APPENDIX 1 # List of material used in the study Chloramines T, BDH, Laboratory Supplies, England Distilled water 3M Filtek TM Z250Universal Restorative Paste (Shade A3) St.Paul, U.S.A Scotchbond TM Etching Gel (3M, St.Paul, U.S.A) Adper TM Single Bond 2 (3M, St.Paul, U.S.A) Cellulose mylar strip 1 M Citric acid (210g/L) I M Sodium Hydroxide (40g/L) Buffer solution pH 2, 4, 7 & 10 Epoxy resin (Mirapox 950-230) Methylene blue dye, (R & M Chemical Marketing, UK) # APPENDIX II # List of equipments/instrument used in the study Ultrasonic scaler (Peizon® Master 400, Switzerland) Slow speed hand piece, High speed hand piece High speed and slow speed diamond bur Hand instrument-probe 9, plastic instrument no. 1 Light cure machine (Starlight Pro, Mectron, Italy) Curing Radiometer (model 100 P/N 10503, Demetron, KERR, USA) Soft lex discs (3M, St.Paul, U.S.A) Neslab Thermocycler (Neslab Instruments Inc., USA 002013) Microprocessor pH meter (Hanna Inst.) Plastic Cuvettes (Dispolab Kartell) Low speed saw (Buehcer, 11-1180 Isomet TM) Image Analyzer (Leica Qwin, Leica Imaging Systems Ltd. Cambridge, England) APPENDIX III Table showing the microleakage score at occlusal & cervical margins of each specimen | Sample | pН | Occlusal score | Cervical score | |--------|---------------------|----------------|----------------| | 1 | Group A =2.5 | 3 | 3 | | 2 | 2.5 | 3 | 3 | | 3 | 2.5 | 3 | 3 | | 4 | 2.5 | 3 | 3 | | 5 | 2.5 | 3 | 3 | | 6 | 2.5 | 2 | 2 | | 7 | 2.5 | 2 | 2 | | 8 | 2.5 | 0 | 1 | | 9 | 2.5 | 3 | 3 | | 10 | 2.5 | 0 | 0 | | 1 | Group B=3.5 | 0 | 0 | | 2 | 3.5 | 3 | 3 | | 3 | 3.5 | 0 | 0 | | 4 | 3.5 | 0 | 2 | | 5 | 3.5 | 0 | 0 | | 6 | 3.5 | 1 | 1 | | 7 | 3.5 | 3 | 3 | | 8 | 3.5 | 3 | 3 | | 9 | 3.5 | 0 | 0 | | 10 | 3.5 | 3 | 3 | | 1 | Group C=4.5 | 3 | 3 | | 2 | 4.5 | 0 | 0 | | 3 | 4.5 | 0 | 0 | | 4 | 4.5 | 3 | 3 | | 5 | 4.5 | 0 | 0 | | 6 | 4.5 | 3 | 3 | | 7 | 4.5 | 2 | 0 | | 8 | 4.5 | 0 | 1 | | 9 | 4.5 | 3 | 3 | | 10 | 4.5 | 3 | 3 | | 1 | Group D=5.5 | 3 | 3 | | 2 | 5.5 | 3 | 3 | | 3 | 5.5 | 0 | 0 | | 4 | 5.5 | 3 | 3 | | 5 | 5.5 | 0 | 0 | | 6 | 5.5 | 0 | 0 | | 7 | 5.5 | 0 | 0 | | 8 | 5.5 | 3 | 3 | | 9 | 5.5 | 3 | 3 | | 10 | 5.5 | 0 | 3 | # Table showing the microleakage score at occlusal & cervical margins of each specimen-continue | G 1 | | 0 1 1 | G : 1 | |--------|----------------|----------------|----------------| | Sample | рН | Occlusal score | Cervical score | | | Group E | | | | 1 | (Controlled)=7 | 3 | 3 | | 2 | 7 | 3 | 3 | | 3 | 7 | 3 | 3 | | 4 | 7 | 3 | 3 | | 5 | 7 | 3 | 3 | | 6 | 7 | 2 | 2 | | 7 | 7 | 2 | 2 | | 8 | 7 | 0 | 0 | | 9 | 7 | 1 | 1 | | 10 | 7 | 0 | 1 | | 1 | Group F=8.5 | 3 | 3 | | 2 | 8.5 | 3 | 2 | | 3 | 8.5 | 0 | 0 | | 4 | 8.5 | 2 | 1 | | 5 | 8.5 | 0 | 2 | | 6 | 8.5 | 3 | 3 | | 7 | 8.5 | 1 | 0 | | 8 | 8.5 | 0 | 1 | | 9 | 8.5 | 0 | 0 | | 10 | 8.5 | 0 | 1 | | 1 | Group G=11.5 | 0 | 2 | | 2 | 11.5 | 0 | 1 | | 3 | 11.5 | 0 | 2 | | 4 | 11.5 | 0 | 1 | | 5 | 11.5 | 3 | 2 | | 6 | 11.5 | 3 | 3 | | 7 | 11.5 | 3 | 3 | | 8 | 11.5 | 2 | 2 | | 9 | 11.5 | 0 | 0 | | 10 | 11.5 | 3 | 3 | # **APPENDIX IV:** POSTER PRESENTATION AT SIXTH SCIENTIFIC MEETING OF IADR MALAYSIA SECTIONED AND EIGHT GENERAL MEETING (10.03.2007 