CHAPTER 5
TOTALLY UMBILICAL CR-SUBMANIFOLDS
OF A NEARLY KAEHLER MANIFOLD

Totally umbilical CR-submanifolds of a Kaehler manifold
have been studied by Chen [9], Toyonari-Nemoto [28] and
Bashir [1]. In [20], Kon-Tan initiated the study of totally
umbilical CR-submanifolds of a nearly Kaehler manifold. In
this chapter we continue their work and give a
classification of all connected totally umbilical
CR-submanifolds of a nearly Kaehler manifold. We also show
that a 3-dimensional Einstein non-totally geodesic proper
CR-submanifold of a nearly Kaehler manifold is an extrinsic

sphere.

5.1 On the Classification of a Totally Umbilical

CR-submanifold of a Nearly Kaehler Manifold

In their paper [20], Kon-Tan have proved a
classification theorem, that is, a totally umbilical

CR-submanifold M of a nearly Kaehler manifold is either



L
totally geodesic, or totally real, or dim D = 1. In this
L
section we consider the case when dim D = 1 and then give a

complete classification of a connected totally umbilical

CR-submanifold of a nearly Kaehler manifold.

Let M be a totally umbilical CR-submanifold of a nearly
Kaehler manifold N. Then the equation of Gauss and Codazzi
take the forms

<l~l(x,Y)z,w> = <R(X,Y)Z,W>

+ {220, W = <KW, T (5.1
;(X,Y)ZL = <Y,Z>V:H - (X,Z)Vtﬂ (5.2)
for any X, Y, Z and W € "'(TM).

The following theorem classifies a totally umbilical

CR-submanifold of a nearly Kaehler manifold.

Theorem 5.1 (Kon-Tan [20])
Let M be a totally umbilical CR-submanifold of a
nearly Kaehler manifold. Then either
(i) M is totally geodesic; or
(ii) M is totally real; or

L
(iii) dim D = 1.



We note that Theorem 5.1 has been proved by Chen [9]

when N is a Kaehler manifold.

Suppose M is a non-totally geodesic, totally umbilical

proper CR-submanifold of a nearly Kaehler manifold N. Then
L

we have dim D = 1. We first start with the following simple

results.

el 5.1

Let M be a totally umbilical proper CR-submanifold of
a nearly Kaehler manifold N. Then the mean curvature vector

L
Hel(D).

Proof:

For any unit vector fields X € I'(D), ¢ e I'(v), by
taking Y = X in (3.3) we ostnin
<h(X,JX),&> - <Jh(X,X),t> =0
CXGIXICH,ED> = <X, XO<JIH,E> = 0
-<CH,£> = 0

L
which means CH = 0 and hence H € I'(JD ).m



Lemma 5.2
Let M be a non-totally geodesic totally umbilical
proper CR-submanifold of a nearly Kaehler manifold N. Then

we have
1 L
VUJZ e "'Wp )

L
for any U € '(TM) and Z € I'(D ).

Proof:
L
For any X € '(D), Z € '(D ), by using (2.19) we have
=~ L e L
/(VXJ)Z = =f( zJ)x
1 1
Fh(X,92) + fY0Z - Ch(X,Z) = -fh(Z,¢X) - FILeX + Ch(Z,X)

1
fUIZ = <X,Z>CH = =<Z,¢XOfH + <Z,X>CH

VL
vz = 0. (5.3)

L L
Next, for any Z, W e I'(D ), since dim D = 1 we have

(VZJ)W = 0 by Lemma 4.2. Then by using (2.19) again we
obtain

1 ~ L

fh(W,92z) + fVyZ - Ch(W,2) = fONZ =0
1
/VWJZ - <W.Z>CH = 0.

From Lemma 5.1 we know that CH = 0. Therefore we have



-L -
193z = 0. (5.4)

By combining (5.3) and (5.4) we obtain

1 L
/VUJZ =0, for any U € '(TM) and Z € I'(D ).

1 1 L
That is, VUJZ = tVUJZ e€el'(JD ).m

Next we have the following result which gives a
sufficient condition for a totally umbilical CR-submanifold
of a nearly Kaehler manifold to admit a nearly Sasakian

structure.

