ELECTRODEPOSITION OF TIN USING TIN(II) METHANESULFONATE FROM MIXTURE OF IONIC LIQUID AND METHANE SULFONIC ACID

YANG KOK KEE

FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

2010

ELECTRODEPOSITION OF TIN USING TIN(II) METHANESULFONATE FROM MIXTURE OF IONIC LIQUID AND METHANE SULFONIC ACID

YANG KOK KEE

DISSERTATION SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

2010

To my parents, brothers and Ying Hui,

For their love and prayers.

UNIVERSITI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Yang Kok Kee

(I.C./ Passport No: 800923-05-5305)

Registration/ Matric No.: SGR 070030

Name of Degree: Master of Science

Title of Project/ Paper/ Research Report/ Dissertation/ Thesis ("this work"): Electrodeposition of tin using Tin(II) Methanesulfonate from mixture of Ionic Liquid and Methane Sulfonic Acid

Field of Study: *Electrochemistry*

I do solemnly and sincerely declare that:

- (1) I am the sole author/ writer of this work;
- (2) This work is original;
- (3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work;
- (4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work;
- (5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya ("UM"), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained;
- (6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate's signature

Date

Subscribed and solemnly declared before,

Witness's signature

Date

Name: Designation:

ACKNOWLEDGEMENT

I would like to express my extreme gratitude to my supervisor, Associate Professor Dr. Wan Jeffrey Basirun for his invaluable help during this project. He has continuously shared his knowledge, advised and supported me all the way through.

I would like to thank the PhD students and also my seniors Koay Hun Lee, Mehdi Ebadi and Mohammad Reza Mahmoudian for their experience and knowledge sharing.

I would like to express my thanks to all my friends for their help, moral support and memorable days we shared together.

Last but not least, deepest gratitude is expressed to my parents and brothers whose moral support and encouragement gave me the strength to complete this study. No words are there to show my profound gratitude to Ying Hui, for her inspiration and patience during the study.

TABLE OF CONTENTS

	Page
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF SYMBOLS	xiii
LIST OF ABBREVIATIONS	XV
CHAPTER 1: INTRODUCTION	1
CHAPTER 2: LITERATURE REVIEW	
2.1 Electrodeposition	4
 2.2 Electroplating mechanism. 2.2.1 Migration. 2.2.2 Convection. 2.2.3 Diffusion. 2.3 Components of plating bath. 2.4 Ionic Liquid. 2.4.1 Deposition with Ionic Liquid. 2.4.2 Electrodeposition of Tin with Ionic Liquid. 2.4.3 Electrodeposition of Copper with Ionic Liquid. 2.4.4 Electrodeposition of Nickel with Ionic Liquid. 2.4.5 Electrodeposition of Cobalt with Ionic Liquid. 2.4.6 Electrodeposition of Palladium with Ionic Liquid. 	6 7 8 8 14 16 17 20 24 26 27 28 39
CHAPTER 3: METHODOLOGY	
 3.1 Electrochemical Method	41 41 45 48 48
3.2.2 Energy-dispersive X-ray spectroscopy (EDX) 3.2.3 Atomic Force Microscope (AFM)	52 54

3.2.4 Fourier Transform Infrared Spectroscopy (FTIR)	57
3.3 Wetting Balance Test	59
3.4 Electrochemical Experiments	62
3.4.1 Reagent and Chemicals	62
3.5 Cyclic Voltammetry and Chronoamperometry Experiments	63
3.5.1 Oxygen Removal	64
3.5.2 NiChrome Wire	67
3.6 Electroplating Experiments	68
CHAPTER 4: RESULT AND DISCUSSION	
4.1 Cyclic voltammetry	70
4.2 Chronoamperometry	75
4.3 Electroplating experiments	90
4.4 FTIR analysis on electrolyte	102
4.5 Reliability Test	107
4.5.1 Results and Discussion for Wetting Balance Test	107
CHADTED 5. CONCLUSION	
CHAPTER 5: CONCLUSION	
5.1 Project Conclusion and overall discussion	111
	114
CHAPIER 0: PUBLICATION	114
CHAPTER 7: REFERENCES	115

