# CHAPTER 5

# TOTALLY UMBILICAL CR-SUBMANIFOLDS OF A NEARLY KAEHLER MANIFOLD

Totally umbilical CR-submanifolds of a Kaehler manifold have been studied by Chen [9], Toyonari-Nemoto [28] and Bashir [1]. In [20], Kon-Tan initiated the study of totally umbilical CR-submanifolds of a nearly Kaehler manifold. In this chapter we continue their work and give a classification of all connected totally umbilical CR-submanifolds of a nearly Kaehler manifold. We also show that a 3-dimensional Einstein non-totally geodesic proper CR-submanifold of a nearly Kaehler manifold is an extrinsic sphere.

5.1 On the Classification of a Totally Umbilical CR-submanifold of a Nearly Kaehler Manifold

In their paper [20], Kon-Tan have proved a classification theorem, that is, a totally umbilical CR-submanifold M of a nearly Kaehler manifold is either

totally geodesic, or totally real, or dim  $D^{\perp}=1$ . In this section we consider the case when dim  $D^{\perp}=1$  and then give a complete classification of a connected totally umbilical CR-submanifold of a nearly Kaehler manifold.

Let M be a totally umbilical CR-submanifold of a nearly Kaehler manifold N. Then the equation of Gauss and Codazzi take the forms

$$\langle \hat{R}(X,Y)Z,W \rangle = \langle R(X,Y)Z,W \rangle + \{\langle X,Z \rangle \langle Y,W \rangle - \langle X,W \rangle, \langle Y,Z \rangle \} \|H\|^2$$
 (5.1)

$$\tilde{R}(X,Y)Z^{\perp} = \langle Y,Z \rangle \nabla_{X}^{\perp} H - \langle X,Z \rangle \nabla_{Y}^{\perp} H$$
 (5.2)

for any X, Y, Z and  $W \in \Gamma(TM)$ .

The following theorem classifies a totally umbilical CR-submanifold of a nearly Kaehler manifold.

# Theorem 5.1 (Kon-Tan [20])

Let M be a totally umbilical CR-submanifold of a nearly Kaehler manifold. Then either

- (i) M is totally geodesic; or
- (ii) M is totally real; or
- (iii)  $\dim D = 1$ .

We note that Theorem 5.1 has been proved by Chen [9] when N is a Kaehler manifold.

Suppose M is a non-totally geodesic, totally umbilical proper CR-submanifold of a nearly Kaehler manifold N. Then we have dim  $D^{\perp}=1$ . We first start with the following simple results.

# Lemma\_5.1

Let M be a totally umbilical proper CR-submanifold of a nearly Kaehler manifold N. Then the mean curvature vector  $H \in \Gamma(JD^{\perp})$ .

#### Proof:

For any unit vector fields  $X \in \Gamma(D)$ ,  $\xi \in \Gamma(\nu)$ , by taking Y = X in (3.3) we obtain

$$\langle h(X,JX),\xi \rangle - \langle Jh(X,X),\xi \rangle = 0$$
  
 $\langle X,JX \rangle \langle H,\xi \rangle - \langle X,X \rangle \langle JH,\xi \rangle = 0$   
 $-\langle CH,\xi \rangle = 0$ 

which means CH = 0 and hence  $H \in \Gamma(JD^{\perp})$ .

### Lemma 5.2

Let M be a non-totally geodesic totally umbilical proper CR-submanifold of a nearly Kaehler manifold N. Then we have

$$\nabla^{\perp}_{II}JZ \in \Gamma(JD^{\perp})$$

for any  $U \in \Gamma(TM)$  and  $Z \in \Gamma(D^{\perp})$ .

