -h(JX,P\nabla_{X}Z) + h(X,P\nabla_{JX}Z)
= -h(JX,\phi A_{JZ}X) + h(X,\phi A_{JZ}JX) by Lemma 3.5
= -h(JX,\phi A_{JZ}X) + h(X,-A_{JZ}\phi JX) by Lemma 3.6
= -h(JX,\phi A_{JZ}X) + h(X,A_{JZ}X). (3.10)$$

By using the fact that D is integrable and Theorem 3.1, we have

$$h(JX,\phi A_{JZ}X) = h(X,J\phi A_{JZ}X)$$

$$= -h(X,PA_{JZ}X)$$

$$= -h(X,A_{JZ}X).$$

Hence, equation (3.10) becomes

$$\tilde{R}(X,JX)Z^{\perp} = h(X,A_{JZ}X) + h(X,A_{JZ}X)$$
= $2h(X,A_{JZ}X)$.

Therefore,

$$\widetilde{H}_{B}(X,Z) = \langle \widetilde{R}(X,JX)JZ,Z \rangle$$

$$= -\langle \widetilde{R}(X,JX)Z,JZ \rangle$$

$$= -2\langle h(X,A_{JZ}X),JZ \rangle$$

$$= -2||A_{JZ}X||^{2}. \blacksquare$$

The following theorem can now be obtained easily and generalizes [7, Theorem 9.2].

Theorem 3.7

Let N be a nearly Kaehler manifold with $\frac{\tilde{L}}{B} > 0$. Then N admits no mixed foliate proper CR-submanifold.

Proof:

Suppose that such a CR-submanifold M does exists. By Lemma 3.7 we have

$$H_{B}(X,Z) = -2||A_{JZ}X||^{2} \le 0$$

for any unit vector fields $X \in \Gamma(D)$ and $Z \in \Gamma(D^{\perp})$. But this is a contradiction and thus the theorem is proved.