LIST OF TABLES

Table		Page
1.1	Main physical properties of Tin	1
3.1	Component of Tin Methane Sulfonate	62
3.2	Component of Ionic Liquid: 1-butyl-1-methyl-pyrrolidinium trifluoro- methanesulfonate, (BMPOTF)	62
3.3	Quantity of tin methane sulfonate and ionic liquid-BMPOTF in 15 mL electrolyte	64
3.4	Physical properties for Nichrome	67
4.1	Peak current density and tin diffusion coefficient obtained at different Sn ²⁺ concentration	74
4.2	Chronoamperometry data of 0.1 M Sn ²⁺ at BMPOTF	77
4.3	Chronoamperometry data of 0.2 M Sn ²⁺ at BMPOTF	79
4.4	Chronoamperometry data of 0.3 M Sn ²⁺ at BMPOTF	81
4.5	Chronoamperometry data of 0.4 M Sn ²⁺ at BMPOTF	83
4.6	Chronoamperometry data of 0.5 M Sn ²⁺ at BMPOTF	85
4.7	Tin diffusion coefficient obtained at different Sn ²⁺ concentration through Chronoamperometry- Cottrell equation	88
4.8	Tin diffusion coefficient based on literature review	88
4.9	Current efficiency obtained at different Sn ²⁺ concentration	92
4.10	Time-to-zero reading for IL based and Acidic based plated samples	109

LIST OF FIGURES

Figue		Page
2.1	Schematic diagram showing an electroplating process	5
2.2	A d.c. rectifier used in electroplating industry	6
2.3	Metal ion concentration profile as a function of distance from the surface	9
2.4	Structure of the electrical double layer at a metal-solution interface	11
2.5	Dependence of cathodic current density on potential. Graphical determination of $\varepsilon_{\text{Me/Me}}^{Z^+}$, i^0 , and α by drawing a tangent to the curve	12
2.6	Shape of the current-voltage plot: (1) under activation control, (2) intermediate region with both mechanisms rate-determining and (3) under diffusion control	13
2.7	Periodic table showing those metals (inside frame and shaded)	14
	which can be deposited from aqueous solution	
2.8	Summary of the elements deposited as single metal or alloys	20
2.9	Linear relationship between the cathodic peak potential of Sn(II) reduction & the logarithm of potential scan rate in the [EMIm]BF ₄ containing 25 mM Sn(II)	21
2.10	SEM micrographs of metal electrodeposits from the [EMIm]BF ₄ ionic liquid containing 25 mM Sn(II)	22
2.11	Cyclic voltammogram of a Pt electrode in BMPTFSI containing 0.05 mol dm ^{-3} Sn(II) at 25 °C; scan rate: 20 mVs ^{-1}	23
2.12	SEM image of the deposit on the Cu substrate in BMPTFSI containing 0.05 mol dm ^{-3} Sn(II). The current density was -0.05 mA cm ^{-2}	23
2.13	SEM of copper deposits in the absence and in presence of [BMIM]HSO ₄ . (a) Blank, (b) [BMIM]HSO ₄ :10 mg dm ⁻³ , (c) [BMIM]HSO ₄ : 50 mg dm ⁻³	25