Proof:

For any 
$$X \in \Gamma(D)$$
,  $Z \in \Gamma(D^{\perp})$ , by using (2.19) we have 
$$f(\widetilde{\nabla}_{X}J)Z^{\perp} = -f(\widetilde{\nabla}_{Z}J)X^{\perp}$$

$$fh(X,\phi Z) + f\overrightarrow{\nabla}_{X}^{\perp}\omega Z - Ch(X,Z) = -fh(Z,\phi X) - f\overrightarrow{\nabla}_{Z}^{\perp}\omega X + Ch(Z,X)$$

$$f\overrightarrow{\nabla}_{X}^{\perp}JZ - \langle X,Z \rangle CH = -\langle Z,\phi X \rangle fH + \langle Z,X \rangle CH$$

$$f\overrightarrow{\nabla}_{X}^{\perp}JZ = 0. \qquad (5.3)$$

Next, for any Z, W  $\in \Gamma(D^{\perp})$ , since dim  $D^{\perp}=1$  we have  $(\nabla_{\overline{Z}}J)W=0$  by Lemma 4.2. Then by using (2.19) again we obtain

$$fh(\mathbf{W}, \phi \mathbf{Z}) + f\nabla^{\perp}_{\mathbf{W}}\omega\mathbf{Z} - Ch(\mathbf{W}, \mathbf{Z}) = f(\tilde{\nabla}_{\mathbf{W}}\mathbf{J})\mathbf{Z}^{\perp} = 0$$
  
$$f\nabla^{\perp}_{\mathbf{W}}\mathbf{J}\mathbf{Z} - \langle \mathbf{W}, \mathbf{Z} \rangle \mathbf{CH} = 0.$$

From Lemma 5.1 we know that CH = 0. Therefore we have

$$f \nabla_{\mathbf{W}}^{\perp} \mathbf{J} \mathbf{Z} = \mathbf{0}. \tag{5.4}$$

By combining (5.3) and (5.4) we obtain

$$f \nabla_{\mathbf{U}}^{\perp} \mathbf{J} \mathbf{Z} = \mathbf{0}, \qquad \text{for any } \mathbf{U} \in \Gamma(\mathbf{TM}) \text{ and } \mathbf{Z} \in \Gamma(\mathbf{D}^{\perp}).$$
That is,  $\nabla_{\mathbf{U}}^{\perp} \mathbf{J} \mathbf{Z} = t \nabla_{\mathbf{U}}^{\perp} \mathbf{J} \mathbf{Z} \in \Gamma(\mathbf{J} \mathbf{D}^{\perp}).$ 

Next we have the following result which gives a sufficient condition for a totally umbilical CR-submanifold of a nearly Kaehler manifold to admit a nearly Sasakian

# Proposition 5.1

structure.

Let M be a proper CR-submanifold of a nearly Kaehler manifold N. If M is an extrinsic sphere then it admits a nearly Sasakian structure.

#### Proof:

Suppose M is an extrinsic sphere. Then the mean curvature  $\mu=\|\mathbf{H}\|$  is a non-zero constant. Since  $\mathbf{H}\in\Gamma(\mathbf{JD}^\perp)$ ,  $\xi=-\frac{1}{\mu}\mathbf{JH}$  is a unit vector field in  $\mathbf{D}^\perp$  globally defined in M. Moreover we have dim  $\mathbf{D}^\perp=1$ .

Now, we define a new Riemannian metric g on M by

$$g(X,Y) = \mu^2 \langle X,Y \rangle \qquad (5.5)$$

Moreover, we put  $\zeta = \frac{1}{\mu} \xi$  and  $\eta(X) = \mu \langle X, \xi \rangle$ . Then for any  $X, Y \in \Gamma(TM)$  we have