Proposition 5.1
Let M be a proper CR-submanifold of a nearly Kaehler
manifold N. If M is an extrinsic sphere then it admits a

nearly Sasakian structure.

Proof:
Suppose M is an extrinsic sphere. Then the mean
L
curvature 4 = [H|| is a non-zero constant. Since H € ['(JD ),
L
£ = --frJH is a unit vector field in D globally defined in

L
M. Moreover we have dim D = 1.



Now, we define a new Riemannian metric g on M by
g(X,Y) = p2ax,v> (5.5)
Moreover, we put { = -ﬁ ¢ and n(X) = pu<X,f>. Then for any
X, Y € T'(TM) we have
n) = p<,Z> = 1
X = PX + QX

—B7X + <X, EE

4%+ et Lt

47X + n(X)

and e(X,Y) = p2<x, >

12<PX,PY> + p2<QX,QY>

2P, PYD> + pEKXE <Y,

P PR, PPY> + <K, EOUCY,E>
= 15X, 00> + nON(Y)

g(#X,8Y) + n(X)n(Y).

Therefore, (¢, {, 7, g) is an almost contact metric

structure on M.

Next, by (2.16) and (2.17) we obtain
7Y = REDY + @0y
( xJ)Y = P( xJ)Y + Q( XJ)Y

X - Bh(X,Y).

= VX¢Y - ¢VXY - AwY

Therefore, by using the fact that N is nearly Kaehler we



obtain

6 T 5 T _
Ty + ( X =0

"
=]

(Vx¢)Y - A - Bh(X,Y) + (vy¢)x - AKY - Bh(Y,X)

1
=]

(Vx¢)Y + (VY¢)X - AKX T ALY - 2BR(X,Y) =
(Vx¢)Y + (Vy¢)x - <H,0Y>X -<H,wX>Y - 2<X,Y>BH = 0

(Vx¢)Y + (VY¢)x + <JH,Y>X + <JH,XOY - 2<X,Y>JH = 0

"
=

(Vx¢)Y + (vy¢)x - H<ELYOX - pcE L XOY 4 2udX,YOE

n
=]

(T )Y + (I )X - (X - (Y + 2pz<x,y>7}:
(V@)Y + (V)X - n(Y)X - n(X)Y + 2g(X,Y){ = 0.
That is,
(VY + (V@)X = n(X)Y + n(Y)X - 2&(X,Y)
for any X, Y € '(T™).
We observe that since g is homothetic to the induced
metric < , >, then V the Levi-Civita connection on M is
determined by g, hence (¢, {, 7, g) defined a nearly

Sasakian structure on M.m

In particular, when the mean curvature 2 = 1 we have

the following corollary.



Corollar .1

Let M be a totally umbilical proper CR-submanifold of a
nearly Kaehler manifold N. If M is an extrinsic sphere with
mean curvature 4 = 1, then M is immersed in N as a nearly

Sasakian submanifold.

Proof:

If 4 = 1 then (5.5) becomes
g(X,Y) = <X,Y>, for any X, Y € "'(T™M).
Thus, M admits a nearly Sasakian structure with the induced
metric < , > as the associated Riemannian metric and so it

is immersed in N as a nearly Sasakian submanifold.m

We are now able to classify a connected totally
umbilical CR-submanifold of a nearly Kaehler manifold in

detail.

or 5.

Let M be a connected totally wumbilical CR-submanifold
of a nearly Kaehler manifold N. Then either

(i) M is totally geodesic; or



(ii) M is totally real; or
(iii) H is not D-parallel; or

(iv) M is an extrinsic sphere and so admits a

nearly Sasakian structure.