2.14	Effect of [BMIM]HSO ₄ on the cathodic polarization for copper electro-deposition with different concentrations: (\blacksquare) blank, (\bullet) 10 mg dm ⁻³ , (\blacktriangle) 50 mg dm ⁻³	25
2.15	SEM micrographs of the nickel electrodeposits in the 0.1 M NiCl ₂ EMI-DCA solutions at 301 K. a: -1.4V, b: -1.45V, c: -1.5V, d:-1.6V	26
2.16	AFM micrographs of nickel electrodeposits in the 0.1 M NiCl ₂ EMI-DCA solutions at 301 K. a: -1.4 V, b: -1.6 V	27
2.17	SEM of cobalt deposits on platinum wires obtained from a solution of 0.5M Co(II) in BMIMBF ₄ ionic liquid at different bath temperatures: (a) 40 $^{\circ}$ C and (b) 60 $^{\circ}$ C	28
2.18	(a) A biphasic mixture of the ionic liquid 1-butyl-1-methyl pyrrolidinium bis(trifluoromethylsulfonyl)imide containing 1.6 M AlCl ₃ at room temperature. (b) The biphasic mixture becomes monophasic at 80 °C	30
2.19	Cyclic voltammogram in the ionic liquid ([BMP]-Tf ₂ N) containing 1.6M AlCl ₃ at room temperature	31
2.20	Cyclic voltammogram in the ionic liquid ([BMP]-Tf ₂ N) containing 1.6M AlCl ₃ at 100 °C	31
2.21	SEM micrographs of electrodeposited Al in the upper phase of the mixture AlCl ₃ and [BMP]Tf ₂ N: (a) at room temperature; (b) at 100 $^{\circ}$ C	32
2.22	SEM micrographs obtained from the carbon steel samples coated with aluminum layers. The samples named a' are obtained after 1 hour deposition, b' after 2 hours and c' after 4 hours	33
2.23	OCV curves of different thickness aluminum coated samples compared with the bare carbon steel and the pure aluminum in 3.5 wt% NaCl aqueous solution	34
2.24	Salt spray test corrosion kinetics for the aluminum coated carbon steel	35
2.25	Sequence of images showing the process of degradation for a carbon steel sample coated with 10 μ m of aluminum during the NSS test. The pictures are taken, respectively, after (a) 5, (b) 8, (c) 14, (d) 30 days of exposure	35
2.26	Electrical conductivities of AlCl ₃ –[EMIm]Cl ionic liquids as a function of the temperature and composition. The inset shows the Arrhenius plot of data	36

2.27	A typical voltammogram recorded on Al electrode in 2:1 molar ratio AlCl ₃ –[EMIm]Cl at 60 °C. Scan rate: 0.1 V/s	37
2.28	SEM micrographs of aluminum electrodeposits obtained on Al substrates from 2:1 molar ratio $AlCl_3$ -[EMIm]Cl at 90 °C with different current densities for 1 hour. a) 20 mA/ cm ² , b) 30 mA/ cm ² , c) 50 mA/ cm ² , d) 70 mA/ cm ²	
2.29	Cyclic voltammograms of a Pt electrode in BMPTFSI containing 10 mM $PdCl_4^{2-}$ (—) and 10 mM $PdBr_4^{2-}$ () at 25 °C. Scan rate: $50mVs^{-1}$	39
2.30	SEM images of the deposits on the Ni substrates by the galvanostatic electrodeposition in 10 mM $PdBr_4^{2-}/BMPTFSI$ at 25 °C. The current densities were (a) -0.05 mAcm^{-2} , (b) -0.01 mAcm^{-2}	40
3.1	Typical excitation signal for cyclic voltammetry – a triangular potential waveform with switching potential at 0.8 and -0.2V versus SCE.	43
3.2	A typical cyclic voltammogram	43
3.3	Chronoamperometry Diffusional <i>i-t</i> profile	47
3.4	SEM and EDX: Philips XL and EDAX Analyzer Genesis	48
3.5	Schematic for an SEM	50
3.6	Schematic for an EDX	52
3.7	AFM: Digital Instruments Nano Scope 3a	54
3.8	Schematic for an AFM	55
3.9	FTIR: Perkin Elmer Spectrum RX1	57
3.10	Instrument diagram for a basic FTIR spectrometer	58
3.11	Semiconductor component that electroplated with tin	59
3.12	Schematic of wetting balance gauge	60
3.13	RHESCA SAT-5100 wetting balance gauge	60
3.14	Typical wetting balance curve	61
3.15	Typical wetting balance curve	61
3.16	Cyclic voltammetry and Chronoamperometry experiments set up	65