AT FACULTY OF DENTISTRY, SCIENCE & TECHNOLOGY COMPLEX, UNIVERSITI TEKNOLOGI MARA,SHAH ALAM, SELANGOR,MALAYSIA). ABSTRACT NO: P-8, PAGE 8 ## Effects of Different pH on Microleakage of Class V Composite Restoration: An in vitro Study Z. Aziz, N.A. Yahya University of Malaya, Kuala Lumpur, Malaysia #### INTRODUCTION - Composite are widely used for anterior and posterior restoration. - The longevity in a patient is influences by variety of factors including occlusal forces, parafunctional habits, diet, saliva and plaque composition (Sarret,Coletti & Peluso.2000). - Microleakage is one of the factors that can reduce the longevity. #### **OBJECTIVES** - To evaluate and compare the effect of acidic, neutral and alkaline pH on the microleakage of the composite restorations. - To study the pattern of microleakage at the occlusal and cervical margins of Class V composite restorations. # Score 0 No dve penetration Score 1 Dye penetration into enamel Dye penetration into the dentine, not Score 2 including the axial wall Dye penetration into the dentine, Score 3 including the axial wall ### **RESULTS** Microleakage was present in all groups. At the occlusal margin, score 3 was seen highest only in Group A (pH 2.5) which were 60%, where as at the cervical margin, group A (pH 2.5) and group D (pH 5.5) showed highest reading with 60% microleakage. Statistical analysis using Chi-Square test showed no significant difference (p>0.05) in microleakage at occlusal or cervical margin between the pH groups. More leakage was seen at the cervical area than the occlusal margin even though both margins were on enamel. #### **DISCUSSION** In this study, pH 2.5 showed highest leakage at occlusal & cervical margin. Tahir (2005) found reduction in et al of composite after microhardness immersion in pH 3 solution for a week. Ortengren et al(2001) observed greatest composite solubility in pH 4 (compared to pH 6 & 8) up to a week. Different enamel thickness at occlusal and gingival explained the occurrences of more leakage at the cervical margin. ## CONCLUSION - · Within the limitation of this study, it can be concluded that no significant effect of difference pH occlusal or cervical microleakage in a Class V composite restoration. - · More leakage was seen at the cervical margin than the occlusal margin even though both margins were on enamel. #### REFERENCES Ortengen, U., Andersson, F. Eigh, U., Terselius, B. & Karlson, S. (2001). Influences of pH and storage time on the sorption and solubility behaviour of three composite resin materials. *J. Dent.* 29:35-41 29:35-41 Tahir,M.M.A., Tan,H.Y., Woo,A.A.S. and Yap, A.U.J.(2005).Effects of pH on the microhardness of resin-based restorative materials. Oper Dent; 30:661-666 Sarrett, D.C.,Coletti, D.P. & Peluso, A.R. (2000). The effects of alcoholic beverage on composite wear. Dent Mar, 16:62-67 This study was supported by University of Malaya Vote F 0109/2005C #### **MATERIALS & METHODS** Collection of human premolar Preparation of Class V cavity #### Thermocycling process Group A:pH 2.5 :pH 3.5 Group C :pH 4.5 :pH 5.5 Group E :pH 7(Control) Group F :pH 8.5 Group G :pH 11.5 Immersion 10 minutes