CHAPTER 4
CR-SUBMANIFOLDS OF A SIX-DIMENSIONAL
NEARLY KAEHLER MANIFOLD

It is well known that the six-dimensional sphere Sd is
a nearly Kaehler manifold which is not Kaehlerian (see [13],
[15]). Gray [12] has shown that 56 does not admit a
4-dimenisional holomorphic submanifold and Deshmukh-Ghazal
[11] proved that there exists no 4-dimenisional
CR-submanifold with integrable distribution D'L of Sd. The
natural question arises as to whether these results are

valid for arbitrary non-Kaehlerian, 6-dimensional nearly

Kaehler manifold.

The main purpose of this chapter is to show that
certain classes of CR-submanifolds do not exist in a nearly

Kaehler manifold of dimension six, which is not Kaehlerian.

Section 1 contains a review of some results on nearly
Kaehler manifold. In Section 2 we first give an affirmative
answer for the above question. We also proved that a
6-dimensional non-Kaehlerian, nearly Kaehler manifold has no

3-dimensional mixed geodesic proper CR-submanifold and real



hypersurface with integrable holomorphic distribution D.
4.1 Some Results on Nearly Kaehler Manifolds

Let N be an almost Hermitian manifold. Then N is said
to be of constant type at x € N if it satisfies the
following condition

n(exa)vﬂ = ﬂ(@xd)zn
for X, Y, Z € TxN with <X,Y> = <X,Z> = <X,JY> = <X,JZ> = 0
and ”Yu ="Z".

We say that N is of (pointwise) constant type if it is
of constant type at each point x € N. Finally, if N is of
pointwise constant type and H(GXJ)Y' is constant, for any
unit vector fields X, Y € '(TN) with <X,Y> = <X,JY> = 0,

then we say that N is of global constant type.

We have the following simple characterization of a

nearly Kaehler manifold of constant type.

Proposition 4.1 (Gray [14])

Let N be a nearly Kaehler manifold. Then N is of

pointwise constant type if and only if there exists a € ¥(N)



such that

"(GXJ)Yuz = afx|Pef? - x,v? - x,a0%) (4.1)

for all X, Y € '(TN). Furthermore, N is of global constant

type if and only if (4.1) holds with a constant function a.

A nearly Kaehler manifold N is said to be strict if for

all x € N and non-zero.vector X € TXN we have (VXJ) * 0.

The following theorems are found in Gray [16].

Theoren 4.1
Let N be a nearly Kaehler manifold with dim N = 6.
Assume that N is not Kaehlerian. Then it is of global

constant type, that is
u(exa)vu2 = adxPef® - <x,v? -<x,a0%)

where X, Y € '(TN) and a is a positive constant.

4.2 CR-submanifolds of a 6-dimensional Nearly Kaehler

Manifold

We begin this section with the following lemmas.
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Let M be a CR-submanifold of a nearly Kaehler

N. Then we have the foll
(i) if dim v
(ii) if dim D

for any {, n € "'(v) and

Proof:

Suppose that dim v

vector field { € '(v), {{,J¢} is a local frame on V.
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= 2 then (VxJ)Y
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X, Y € I'(D).

= 2. Then for

where a, b € ¥(M). Therefore
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Similarly, if dim D = 2,

(VxJ)Y = 0.m
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= 0.
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1 -~
(i) if dim D = 1 then (VZJ)W =0

L 1L
(ii) if dimD = 2 and D is integrable then
(VZJ)W e '(v)

L
for any Z, W e I'(D ).

Proof:

L
Suppose that dim D = 1. Then for any non-zero vector
€L
fields Z, We I'(D ), we have W = aZ where a e FM).
Therefore

(VZJ)W = a(VzJ)Z = 0.

Now, suppose DL is integrable and it is of dimension 2.

We observe that if {Z,W} is a local frame on DL. then
{JZ,JW} is a local frame on JDL. Since N is nearly Kaehler,
by using (1.2) and (1.3), we have

((GZJ)W,Z) = -<($ZJ)Z'W> =0

((GZJ)W,W) =0

((GZJ)W,JZ) = -<($"J)Z,JZ) =0
and <(€zJ)W,JW) = 0.
Also, from Theorem 3.3 we have

<(62J)W,X) =0, for any X € I'(D).

Therefore, (VZJ)W el@w).m



a_4.

Let M be a CR-submanifold of a nearly Kaehler manifold
N. If dim D = 4 then
(VUJ)V L p, for any U, V € I'(D).

Moreover, if D is integrable then (VUJ)V = 0.

