ABSTRACT

The reactivity of $[(\eta^5 \cdot C_5 H_5)Cr(CO)_3]_2$ (1) and $Cp_2Cr_2(CO)_4(Cr \equiv Cr)$ (4) towards elemental P_4 , As_4 and the mixed pnicogen chalcogenide compounds. P_4S_3 . P_4Se_3 and As_4S_4 have been investigated. It has been found that the reactions with the dimer 1 proceeded via the highly reactive monomer radical, $CpCr(CO)_3 \cdot$ under mild conditions. However, the reactions with 4 required more forcing conditions. The ensuing results are summarised below.

- (i) The reaction conditions for the optimum yield of [CpCr(CO)₂]₅P₁₀ (8), from the cothermolysis of 1 with yellow P₄ have been investigated. 8 has been fully characterised via EPR, NMR, mass spectrometry and electrochemical studies.
- (iii) The cothermolysis of 1 with excess gray As₄ gave the complexes Cp₂Cr₂(CO)₄-(μ-η²-As₂) (2), CpCr(CO)₂(η³-As₃) (3), Cp₂Cr₂(CO)₄(Cr≡Cr) (4), Cp₂Cr₂As₅ (5), Cp₂Cr₂AsO₅ (6) and Cp₅Cr₅As₄O₈ (7). 2 and 3 have been characterised spectrally and structurally via single crystal x-ray analyses. A detailed investigation of the conditions leading to the formation of these complexes showed that 2 - 4 were primary products from the reaction, whereas 5 and 7 were formed from the thermolysis of these complexes. A dual pathway via the radical CpCr(CO)₃• and the triply-bonded complex 4, was indicated.
- (iii) The prolonged reaction of 1 with P₄S₃ in toluene at ambient temperature led to the isolation of Cp₄Cr₄(CO)₉(P₄S₃) (9), Cp₂Cr₂(CO)₄S (10) and CpCr(CO)₃H
 (11) as major products. The analogous reaction with P₄Se₃ gave complexes Cp₄Cr₄(CO)₉(P₄Se₃) (12), Cp₄Cr₄(CO)₈(P₂Se₂) (13), CpCr(CO)₂P₃ (14) and 11. Thermolytic studies showed that 9 was the primary product from the reaction of 1 with P₄S₃ whereas 10, Cp₂Cr₂(CO)₄P₂ (15) and 14 are formed from the

degradation of 9. With P_4Se_3 , 12 was the primary product which degrades to yield 13, 14, and 15 as secondary products.

- (iv) The reaction of 1 with excess As₄S₄ in toluene under ultrasonication at ambient temperature led to the isolation of [CpCr(CO)₂]₂As₂S₂ (20), 10 and 4. 20 has been characterised spectrally.
- (v) The adduct formation of the Cp₂Cr₂(CO)₄(μ - η^2 -E₂) complexes [E = P (15): As (2)] with 2 moles equivalents of M(CO)₅(THF) was found to give the dimetallated complexes Cp₂Cr₂(CO)₄As₂[M(CO)₅]₂ [M = Cr (21); M = W (22)] which were structurally characterised. The reaction of 15 with a mole equivalent of Fe₂(CO)₉ gave the monometallated complex Cp₂Cr₂(CO)₄P₂[Fe(CO)₄]₂ (23) and the dimetallated complex Cp₂Cr₂(CO)₄P₂[Fe(CO)₄]₂ (24), which were both structurally elucidated.