Proof:

Let M be a connected non-totally geodesic and
non-totally real, totally umbilical CR-submanifold of N.
Then by Theorem 5.1, dim Dl =1 and so it is proper. Now
suppose that the mean curvature vector H is D-parallel. By
using the Codazzi equation (5.2), for any unit vector fields
X € I'(D) and Z € F(DL) we obtain

~ 1 1
<R(Z,X)X,Jdz> = (X,X)(VZH,J2> - (Z,X)(VXH,JZ>

= <V:H,JZ>. (5.6)
From Proposition 1.3, we get
(;(Z,X)X.JZ) = <i(JZ,JX)JX,J22>
= —(i(JZ,JX)JX,Z>
= -<i(Z,JX)JX,JZ).
By using the Codazzi equation (5.2) again we obtain

- 1 1
<R(Z,X)X,J2> = —(JX,JX)(VZH,JZ) + (Z,JX)(VJXH,JZ>

1
—<VZH,JZ>. (5.7)

s



1
From (5.6) and (5.7) we obtain that <VZH,JZ> = 0.
o
Since dim D = 1, we obtain
L L
VZH e '(wv), for any Z € I'(D ).

L L
Lemma 5.2 tells us that VZH € '(JD ). Thus, we have proved

V_H =0, for any Z € F(DL).

This shows that H is parallel since it is D-parallel. As M
is connected, it follows that g = HH“ is a constant. Since M
is non-totally geodesic, ¥ is a non-zero constant, that is M
is an extrinsic sphere and hence it admits a nearly Sasakian

structure by Proposition 5.1.m

Remark: When N is a Kaehler manifold and M is of dimension
greater than 4, then part (iii) of Theorem 5.2 will never
happens and part (iv) of Theorem 5.2 is replaced by M admits

a Sasakian structure (see Toyonari-Nemoto [28]).

Before we close this section, we consider a particular

case of Theorem 5.2.

Theorem 5.3

Let M be a 5-dimensional connected totally wumbilical



CR-submanifold of a nearly Kaehler manifold N. Then either
(i) M is totally geodesic; or
(ii) M is totally real; or

(iii) M admits a nearly Sasakian structure.

Proof:

Suppose M is a 5-dimensional connected non-totally
geodesic and non-totally real, totally umbilical
CR-submanifold of N. Then we have dim D = 4 and dim D-L = 1.
From Lemma 4.2 amd Lemma 4.3, we have

(éxJ)Y 1 (5.8)

0 (5.9)

and (VZJ)N
1
for any X, Y€ I'(D) and Z, WI(D ). By using (5.9) we obtain
<(VZJ)X,W) = —((VZJ)W,X> =0
UT,LIX,IW> = <I(T, D)W, %> = 0.
Furthermore, from (2.19) we have
~ L 1
/(VZJ)X = fh(Z,¢X) + /Vzwx - Ch(Zz,X)
= <Z,¢X>fH - <Z,X>CH
= 0.
Therefore, we have

- L
(VZJ)X e I'n), for any Z € '(D ) and X € I'(D).

b



By using the above equation and (5.8) we have

((VxJ)Y.J(VZJ)X) =0 (5.10)

L
for any X, Y€ I'(D) and Z € I'(D ).

L
Consider unit vector fields X, Y& I'(D) and Z € I'(D ),
since dim D = 4, we may assume that <X,Y> = <X,JY> = 0. By
using the Codazzi equation (5.2) we have
~ 1 L
<R(Y,X)X,Jd2> = (X,X)(Vyﬂ,JZ) - <Y,X)<VXH,JZ)
1
= (VYH,JZ).
We observe that
<R(Y,X)X,JZ> = <R(JY,JIX)X,dZ> - <(VYJ)X,(VXJ)JZ>
= <R(JY,JIX)X,J2> + ((VxJ)Y,J(VzJ)X>
= <R(JY,JIX)X,J2> by (5.10).
By using the Codazzi equation (5.2) again we have

~ 1 L
<R(Y,X)X,Jz2> = <JX,X)(VJYH,JZ> - (JY,X)(VJXH,JZ)

0.
Therefore, we have
1 L
<VYH,JZ> =0, for any Y € '(D) and Z € I'(D ).
L
Since dim D = 1, by Lemma 5.1 and Lemma 5.2 we have
VH =0, for any Y ['(D).
In other words, the mean curvature vector H is D-parallel.