 $\eta(\zeta) = \mu(\zeta, \xi) = 1$ 

and

$$X = PX + QX$$

$$= -\phi^{2}X + \langle X, \xi \rangle \xi$$

$$= -\phi^{2}X + \mu \langle X, \xi \rangle \frac{1}{\mu} \xi$$

$$= -\phi^{2}X + \eta(X) \zeta$$

$$g(X,Y) = \mu^{2} \langle X, Y \rangle$$

$$= \mu^{2} \langle PX, PY \rangle + \mu^{2} \langle QX, QY \rangle$$

$$= -\mu^{2} \langle \phi^{2}X, PY \rangle + \mu^{2} \langle X, \xi \rangle \langle Y, \xi \rangle$$

$$= \mu^{2} \langle \phi X, \phi PY \rangle + \mu \langle X, \xi \rangle \mu \langle Y, \xi \rangle$$

$$= \mu^{2} \langle \phi X, \phi PY \rangle + \eta(X) \eta(Y)$$

 $= g(\phi X, \phi Y) + \eta(X)\eta(Y).$ 

Therefore,  $(\phi, \zeta, \eta, g)$  is an almost contact metric structure on M.

Next, by (2.16) and (2.17) we obtain 
$$(\tilde{\nabla}_X J) Y^\top = P(\tilde{\nabla}_X J) Y^\top + Q(\tilde{\nabla}_X J) Y^\top$$

$$= \nabla_X \phi Y - \phi \nabla_X Y - A_{\omega V} X - Bh(X,Y).$$

Therefore, by using the fact that N is nearly Kaehler we

obtain

$$(\overrightarrow{\nabla}_{X}J)Y^{\top} + (\overrightarrow{\nabla}_{Y}J)X^{\top} = 0$$

$$(\overrightarrow{\nabla}_{X}\phi)Y - A_{\omega Y}X - Bh(X,Y) + (\overrightarrow{\nabla}_{Y}\phi)X - A_{\omega X}Y - Bh(Y,X) = 0$$

$$(\overrightarrow{\nabla}_{X}\phi)Y + (\overrightarrow{\nabla}_{Y}\phi)X - A_{\omega Y}X - A_{\omega X}Y - 2Bh(X,Y) = 0$$

$$(\overrightarrow{\nabla}_{X}\phi)Y + (\overrightarrow{\nabla}_{Y}\phi)X - \langle H, \omega Y \rangle X - \langle H, \omega X \rangle Y - 2\langle X, Y \rangle BH = 0$$

$$(\overrightarrow{\nabla}_{X}\phi)Y + (\overrightarrow{\nabla}_{Y}\phi)X + \langle JH, Y \rangle X + \langle JH, X \rangle Y - 2\langle X, Y \rangle JH = 0$$

$$(\overrightarrow{\nabla}_{X}\phi)Y + (\overrightarrow{\nabla}_{Y}\phi)X - \mu \langle \xi, Y \rangle X - \mu \langle \xi, X \rangle Y + 2\mu \langle X, Y \rangle \xi = 0$$

$$(\overrightarrow{\nabla}_{X}\phi)Y + (\overrightarrow{\nabla}_{Y}\phi)X - \eta(Y)X - \eta(X)Y + 2\mu^{2}\langle X, Y \rangle \frac{1}{\mu}\xi = 0$$

$$(\overrightarrow{\nabla}_{X}\phi)Y + (\overrightarrow{\nabla}_{Y}\phi)X - \eta(Y)X - \eta(X)Y + 2g(X,Y)\xi = 0.$$

That is.

$$(\nabla_{\chi}\phi)Y + (\nabla_{Y}\phi)X = \eta(X)Y + \eta(Y)X - 2g(X,Y)\zeta$$
 for any X, Y  $\in \Gamma(TM)$ .

We observe that since g is homothetic to the induced metric  $\langle \ , \ \rangle$ , then  $\nabla$  the Levi-Civita connection on M is determined by g, hence  $(\phi,\ \zeta,\ \eta,\ g)$  defined a nearly Sasakian structure on M.

In particular, when the mean curvature  $\mu = 1$  we have the following corollary.

#### Corollary\_5.1

Let M be a totally umbilical proper CR-submanifold of a nearly Kaehler manifold N. If M is an extrinsic sphere with mean curvature  $\mu$  = 1, then M is immersed in N as a nearly Sasakian submanifold.

