SYNTHESIS OF CHEMICALLY PRODUCED TONER (CPT) BY EMULSION AGGREGATION PROCESS

SINTESIS TONER KIMIA DENGAN MENGGUNAKAN PROSES EMULSI AGGREGATE

BY

NG WEI GOON

DISSERTATION SUBMITTED IN FULLFILLMENT FOR THE DEGREE OF MASTER OF SCIENCE

CHEMISTRY DEPARTMENT

FACULTY OF SCIENCE

UNIVERSITY OF MALAYA

KUALA LUMPUR

APR 2010

ACKNOWLEDGEMENTS

This study would not have been possible without the help and assistance of many. First and foremost, I wish to express my sincere thanks to my supervisor and cosupervisor, Prof. Dr. Gan Seng Neon and Dr Mohd Tahir Abd Rahman respectively for their invaluable time, comments, guidance and patience throughout the project.

I would also like to express my appreciation to the members of the Department of Chemistry, Faculty of Science at University of Malaya, for their helps. In particular, I wish to thank Associate Professor Dr. Misni Misran and his research students for their assistance in using the CILAS instruments in their laboratory. My appreciation is also extended to Miss Ho Wei Ling and Encik Zulkifli Abu Hassan from polymer teaching laboratory for their help and support extended in various ways and aspects.

I am also grateful to Jadi Imaging Technologies Sdn. Bhd. for granting me a scholarship for the MSc. course.

Besides, I would like to thank all my laboratory mates and seniors: Miss Chee Swee Yong, Mdm Lee Siang Yin, Mr Ling Kong Teng, Miss Lee Sook Chin, Miss Azlina Puang, Miss Shafizah, Miss Neo Su Siang and Mr Gan Yik Kang for all their advices.

Last but not least, I would like to thank my beloved parents and boyfriend, Mr Ng Tiew Khoon, Mdm Leong Foon Mooi and Mr Wong Yew Chuan respectively for their unconditional love and moral supports.

CONTENTS

ACKNOWLEDGEMENT	ii
ABSTRACT	iii
ABSTRAK	v
CONTENTS	v
LIST OF FIGURES	xii
LIST OF TABLES	XV
LIST OF ABBREVIATIONS	xviii

CHAPTER ONE: INTRODUCTION

1.1	Introduction to electro photographic copying process		1
1.2	Introduction to toner		6
1.3	Toner	Compositions	7
	1.3.1	Resin	7
	1.3.2	Pigment	9
	1.3.3	Magnetite Oxide	9
	1.3.4	Charge Control Agent (CCA)	10
	1.3.5	Additives	10
1.4	Toner	Property Requirements	11
1.5	Types	of Toners	12
	1.5.1	Conventional toner	15
	1.5.2	Chemically produced toner (CPT)	16
	1.5.3	The advantages of CPT over conventional toner	18

1.6	Chemically Produced Toner (CPT) Manufacturing Methods		20
	1.6.1	Suspension Polymerization	21
	1.6.2	Dispersion Polymerization	23
	1.6.3	Chemical Milling Process (CM)	24
	1.6.4	Microencapsulated Milling Process	26
	1.6.5	Emulsion-Aggregation (EA) Polymerization	28
1.7	The Cl	hemically Prepared Toner (CPT) Market	31
1.8	Scopes	s of Study	34

CHAPTER TWO: EXPERIMENTAL

2.1	Materi	als for synthesis of styrene-acrylate copolymer	35
2.2	Preparation of styrene-acrylate copolymer latexes		36
2.3	Charac	eterizations of copolymer latexes	38
	2.3.1	Total Solid Contents (TSC)	38
	2.3.2	Conversion of latex based on Total Solid Content	39
	2.3.3	Particle Size Distribution (PSD)	40
	2.3.4	Glass Transition Temperature (Tg)	41
	2.3.5	Molecular Weight Distribution	43
	2.3.6	Melt Flow Index (MFI)	44
2.4	Study	on emulsion-aggregation process (EA Process) by varying	48
	differe	nt parameters	
	2.4.1	Different amount of PAC	51
	2.4.2	Different aggregation pH	52

	2.4.3	Different aggregation time	54
	2.4.4	Different coalescences pH	55
	2.4.5	Different coalescence temperature	56
	2.4.6	Different amount of benzylkonium chloride used with 2.0g of PAC.	57
	2.4.7	Different percentage of wax	59
	2.4.8	Latexes prepared using different percentage of CTA	60
2.5	Charac	terization of raw toner and finished toner	61
	2.5.1	Particle Size Distribution (PSD)	61
	2.5.2	Glass Transition Temperature (Tg)	62
	2.5.3	Wax Content and Wax Melting Point (T _p)	62
	2.5.4	Molecular Weight Distribution	63
	2.5.5	Melt Flow Index (MFI)	63
	2.5.6	Tribocharge	64
	2.5.7	Relative Dielectric Constant	66
	2.5.8	Flowability	68
	2.5.9	Apparent Density	70
	2.5.10	Microscopic	71
2.6	Latex H	Blending	72
2.7	Prepara	ation of raw toner using emulsion-aggregation process using	72
	blended	d latex	
2.8	Isolatin	ng, washing and filtering the raw toner	74
2.9	Additiv	ve Blending	74