Consequently, M admits a nearly Sasakian structure.m

L3



5.2 3-dimensional Totally Umbilical CR-submanifolds of a

Nearly Kaehler manifold

In this section we obtain a classification theorem for
3-dimensional connected totally umbilical submanifolds of a
nearly Kaehler manifold, which is almost similar to Theorem
5.2 and also generalize a result of Bashir [1] to nearly
Kaehler manifold. We first consider a particular case for

Proposition 5.1.

roposition
Let M be a 3-dimensional totally umbilical proper

CR-submanifold of a nearly Kaehler manifold N. If M is an

extrinsic sphere then it admits a Sasakian structure.

Proof:

We already know that M admits a nearly Sasakian
strcture from Proposition 5.1. Since M is of dimension 3, by
a result of Olszak ([24], Theorem 5.1), the nearly Sasakian

structure is Sasakian.m



From Theorem 5.2 and Proposition 5.2. The following

result can be proven.

Proposition 5.3

Let M be a 3-dimensional connected totally wumbilical
CR-submanifold of a nearly Kaehler manifold N. Then either
(i) M is totally geodesic; or
(ii) M is totally real; or
(iii) H is not D-parallel; or

(iv) M admits a Sasakian structure.

The following theorem generalizes [1, Theorem 2] to

nearly Kaehler manifold.

Theorem 5.4

Let M be an 3-dimensional Einstein non-totally geodesic
totally umbilical proper CR-submanifold of a nearly Kaehler

manifold N. Then M is an extrinsic sphere.

Proof:

Let M be a 3-dimensional non-totally geodesic, totally

s



umbilical proper CR-submanifold of N. Then dim DJ~ = 1 and
dim D = 2, F;;- Lemma 4.1 and Lemma 4.2, for any vector
fields X, Y € '(D) and Z, W € r(DL) we have
(GXJ)Y =0 (5.11)
(5ZJ)W = 0. (5.12)
By using (5.11) and (5.12) we obtain
((GZJ)X,Y) = ((GXJ)Y,Z> =0
((ezJ)X,W) = -<(52J)w,x> =0
((GZJ)X,JW) = (J(GZJ)W,X) = 0.
Moreover, by taking Z = U and X = V in (2.19) we obtain
/(GZJ)XL = fh(Z,¢X) + /V';'wx - Ch(Z,X)
= <Z,pX>fH - <Z,X>CH

0.

It follows that

~ L

(VZJ)X =0, for any X € '(D) and Z € I'(D ).

L
For any unit vector fields X €I'(D), Z € I'(D ), by using
Proposition 1.3 and the Codazzi equation (5.2), we obtain
<R(Z,X)X,2> = <R(Z,X)JIX,JIZ> - UT,)X, (Vy3)2>
= <R(Z,X)JX,JZ>

1 s
= (x,JX)(VzH,JZ> - <Z,JX)<VxH,JZ>

0.



Thus, by using the above equation and taking into account
the Gauss equ;tion (5.1), we obtain
R(Z,X)X,2> + <Z,<, 2 [H* - <z,2><, 0| = o
R(z,X)X,2> = ||| (5.13)

If M is an Einstein space, then it is a space of constant
curvature c¢c by Proposition 1.1. Thus, from (5.13) we have
“an = ¢, is a constant on M. Since M is non-totally
geodesic, “Huz is a non-zero constant. Therefore, we have

L 1
(VUH,H) = TU(H.H) =0

1
for any U € "'(TM). That is, VUH € '(v). Lemma 5.2 tells us

1 1 1
that VUH € I'(JD ) and hence VUH = 0. Thus, we have proved

that M is an extrinsic sphere.m

The following corollary is an easy consequence of the

preceeding theorem and Propostion 5.2.

Qg:o“!rx 5.2

Under the hypothesis of Theorem 5.4, M admits a

Sasakian structure.



