Acknowledgements

First of all I would like to express my heartfelt gratitude to my supervisors Prof. Wan Haliza Abd Majid and Dr Vengadesh for accepting me as their student. Without their support, encouragement and invaluable advice from both of them throughout the duration of this project, this work could not have been made possible.

My heartfelt gratitude to my mom Sithaletchumy and my dad, late Mr. Kuppusamy for nurturing and encouraging my intellectual interest from young age and providing me with their unconditional love and support.

The journey towards this Masters Degree was physically and mentally exhaustive due to the fact that I'm working full time as well, but nevertheless was an enriching and delightful experience. Throughout my years of studies many people have enriched my academic knowledge. Among those are Dr. Thirumeni Subramaniam, Prof. Kaream and the technical staff and post graduate students of the solid state physics lab of University Malaya. Many thanks are extended to each and every one of you.

I would also like to thank my company Xyratex (M) Sdn Bhd, specifically to my Manager Mr. Rosli Sukiman, who had allowed me to be flexible in my working hours throughout the duration of my studies. My special thanks to my friend Chen Ket Choong who was willingly volunteered himself to proof read this thesis.

Publications and Proceedings

1. Characterization of Bacteriorhodopsin – Langmuir Blodgett Thin Film Produced by Forced Mixing Bacteriorhodopsin and Hexane - Colloquium of Physics 2007.

2. Effect of Forced Mixing Of Bacteriorhodopsin Suspension And Hexane In The Formation Of Stable Langmuir Blodgett Films – International Meeting on Frontiers of Physics 2009.

3. Preparation of Bacteriorhodopsin Based "Wire-Like" Self-Assembled Bio-Nano Structures – Nanotoday Conference Singapore 2009.

4. Mechanical and Thermodynamic Properties of Bacteriorhodopsin Thin Film. – Currently writing for publication.

Table of Content	Page
Abstract	ii
Abstrak	iv
Acknowledgements	vi
Publications and Proceedings	vii
Table of Content	viii
List of Figures	xi
List of Figures	xiv
List of Symbols and Abbreviations	XV

CHAPTER 1

1.0 Introduction	1
1.1 Objective	2
1.3 Thesis Structure	3

CHAPTER 2

Literature Review

2.1 Bacteriorhodopsin	
2.1.1 Halobacterium Salinarium	4
2.1.2 Sensory rhodopsin	6
2.1.3 Photosynthetic rhodopsin	7
2.1.4 Bacteriorhodopsin	8
2.1.4.1 Discovery and Structure	8
2.1.4.2 Photocycle	12
2.1.4.3 Applications of bR	14

2.2 Langmuir Film and Langmuir Blodgett Film Deposition	15
2.2.1 Introduction	15
2.2.2 Short History of LB- Films	15
2.2.3 Fundamentals of Surface Chemistry	16
2.2.4 Surface Pressure	20
2.2.5 The Langmuir Film Balance	21
2.2.6 Surface Pressure - Area Isotherms	23
2.2.7 Deposition of Langmuir Blodgett Films	26
2.3 Previous Works on bR-Langmuir Blodgett Film and	
Scope of This Study	31
2.3.1 Thermodynamic Properties of Langmuir Film	33
2.3.2 Spectroscopic Characterization	35
2.3.2.1 UV-Vis Spectroscopy	35
2.3.2.2 Structural Characterization	36
2.3.2.3 Film Thickness Measurement	36

CHAPTER 3

Experimental Methodology

3.0 Introduction	37
3.1 Langmuir Blodgett Trough	37
3.2 Langmuir Blodgettry General Precautions	38
3.3 Langmuir Blodgett Trough Preparation	39
3.4 Preparation of Bacteriorhodopsin (bR) Solution	41
3.5 Preparation of bR-Hexane Spreading Emulsion	43

ix

CHAPTER 4

Results and Discussion

4.0 Introduction	46
4.1 Analysis of Area Per Molecule and Effect of bR	
Suspension Concentration on Isotherm	46
4.2 Identification of Phase Transition from Mechanical	
Properties of bR Langmuir Film	52
4.3 Thermodynamic Properties of bR-LB Film from π -A Isotherm	54
4.4 Spectroscopic Characterization	57
4.5 Structural Characterization	58
4.6 bR Monolayer Film Thickness Measurement	60

CHAPTER 5

Conclusion and Future Work675.0 Introduction675.1 Conclusion675.2 Future Work70

71

List of Figures

Figure 2.1 Proton transfer processes related to bioenergetic and photosensory processes in Halobacterium salinarum.

Figure 2.2: AFM image with a high resolution of the topography of the purple membrane containing bR and lipids.

Figure 2.3: bR Trimer in 2-Dimensional Hexagonal cell.

Figure 2.4: Unit cell of bR in3-Dimensional View.

Figure 2.5: Seven Helical structure of Bacteriorhodopsinwith the retinal shown in green.

Figure 2.6: Photoisomerization of retinal from all-trans to13- cis.