in pH # **APPENDIX V:** POSTER PRESENTATION AT THE 'EXPO PENYELIDIKAN, REKACIPTA & INOVASI 2007' UNIVERSITY MALAYA, KUALA LUMPUR, MALAYSIA 26-28 JULY, 2007. BOOTH NO.:B032 (BRONZE MEDAL) # ffects of Different pH on Microleakage of Class \ Composite Restoration: An in vitro Study Z. Aziz, N.A. Yahya University of Malaya, Kuala Lumpur, Malaysia #### INTRODUCTION - · Composite are widely used for anterior and posterior restoration. - The longevity in a patient is influences by variety of factors including occlusal forces, parafunctional habits, diet, saliva and plaque composition (Sarret,Coletti & - Microleakage is one of the factors that can reduce the longevity. ## **OBJECTIVES** - To evaluate and compare the effect of acidic, neutral and alkaline pH on the microleakage of the composite - restorations. To study the pattern of microleakage at the occlusal and cervical margins of Class V composite restorations ## **MATERIALS & METHODS** Collection of human premolar Preparation of Class V cavity 3M Filtek [™] Z 250 Universal Restorative Paste Thermocycling process Group A :pH 2.5 Group B :pH 3.5 Group C :pH 4.5 Group D :pH 5.5 Group E :pH 7(Control) Group F :pH 8.5 Group G :pH 11.5 Immersion 10 minutes in pH | Score 0 | No dye penetration | |---------|--| | Score 1 | Dye penetration into enamel | | Score 2 | Dye penetration into the dentine, not including the axial wall | | Score 3 | Dye penetration into the dentine, including the axial wall | #### RESULTS Microleakage was present in all groups. At the occlusal margin, score 3 was seen highest only in Group A (pH 2.5) which were 60%, where as at the cervical margin, group A (pH 2.5) and group D (pH 5.5) showed highest reading with 60% microleakage. Statistical analysis using Chi-Square test showed no significant difference (p>0.05) in microleakage at occlusal or cervical margin between the pH groups. #### CONCLUSION - Within the limitation of this study, it can be concluded that no significant effect of difference pH occlusal or cervical microleakage in a Class V composite - More leakage was seen at the cervical margin than the occlusal margin even though both margins were on enamel. ## **DISCUSSION** In this study, pH 2.5 showed highest leakage at in this study, pH 2.0 snowed nignest leakage at coclusal & cervical margin. Tahir et al (2005) found reduction in microhardness of composite after immersion in pH 3 solution for a week. Ortengren et al (2001) observed greatest composite solubility in pH 4 (compared to pH 6 & 8) up to a week. Different enamel thickness at occlusal and gingival explained the occurrences of more leakage at the cervical margin. # REFERENCES Ortengen,U.,Andersson, Elgh,U.,Terselius,B.& Karlson.S. (2001).Influences of pH and storage time on the sorption and solubility behaviour of three composite resin materials. J. Dent. 29 :35-41 Tahir,M.M.A., Tan,H.Y., Woo,A.A.S. and Yap, A.U.J.(2005).Effects of pH on the microhardness of resin-based restorative materials. Oper Dent. 30:661-666 Sarrett, D.C.,Coletti, D.P. & Peluso, A.R.(2000). The effects of alcoholic beverage on This study was supported by University of Managaity wears @pro 9/2206:586-67