3.17	3-electrode cell, A:Counter electrode, B:Reference electrode, C:Working electrode	65
3.18	Structure of working electrode- Copper	66
3.19	Structure of counter electrode- Platinum wire	66
3.20	Structure of Silver-silver chloride reference electrode	66
3.21	Electroplating experiments set up	68
3.22	Schematic for an electroplating experiments	69
4.1	Voltammograms of 0.1 M Sn ²⁺ at BMPOTF, potential sweep rate at 50 mVs ⁻¹	71
4.2	Voltammograms of 0.2 M Sn^{2+} at BMPOTF, potential sweep rate at 50 mVs ⁻¹	72
4.3	Voltammograms of 0.3 M Sn^{2+} at BMPOTF, potential sweep rate at 50 mVs ⁻¹	72
4.4	Voltammograms of 0.4 M Sn^{2+} at BMPOTF, potential sweep rate at 50 mVs ⁻¹	73
4.5	Voltammograms of 0.5 M Sn^{2+} at BMPOTF, potential sweep rate at 50 mVs ⁻¹	73
4.6	Cyclic voltammogram at 50 mVs ⁻¹ for solution X M (CH ₃ SO ₃) ₂ Sn, A=0.1M, B=0.2M, C=0.3M, D=0.4M, E=0.5M	74
4.7	Effect of Sn ²⁺ concentration on peak current density	75
4.8	Chronoamperometry profile i vs. t, 0.1 M Sn ²⁺ at BMPOTF	78
4.9	Chronoamperometry profile i vs. $t^{-1/2}$, 0.1 M Sn ²⁺ at BMPOTF	78
4.10	Chronoamperometry profile i vs. t, 0.2 M Sn^{2+} at BMPOTF	80
4.11	Chronoamperometry profile i vs. $t^{-1/2}$, 0.2 M Sn ²⁺ at BMPOTF	80
4.12	Chronoamperometry profile i vs. t, 0.3 M Sn ²⁺ at BMPOTF	82
4.13	Chronoamperometry profile i vs. $t^{-1/2}$, 0.3 M Sn ²⁺ at BMPOTF	82
4.14	Chronoamperometry profile i vs. t, 0.4 M Sn ²⁺ at BMPOTF	84
4.15	Chronoamperometry profile i vs. $t^{-1/2}$, 0.4 M Sn ²⁺ at BMPOTF	84
4.16	Chronoamperometry profile i vs. t, 0.5 M Sn ²⁺ at BMPOTF	86
4.17	Chronoamperometry Profile i vs. $t^{-1/2}$, 0.5 M Sn ²⁺ at BMPOTF	86

4.18	Chronoamperometry diffusional i-t profile from 0.1-0.5 M Sn ²⁺ at BMPOTF	87
4.19	Chronoamperometry profile I vs. $t^{-1/2}$ from 0.1-0.5 M Sn ²⁺ at BMPOTF	87
4.20	SEM for 0.1 M Sn ²⁺ at BMPOTF with 1 ASD and 7 ASD electrodeposition	95
4.21	EDX for 0.1 M Sn^{2+} at BMPOTF with 1 ASD electrodeposition	95
4.22	EDX for 0.1 M Sn^{2+} at BMPOTF with 7 ASD electrodeposition	95
4.23	SEM for 0.2 M Sn ²⁺ at BMPOTF with 1 ASD and 7 ASD electrodeposition	96
4.24	EDX for 0.2 M Sn^{2+} at BMPOTF with 1 ASD electrodeposition	96
4.25	EDX for 0.2 M Sn^{2+} at BMPOTF with 7 ASD electrodeposition	96
4.26	SEM for 0.3 M Sn ²⁺ at BMPOTF with 1 ASD and 7 ASD electrodeposition	97
4.27	EDX for 0.3 M Sn^{2+} at BMPOTF with 1 ASD electrodeposition	97
4.28	EDX for 0.3 M Sn^{2+} at BMPOTF with 7 ASD electrodeposition	97
4.29	SEM for 0.4 M Sn ²⁺ at BMPOTF with 1 ASD and 7 ASD electrodeposition	98
4.30	EDX for 0.4 M Sn^{2+} at BMPOTF with 1 ASD electrodeposition	98
4.31	EDX for 0.4 M Sn^{2+} at BMPOTF with 7 ASD electrodeposition	98
4.32	SEM for 0.5 M Sn ²⁺ at BMPOTF with 1 ASD and 7 ASD electrodeposition.	99
4.33	EDX for 0.5 M Sn^{2+} at BMPOTF with 1 ASD electrodeposition	99
4.34	EDX for 0.5 M Sn^{2+} at BMPOTF with 7 ASD electrodeposition	99
4.35	AFM for 0.1 M Sn ²⁺ at BMPOTF with 7 ASD electrodeposition	100
4.36	AFM for 0.2 M Sn ²⁺ at BMPOTF with 7 ASD electrodeposition	100
4.37	AFM for 0.3 M Sn^{2+} at BMPOTF with 7 ASD electrodeposition	101
4.38	AFM for 0.4 M Sn ²⁺ at BMPOTF with 7 ASD electrodeposition	101
4.39	AFM for 0.5 M Sn^{2+} at BMPOTF with 7 ASD electrodeposition	102