Figure 2.7: Photocycle of bR with the approximate relaxation times of the reactions at room temperature.

Figure 2.8: Schematic illustration of the interaction of molecules at a gas-liquid interface and the bulk.

Figure 2.9: A schematic illustration showing the components of an amphiphile (left), and the orientation of an amphiphile adopted at an interface (right).

Figure 2.10: A schematic illustration showing a spread monolayer at the air/water interface.

Figure 2.11: Schematic illustration of a Langmuir film balance with a Wilhelmy plate electrobalance measuring the surface pressure, and barriers for reducing the available surface area.

Figure 2.12: A Wilhelmy plate partially immersed in subphase.

Figure 2.13: Schematic π -A-isotherm and orientation of the molecules in different phases.

Figure 2.14: Deposition of a floating monolayer on a solid substrate.

Figure 2.15: Deposition on hydrophobic substrate.

Figure 2.16: Deposition of on hydrophilic substrate.

Figure 2.17: Different types of deposited LB films.

Figure 3.1: NIMA Langmuir Blodgett Trough model 2200.

Figure 3.2: Wilhelmy Plate made with Filter Paper and Nima Tensiometer.

Figure 3.3: bR suspension at various concentration.

Figure 3.4: bR and Hexane before mixing.

Figure 3.5: bR and Hexane after mixing.

Figure 4.1: Surface pressure-area isotherm for 1 mg/ml bR solution at 20° C.

Figure 4.2: Surface pressure-area isotherm of bR at various concentration at 20° C.

Figure 4.3: Schematic that explains the hysteresis (increase in area per molecule) between the annealing isotherm and full isotherm at higher concentration.

Figure 4.4: Surface Pressure and Compressibility Modulus Vs Area permolecule for 1mg/ml bR Solution at 20° C.

Figure 4.5: Surface Pressure and Compressibility Modulus VS Area per molecule for 1mg/ml bR Suspension at 20° C.

Figure 4.6: Gibbs Free Energy VS Surface pressure at various temperatures.

Figure 4.7: Entropy of Compression VS Surface Pressure.

Figure 4.8: Entropy of Compression VS Surface Pressure.

Figure 4.9: Absorption UV-Vis spectroscopy of bR monolayer film deposited on ITO slide.

Figure 4.10: 10 X SEM Micrograph of bR monolayer film deposited at surface pressure of 25 mN/m.

Figure 4.11: 3000 X SEM Micrograph of bR monolayer film deposited at surface pressure of 25 mN/m.

Figure 4.12: 8000 X SEM Micrograph of bR monolayer film deposited at surface pressure of 25 mN/m.

Figure 4.13: Surface analysis results of bR monolayer film.

Figure 4.14: AES film thickness analysis.

Figure 4.15: Surface Pressure Vs Area permolecule for 1mg/ml bR Solution at 20° C.

Figure 4.16: Surface Pressure Vs Area permolecule for 3mg/ml bR Solution at 20° C.

Figure 4.17: Surface Pressure Vs Area permolecule for 5mg/ml bR Solution at 20° C.

Figure 4.18: Surface Pressure Vs Area permolecule for 7mg/ml bR Solution at 20° C.

Figure 4.19: Surface Pressure Vs Area permolecule for 9mg/ml bR Solution at 20° C.

Figure 5.1: Schematic that explains the entropy of compression for 1mg/ml bR suspension.

List of Tables

Table 2.1: Some two phase inter-phase systems and the surface tension value.

Table 3.1: Weight of bR and volume of DI water used to prepare different concentration.

Table 3.2: Volume of bR suspension used to prepare spreading solutions and number of bR molecules spread.

Table 4.1: Hysteresis between annealing and full isotherm of different bR concentrations.

List of Symbols and Abbreviations

2-D	Two Dimensional
3-D	Three Dimensional
AES	Auger Electron Spectroscope
AFM	Atomic Force Microscope
ATP	Adenosine Triphosphate
bR	Bacteriorhodopsin
DFM	Dimethylformamide
LB	Langmuir Blodgett
PC	Phosphatidycholine
PMF	Proton Motif Force
SEM	Scanning Electron Microscope
TR	Transfer Ration
UV	Ultra Violet
UV-Vis	Ultra Violet-Visible
γ	Surface Tension Without Monolayer
γο	Surface Tension With Monolayer Molecule
π	Surface Pressure
π_c	Collapse Pressure
ρ	Density
А	Area
A_o	Area per molecule
С	Compressibility
CS	Condensed Solid Phase

F	Free Energy
g	Gravity
G	Gaseous Phase
G_c	Gibbs Free Energy of Compression
H_c	Enthalpy of Compression
ΙΤΟ	Indium Tin Oxide
Κ	Compressibility Modulus
L1	Liquid Expanded Phase
L2	Liquid Condensed Phase
S_c	Entropy of Compression
S	Solid Phase
Т	Temperature
U	Internal Energy