#### Proof:

If  $\mu = 1$  then (5.5) becomes

$$g(X,Y) = \langle X,Y \rangle$$
, for any  $X, Y \in \Gamma(TM)$ .

Thus, M admits a nearly Sasakian structure with the induced metric < , > as the associated Riemannian metric and so it is immersed in N as a nearly Sasakian submanifold.

We are now able to classify a connected totally umbilical CR-submanifold of a nearly Kaehler manifold in detail.

#### Theorem\_5.2

Let M be a connected totally umbilical CR-submanifold of a nearly Kaehler manifold N. Then either

(i) M is totally geodesic; or

- (ii) M is totally real; or
- (iii) H is not D-parallel; or
- (iv) M is an extrinsic sphere and so admits a nearly Sasakian structure.

Proof:

Let M be a connected non-totally geodesic and non-totally real, totally umbilical CR-submanifold of N. Then by Theorem 5.1, dim  $D^{\perp}=1$  and so it is proper. Now suppose that the mean curvature vector H is D-parallel. By using the Codazzi equation (5.2), for any unit vector fields  $X \in \Gamma(D)$  and  $Z \in \Gamma(D^{\perp})$  we obtain

$$\langle \mathbf{R}(\mathbf{Z}, \mathbf{X}) \mathbf{X}, \mathbf{J} \mathbf{Z} \rangle = \langle \mathbf{X}, \mathbf{X} \rangle \langle \nabla_{\mathbf{Z}}^{\perp} \mathbf{H}, \mathbf{J} \mathbf{Z} \rangle - \langle \mathbf{Z}, \mathbf{X} \rangle \langle \nabla_{\mathbf{X}}^{\perp} \mathbf{H}, \mathbf{J} \mathbf{Z} \rangle$$

$$= \langle \nabla_{\mathbf{Z}}^{\perp} \mathbf{H}, \mathbf{J} \mathbf{Z} \rangle. \tag{5.6}$$

From Proposition 1.3, we get

$$\langle \tilde{R}(Z,X)X,JZ \rangle = \langle \tilde{R}(JZ,JX)JX,J^2Z \rangle$$

$$= -\langle \tilde{R}(JZ,JX)JX,Z \rangle$$

$$= -\langle \tilde{R}(Z,JX)JX,JZ \rangle.$$

By using the Codazzi equation (5.2) again we obtain

$$\tilde{\langle R(Z,X)X,JZ\rangle} = -\langle JX,JX\rangle\langle \nabla_Z^{\perp}H,JZ\rangle + \langle Z,JX\rangle\langle \nabla_{JX}^{\perp}H,JZ\rangle$$

$$= -\langle \nabla_Z^{\perp}H,JZ\rangle. \tag{5.7}$$

From (5.6) and (5.7) we obtain that  $\langle \nabla_{Z}^{\perp}H, JZ \rangle = 0$ . Since dim D = 1, we obtain

$$\nabla_{\mathbf{z}}^{\perp} \mathbf{H} \in \Gamma(\nu)$$
, for any  $\mathbf{Z} \in \Gamma(\mathbf{D}^{\perp})$ .

Lemma 5.2 tells us that  $\nabla_{\mathbf{Z}}^{\perp}\mathbf{H}\in\Gamma(\mathbf{JD}^{\perp})$ . Thus, we have proved

$$\nabla_{\mathbf{Z}}^{\perp} \mathbf{H} = \mathbf{0}$$
, for any  $\mathbf{Z} \in \Gamma(\mathbf{D}^{\perp})$ .

This shows that H is parallel since it is D-parallel. As M is connected, it follows that  $\mu = \|\mathbf{H}\|$  is a constant. Since M is non-totally geodesic,  $\mu$  is a non-zero constant, that is M is an extrinsic sphere and hence it admits a nearly Sasakian structure by Proposition 5.1.