4.40	FTIR of pure Ionic Liquid – BMPOTF, Tin Methane Sulfonate at 0 M.	104
4.41	FTIR of Mixture of Ionic Liquid – BMPOTF and Tin Methane Sulfonate at 0.1 M.	105
4.42	FTIR of Mixture of Ionic Liquid – BMPOTF and Tin Methane Sulfonate at 0.5 M	106
4.43	Wetting balance graph for samples plated at Ionic Liquid based electrolyte	108
4.44	Wetting balance graph for samples plated at Acidic based electrolyte	108
4.45	t Test diagram	109

LIST OF SYMBOLS

e-	: Electron
n	: Number of electron
<i>n</i> *	: Diffusion current density
D	: Diffusion coefficient (cm ² s ⁻¹)
C_{∞}	: Metal ion concentration in bulk solution
C _c	: Metal ion concentration at the electrode surface
δ_N	: Thickness of the double layer
i _D	: Diffusion-limiting current density
i _C	: Cathodic current density
F	: Faraday's constant, 96,485 C· mol ⁻¹
Z	: Number of electrons per ion being transferred
Фме	: Potential of the metal electrode
ϕ_L	: Potential of the solution
$\Delta \phi$: Difference between ϕ_{Me} and ϕ_L
ϵ_{Me}^{Z+}	: Potential of the metal ions
i _{pa}	: Anodic peak current
i _{pc}	: Cathodic peak current
E _{pa}	: Anodic peak potential
E _{pc}	: Cathodic peak potential
E°'	: The formal reduction potential
А	: Electrode area in solution (cm ²)
С	: Concentration (mol cm ⁻³)
υ	: Scan rate (V s ⁻¹)
i	: Current

t	: Time (s)
Y	: Desired Molarity of Sn ²⁺
V	: Volume of electrolyte make-up in L
k	: Boltzmann constant
Т	: Temperature in Kelvin
η	: Viscosity of the solvent
r	: Dynamic radius of the diffusing species
ε%	: Current efficiency in %
Q	: Total electric charge that passed through the solution (in coulombs)
q	: Electron charge = 1.602×10^{-19} coulombs per electron
n	: Valence number of the substance as an ion in solution (electrons per ion)
Μ	: Molar mass of the substance (in grams per mole)
N _A	: Avogadro's number = 6.023×10^{23} ions per mole

LIST OF ABBREVIATIONS

BF_4	: Tetrafluoroborate
CF ₃ SO ₃ ⁻	: Tri-fluoro-methanesulfonate
$(CF_3SO_2)_2N^2$: Bis (trifluoromethanesulfonyl)imide
$(CF_3SO_2)_3C^2$: Tris (tri fluoro methanesulfonyl)methide
Sn	: Tin
BMPOTF	: 1-Butyl-1-methyl-pyrrolidinium trifluoro- methanesulfonate,
MSA	: Methane Sulfonic Acid
(CH ₃ SO ₃) ₂ Sn	: Stannous Methane Sulfonate,
D.C.	: Direct Current
М	: Metal
IL	: Ionic Liquid
PVD	: Physical Vapor Deposition
CVD	: Chemical Vapor Deposition
CV	: Cyclic voltammogram
RE	: Reference electrode
WE	: Working electrode
CE	: Counter electrode
SCE	: Saturated calomel electrode
Ag AgCl	: Silver silver chloride electrode
СА	: Chronoamperometry
SEM	: Scanning electron microscopy
BSE	: Back-scattered electrons
SEI	: Secondary electron imaging
WD	: Working distance

EDX/ EDS	: Energy dispersive X-ray spectroscopy
AFM	: Atomic force microscope
SFM	: Scanning force microscope
MFM	: Magnetic force microscope
FTIR	: Fourier Transform Infrared Spectroscopy
ASD	: Current density (A/ dm^2)
HCD	: High Current Density
LCD	: Low Current Density
%T	: % Transmittance
IC	: Integrated circuit
SAC	: Sn-Ag-Cu (Tin-Silver-Copper)