CHAPTER THREE: RESULTS AND DISCUSSION

3.1	Prelimi	inary study on conventional emulsion polymerization process	76
3.2	Prepara	ation of copolymer latex for emulsion-aggregation process	77
3.3	Charac process	terization of copolymer latexes for emulsion-aggregation	79
	3.3.1	Total Solid Content (TSC)	79
	3.3.2	Particle Size Distribution (PSD)	81
	3.3.3	Melt Flow Index (MFI)	83
	3.3.4	Glass Transition Temperature (Tg)	84
	3.3.5	Molecular Weight Distribution	85
3.4	Emulsi	on-aggregation process (EA Process) by varying different	87
	parame	eters	
	3.4.1	Effect of amount of PAC	88
	3.4.2	Effect of aggregation pH	92
	3.4.3	Effect of aggregation time	94
	3.4.4	Effect of coalescences pH	98
	3.4.5	Effect of coalescence temperature	100
	3.4.6	Effect of incorporated of PAC with second coagulant,	104
		benzylkonium chloride	
	3.4.7	Effect of percentage of wax	107
	3.4.8	Effect of latexes prepared using different percentage of	110
		СТА	
3.5	Latex I	Blending	113

Х

3.6	Preparation of raw toner using EA process using blended latex	114
3.7	Additive Blending	115
3.8	Comparison of the commercial after market CPT	117

CHAPTER FOUR: CONCLUSION

4.1	Summary	121
4.2	Suggestions of future works	123

REFERENCES

APPENDIX

Α	Particle Size Distribution Graph
В	DSC thermogram for T_g , wax content and wax melting point measurement
С	DSC thermogram for delta value for wax measurement
D	Molecular Weight Distribution Graph
Ε	Test Chart for KFT01/09 (Start)
F	Test Chart for KFT06/09 (Start)
G	Test Chart for KFT01/09 (after 1500 copies)
Н	Test Chart for KFT01/09 (after 2100 copies)

124

LISTS OF FIGURES

Chapter 1:

- Figure 1.0: The basic components in a laser printer
- Figure 1.1: The basic steps in the xerographic process: (1) charging the photoreceptor, (2) exposing to form the latent image, (3) developing the latent image into a real image, (4) transferring the image to paper, (5) fusing the image to paper, and (6) cleaning residual toner from the photoconductor.
- Figure 1.2: Laser printer exposure
- Figure 1.3: Schematic diagram of a paper passing through the fuser
- Figure 1.4: A comparison of the particle formation of conventional toner using "top up" process and CPT using "bottom up" process
- Figure 1.5: The schematic schemes on conventional toner and CPT manufacture
- Figure 1.6: SEM picture of conventional toner
- Figure 1.7: SEM picture of chemically produced toner (CPT)
- Figure 1.8: The chemically produced toner shapes and the effect on printing efficiency
- Figure 1.9: Thin layer of CPT and conventional toner of a paper surface
- Figure 1.10: Flow chart of suspension polymerization
- Figure 1.11: Flow chart of chemically milling (CM) process
- Figure 1.12: Flow chart of microencapsulation process
- Figure 1.13: Flow chart of emulsion-aggregation process
- Figure 1.14: Manufacturing process of emulsion-aggregation process

Figure 1.15: The volume of production by the major manufacturer from 1999 to 2006.

Chapter 2:

- Figure 2.0: Reaction set up for emulsion polymerization
- Figure 2.1: Picture of the Particle Size Analyzer
- Figure 2.2: Picture of the Differential Scanning Calorimeter (DSC)
- Figure 2.3: Picture of the Gel Permeation Chromatography (GPC)
- Figure 2.4: Picture of the Melt Flow Index (MFI) Instrument
- Figure 2.5: Schematic figure of a MFI machine
- Figure 2.6: Reaction set up for emulsion-aggregation process
- Figure 2.7: Picture of the triboelectric instrument
- Figure 2.8: Picture of relative dielectric constant instrument
- Figure 2.9: Picture of the flowability instrument
- Figure 2.10: Picture of the microscope

Chapter 3:

- Figure 3.0: The chain transfer reaction of the propagating polymer radical and the CTA
- Figure 3.1: The microscopic picture of toner particles series I
- Figure 3.2: The microscopic pictures of toner particles series II
- Figure 3.3: The microscopic pictures of toner particles series III
- Figure 3.4 The microscopic pictures of toner particles series IV
- Figure 3.5: The microscopic pictures of toner particles series V
- Figure 3.6: The microscopic pictures for toner particles series VI
- Figure 3.7: The microscopic pictures for toner particles series VII

- Figure 3.8: The microscopic pictures for toner particles series VIII
- Figure 3.9: The microscopic pictures for cases KFT01/08 and KFT06/08
- Figure 3.10: The microscope pictures of OEM finished toners HP2600 series
- Figure 3.11: The microscope pictures of OEM finished toners HP1515 series
- Figure 3.12: The microscope pictures of other manufacturer (Avercia and SCC) chemically toner produced toner

LIST OF TABLES

Chapter 1:

- Table 1.0: Toner properties
- Table 1.1:The worldwide production of CPT
- Table 1.2:Listing of all the companies known to be involved in CPT production or
research & development (R&D)

Chapter 2:

- Table 2.0: Raw materials composition in weight (g) used to prepare copolymer latexes
- Table 2.1:The TSC, percentage dried weight and amount used of the raw materialsused to produce 60.0g dried raw toner
- Table 2.2:
 The series of experiments that had been carried out
- Table 2.3: Raw materials composition in weight (g) used for series I
- Table 2.4: Raw materials composition in weight (g) used for series II
- Table 2.5:
 Raw materials composition in weight (g) used for series III
- Table 2.6:
 Raw materials composition in weight (g) used for series IV
- Table 2.7: Raw materials composition in weight (g) used for series V
- Table 2.8: Raw materials composition in weight (g) used for series VI
- Table 2.9: Raw materials composition in weight (g) used for series VII
- Table 2.10: Raw materials composition in weight (g) used for series VIII
- Table 2.11:Materials used for EA process on latex ratio 50:50
- Table 2.12:
 Formulation used in additive blending

Chapter 3:

- Table 3.0:
 Total Solid Contents (TSC) for latexes
- Table 3.1:Monomers conversion based on total solid content of the latex determinedby gravimetric method
- Table 3.2:
 The particle size distribution (PSD) of the latex particle
- Table 3.3: The melt flow index (MFI) of the copolymers
- Table 3.4: The glass transition temperature (T_g) of the copolymers
- Table 3.5:
 The molecular weight distribution (MWD) of the copolymers
- Table 3.6:
 The properties summary of the latexes and copolymers
- Table 3.7: Raw materials composition in weight (g) used for series I
- Table 3.8:The properties of raw toners series I
- Table 3.9:
 Raw materials composition in weight (g) used for series II
- Table 3.10: The properties summary of raw toners series II
- Table 3.11: Raw materials composition in weight (g) used for series III
- Table 3.12: The properties summary of raw toners series III
- Table 3.13: Raw materials composition in weight (g) used for series IV
- Table 3.14: The properties summary of raw toners series IV
- Table 3.15: Raw materials composition in weight (g) used for series V
- Table 3.16: The properties summary of raw toners series V
- Table 3.17: Raw materials composition in weight (g) used for series VI
- Table 3.18:
 The properties summary of raw toners series VII
- Table 3.19: Raw materials composition in weight (g) used for series VII
- Table 3.20:
 The properties summary of raw toners series VII

- Table 3.21: Raw materials composition in weight (g) used for series VIII
- Table 3.22:
 The properties summary of raw toners series VIII
- Table 3.23:
 The summary of all the properties measured on blended latexes
- Table 3.24:
 The summary of all the properties measured on finished toner
- Table 3.25:
 The properties summary of commercial toners from original equipment manufacturer (OEM)
- Table 3.26:
 The properties summary of commercial after market toners from other manufacturers
- Table 3.27:
 The properties comparison of the prepared black finished toner with OEM

LIST OF SYMBOLS AND ABBREVIATIONS

ASTM	American Society for Testing and Materials
CCA	Charge Control Agent
СМ	Chemically Milling
СРТ	Chemical Produced Toner
СТА	Chain Transfer Agent
DF	Dissipation Factor
DSC	Differential Scanning Calorimeter
EA	Emulsion Aggregation
ε _r	Relative Static Permittivity
GPC	Gel Permeation Chromatography
MFI	Melt Flow Index
M _n	Number Average Molecular Weight
$M_{\rm w}$	Weight Average Molecular Weight
M _p	Peak Average Molecular Weight
PAC	Polyaluminium Chloride
PSD	Particle Size Distribution
Tg	Glass Transition Temperature
T _p	Peak of Melting Temperature
THF	Tetrahydrofuran
TSC	Total Solid Content
SEM	Scan Electron Microscope