Remark: When N is a Kaehler manifold and M is of dimension greater than 4, then part (iii) of Theorem 5.2 will never happens and part (iv) of Theorem 5.2 is replaced by M admits a Sasakian structure (see Toyonari-Nemoto [28]).

Before we close this section, we consider a particular case of Theorem 5.2.

#### Theorem\_5.3

Let M be a 5-dimensional connected totally umbilical

CR-submanifold of a nearly Kaehler manifold N. Then either

- (i) M is totally geodesic; or
- (ii) M is totally real: or
- (iii) M admits a nearly Sasakian structure.

Proof:

Suppose M is a 5-dimensional connected non-totally geodesic and non-totally real, totally umbilical CR-submanifold of N. Then we have dim D = 4 and dim D $^{\perp}$  = 1. From Lemma 4.2 and Lemma 4.3, we have

$$(\tilde{\nabla}_{X} \mathbf{J}) \mathbf{Y} \perp \mathbf{D}$$
 (5.8)  
 
$$(\tilde{\nabla}_{\sigma} \mathbf{J}) \mathbf{W} = \mathbf{0}$$
 (5.9)

and

for any X, Y  $\in \Gamma(D)$  and Z, W  $\Gamma(D^{\perp})$ . By using (5.9) we obtain

$$\langle (\tilde{\nabla}_{Z}J)X,W\rangle = -\langle (\tilde{\nabla}_{Z}J)W,X\rangle = 0$$

$$\langle (\tilde{\nabla}_{Z}J)X,JW\rangle = \langle J(\tilde{\nabla}_{Z}J)W,X\rangle = 0 .$$

Furthermore, from (2.19) we have

$$f(\overline{\nabla}_{\mathbf{Z}}\mathbf{J})\mathbf{X}^{\perp} = f\mathbf{h}(\mathbf{Z}, \phi\mathbf{X}) + f\overline{\nabla}_{\mathbf{Z}}^{\perp}\omega\mathbf{X} - C\mathbf{h}(\mathbf{Z}, \mathbf{X})$$
$$= \langle \mathbf{Z}, \phi\mathbf{X} \rangle f\mathbf{H} - \langle \mathbf{Z}, \mathbf{X} \rangle C\mathbf{H}$$
$$= 0.$$

Therefore, we have

$$(\overset{\circ}{\nabla}_{Z}J)X \in \Gamma(D)$$
, for any  $Z \in \Gamma(D)$  and  $X \in \Gamma(D)$ .

By using the above equation and (5.8) we have

$$\langle (\tilde{\nabla}_{X}J)Y, J(\tilde{\nabla}_{Z}J)X \rangle = 0$$
 (5.10)

for any X,  $Y \in \Gamma(D)$  and  $Z \in \Gamma(D)$ .

Consider unit vector fields X,  $Y \in \Gamma(D)$  and  $Z \in \Gamma(D^{\perp})$ , since dim D = 4, we may assume that  $\langle X, Y \rangle = \langle X, JY \rangle = 0$ . By using the Codazzi equation (5.2) we have

$$\langle \mathbf{R}(\mathbf{Y}, \mathbf{X}) \mathbf{X}, \mathbf{J} \mathbf{Z} \rangle = \langle \mathbf{X}, \mathbf{X} \rangle \langle \nabla_{\mathbf{Y}}^{\perp} \mathbf{H}, \mathbf{J} \mathbf{Z} \rangle - \langle \mathbf{Y}, \mathbf{X} \rangle \langle \nabla_{\mathbf{X}}^{\perp} \mathbf{H}, \mathbf{J} \mathbf{Z} \rangle$$
$$= \langle \nabla_{\mathbf{Y}}^{\perp} \mathbf{H}, \mathbf{J} \mathbf{Z} \rangle.$$