Proof:
Suppose dim D = 4 and let {X, JX, Y, JY} be any local
frame on D. To prove the first part, since N 1is nearly

Kaehler, it suffices to show that (VXJ)Y L D. We can see

that
((VXJ)Y,X> = -((VYJ)X,X> =0
((VxJ)Y,JX) = -((VYJ)X,JX) =0
and ((VxJ)Y,Y) = ((VXJ)Y,JY) =0.

Hence, we obtain (VXJ)Y 1.

Now,if D is integrable then from Theorem 3.1, we have
(VXJ)Y e Ir(n), for any X, Y € I'(D).

Since (VxJ)Y 1 D, we have (VXJ)Y = 0.m

We are now ready to prove the following proposition.



roposition 4.
Let N be a 6-dimensional non-Kaehlerian nearly Kaehler
manifold. Then there exists no CR-submanifold M of N with

integrable holomorphic distribution D of dimension 4.

Proof:

Suppose such a CR-submanifold M does exists. Let X, Y
be two unit vector fields in D with <X,Y> = <X,JY> = -O. Then
from Theorem 4.1 we obtain

n(\;xa)yu’ = alXPR? - <x? - x,an?)
= a
Lemma 4.3 tells us that (GXJ)Y = 0. Thus, we obtaina = 0,
which is a contradiction because o is a positive constant.

Thus the proposition is proved.m

We observe that if M is a real hypersurface of a
6-dimensional almost Hermitian manifold, the distribution D
is necessary of dimension 4. Together with Proposition 4.2,

this yields the following result.



Theorem 4.

Let N be a 6-dimensional non-Kaehlerian nearly Kaehler
manifold. Then

(i) it has no 4-dimensional holomorphic submanifold,

(ii) it has no real hypersurface with integrable

holomorphic distribution D.

From Lemma 4.1, Lemma 4.2 and Theorem 4.1, we also

obtain the following results.

Theorem 4.3

There does not exist a 4-dimensional CR-submanifold
1
with integrable totally real distribution D in a

6-dimensional non-Kaehlerian, nearly Kaehler manifold N.

Proof:

Let M be a 4-dimensional CR-submanifold of N. If D is
of dimension 4, then M is a holomorphic submanifold. But
this is impossible by Theorem 4.2. Therefore, both D and D
are of dimension 2. Now, suppose DL is integrable, then by

Lemma 4.1 and Lemma 4.2, we get



(VXJ)Y =0 (4.2)

and (GZJ)W e ')

L
for any X, Y € I'(D) and Z, W € '(D ). We note that M is an
anti-holomorphic submanifold, that is ¥ = {0} and so
(VZJ)W =0 (4.3)
By using (4.2) and (4.3), we obtain
U DNZ, Y = SUTDY,2> = 0

((VXJ)Z,W) = -((VZJ)X,W>

((VzJ)W,X)
=0

and <(VXJ)Z,JW> = —<(VZJ)X,JW>

-(J(VZJ)W,X>
=0
L
for any X, Y€ I'(D) and 2, W € I'(D ). Therefore

(V,J3)z = 0 (4.4)

X
L
for any X € '(D) and Z € '(D ). By using Theorem 4.1 and

(4.4), we obtain

2y n2
alx|jzl” = o
In particular, for "xu = uZ“ = 1 we have a = 0. But this

contradicts the fact that o is a positive constant and the

theorem is proved.m



Theorem 4.4
There does not exist a 3-dimensional mixed geodesic
proper CR-submanifold of a 6-dimensional non-Kaehlerian,

nearly Kaehler manifold.

Proof:

Assume that M is a 3-dimensional mixed geodesic proper
L
CR-submanifold of N. Then we have dim D = 2 and dim D = 1.
From Lemma 4.1 and Lemma 4.2 we have

0

(VDY
and (V. IW =0
Z
L
for any X, Y € '(D) and Z, W e '(D ). It follows that

((VZJ)X,Y) = —((VxJ)Z,Y)

((VXJ)YyZ)
=0
<(VZJ)X,W> = —((VZJ)W,X) =0
((VZJ)X,JW) = <J(VZJ)W,X) = 0.
Furthermore, for any { € '(v) we obtain
> 1
<(sz)x.z> = <fh(Z,9X) + /Vzwx - Ch(Z,X),f> by (2.19)
= <h(2,$X) - Ch(Z,X),¢>

= 0, since M is mixed geodesic.



Therefore, (VZJ)X =0 (4.5)

L
for any X € '(D) and Z € '(D ). By using Theorem 4.1 and
(4.5) we obtain
2y n2 _
alx|iz|” = o
Thus, we have a = 0, which is a contradiction and this

complete the proof.m

Remark: Theorem 4.4 implies that there exist no
3-dimensional mixed geodesic proper CR-submanifold of Sd.
However, Sekigawa [25] has constructed an example of a

3-dimensional minimal proper CR-submanifold of Sd with both

L
distribution D and D integrable.