We observe that

$$\langle \tilde{R}(Y,X)X,JZ \rangle = \langle \tilde{R}(JY,JX)X,JZ \rangle - \langle (\tilde{\nabla}_{Y}J)X,(\tilde{\nabla}_{X}J)JZ \rangle 
= \langle \tilde{R}(JY,JX)X,JZ \rangle + \langle (\tilde{\nabla}_{X}J)Y,J(\tilde{\nabla}_{Z}J)X \rangle 
= \langle \tilde{R}(JY,JX)X,JZ \rangle \quad \text{by (5.10)}.$$

By using the Codazzi equation (5.2) again we have

$$\langle \mathbf{R}(\mathbf{Y}, \mathbf{X}) \mathbf{X}, \mathbf{J} \mathbf{Z} \rangle = \langle \mathbf{J} \mathbf{X}, \mathbf{X} \rangle \langle \nabla_{\mathbf{J} \mathbf{Y}}^{\perp} \mathbf{H}, \mathbf{J} \mathbf{Z} \rangle - \langle \mathbf{J} \mathbf{Y}, \mathbf{X} \rangle \langle \nabla_{\mathbf{J} \mathbf{X}}^{\perp} \mathbf{H}, \mathbf{J} \mathbf{Z} \rangle$$

$$= 0.$$

Therefore, we have

$$\langle \nabla_{\mathbf{Y}}^{\perp} \mathbf{H}, \mathbf{J} \mathbf{Z} \rangle = 0$$
, for any  $\mathbf{Y} \in \Gamma(\mathbf{D})$  and  $\mathbf{Z} \in \Gamma(\mathbf{D})$ .

Since dim D = 1, by Lemma 5.1 and Lemma 5.2 we have

$$\nabla_{\mathbf{Y}}^{\perp} \mathbf{H} = \mathbf{0}$$
, for any  $\mathbf{Y} \Gamma(\mathbf{D})$ .

In other words, the mean curvature vector H is D-parallel.

Consequently, M admits a nearly Sasakian structure.

# 5.2 3-dimensional Totally Umbilical CR-submanifolds of a Nearly Kaehler manifold

In this section we obtain a classification theorem for 3-dimensional connected totally umbilical submanifolds of a nearly Kaehler manifold, which is almost similar to Theorem 5.2 and also generalize a result of Bashir [1] to nearly Kaehler manifold. We first consider a particular case for Proposition 5.1.

## Proposition 5.2

Let M be a 3-dimensional totally umbilical proper CR-submanifold of a nearly Kaehler manifold N. If M is an extrinsic sphere then it admits a Sasakian structure.

## Proof:

We already know that M admits a nearly Sasakian structure from Proposition 5.1. Since M is of dimension 3, by a result of Olszak ([24], Theorem 5.1), the nearly Sasakian structure is Sasakian.

From Theorem 5.2 and Proposition 5.2. The following --result can be proven.

# Proposition 5.3

Let M be a 3-dimensional connected totally umbilical CR-submanifold of a nearly Kaehler manifold N. Then either

- (i) M is totally geodesic; or
- (ii) M is totally real; or
- (iii) H is not D-parallel: or
- (iv) M admits a Sasakian structure.

The following theorem generalizes [1, Theorem 2] to nearly Kaehler manifold.

#### Theorem 5.4

Let M be an 3-dimensional Einstein non-totally geodesic totally umbilical proper CR-submanifold of a nearly Kaehler manifold N. Then M is an extrinsic sphere.

#### Proof:

Let M be a 3-dimensional non-totally geodesic, totally

umbilical proper CR-submanifold of N. Then dim  $D^{\perp}=1$  and dim D=2. From Lemma 4.1 and Lemma 4.2, for any vector fields  $X, Y \in \Gamma(D)$  and  $Z, W \in \Gamma(D^{\perp})$  we have

$$(\nabla_{\mathbf{X}}^{\mathbf{J}})\mathbf{Y} = \mathbf{0} \tag{5.11}$$

$$(\overrightarrow{\nabla}_{\mathbf{Z}}\mathbf{J})\mathbf{W} = \mathbf{0}.$$
 (5.12)

By using (5.11) and (5.12) we obtain

$$\begin{split} &\langle (\tilde{\nabla}_{\mathbf{Z}} \mathbf{J}) \mathbf{X}, \mathbf{Y} \rangle = \langle (\tilde{\nabla}_{\mathbf{X}} \mathbf{J}) \mathbf{Y}, \mathbf{Z} \rangle = 0 \\ &\langle (\tilde{\nabla}_{\mathbf{Z}} \mathbf{J}) \mathbf{X}, \mathbf{W} \rangle = -\langle (\tilde{\nabla}_{\mathbf{Z}} \mathbf{J}) \mathbf{W}, \mathbf{X} \rangle = 0 \\ &\langle (\tilde{\nabla}_{\mathbf{Z}} \mathbf{J}) \mathbf{X}, \mathbf{J} \mathbf{W} \rangle = \langle \mathbf{J} (\tilde{\nabla}_{\mathbf{Z}} \mathbf{J}) \mathbf{W}, \mathbf{X} \rangle = 0. \end{split}$$

Moreover, by taking Z = U and X = V in (2.19) we obtain

$$f(\tilde{\nabla}_{Z}J)x^{\perp} = fh(z,\phi x) + f\nabla_{Z}^{\perp}\omega x - ch(z,x)$$
$$= \langle z,\phi x \rangle fH - \langle z,x \rangle cH$$

It follows that

 $(\overset{\circ}{\nabla}_Z^{\phantom{\dagger}}J)X=0$ , for any  $X\in\Gamma(D)$  and  $Z\in\Gamma(\overset{\perp}{D})$ . For any unit vector fields  $X\in\Gamma(D)$ ,  $Z\in\Gamma(\overset{\perp}{D})$ , by using Proposition 1.3 and the Codazzi equation (5.2), we obtain

$$\langle \tilde{R}(Z,X)X,Z \rangle = \langle \tilde{R}(Z,X)JX,JZ \rangle - \langle (\tilde{\nabla}_{Z}J)X,(\tilde{\nabla}_{X}J)Z \rangle 
= \langle \tilde{R}(Z,X)JX,JZ \rangle 
= \langle X,JX \rangle \langle \nabla_{Z}^{\perp}H,JZ \rangle - \langle Z,JX \rangle \langle \nabla_{X}^{\perp}H,JZ \rangle 
= 0.$$

Thus, by using the above equation and taking into account the Gauss equation (5.1), we obtain

$$\langle R(Z,X)X,Z\rangle + \langle Z,X\rangle \langle X,Z\rangle \|H\|^2 - \langle Z,Z\rangle \langle X,X\rangle \|H\|^2 = 0$$
  
 $\langle R(Z,X)X,Z\rangle = \|H\|^2.$  (5.13)

If M is an Einstein space, then it is a space of constant curvature c by Proposition 1.1. Thus, from (5.13) we have  $\|H\|^2 = c$ , is a constant on M. Since M is non-totally geodesic,  $\|H\|^2$  is a non-zero constant. Therefore, we have

$$\langle \nabla_{IJ}^{\perp}H,H \rangle = \frac{1}{2}U\langle H,H \rangle = 0$$

for any  $U \in \Gamma(TM)$ . That is,  $\nabla_U^{\perp} H \in \Gamma(\nu)$ . Lemma 5.2 tells us that  $\nabla_U^{\perp} H \in \Gamma(JD^{\perp})$  and hence  $\nabla_U^{\perp} H = 0$ . Thus, we have proved that M is an extrinsic sphere.

The following corollary is an easy consequence of the preceeding theorem and Propostion 5.2.

## Corollary\_5.2

Under the hypothesis of Theorem 5.4, M admits a Sasakian structure.