CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>v</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
</tbody>
</table>

CHAPTER 1: INTRODUCTION, AIM & OBJECTIVES

1.1 Introduction 1
1.2 Aim of the study 3
1.3 Objectives of the study 3
1.4 Null hypothesis 3

CHAPTER 2: LITERATURE REVIEW

2.1 Composite 4
2.1.1 Definition 4
2.1.2 Composition 4
2.1.2.1 Principle Monomers 6
2.1.2.2 Diluent (Lower molecular weight) Monomers 6
2.1.2.3 Initiator/Activator system 7
2.1.2.4 Silane Coupling agent, polymerization inhibitor and UV stabilizer 7
2.1.2.5 Inorganic fillers 7
2.1.3 Properties of direct restorative

2.1.3.1 Setting and working time

2.1.3.2 Thermal properties

2.1.3.3 Polymerization shrinkage

2.1.3.4 Water sorption

2.1.3.5 Solubility

2.1.4 Classification of composite

2.1.4.1 Traditional composite resins

2.1.4.2 Hybrid composite resins

2.1.4.3 Homogenous microfilled composite resins

2.1.4.4 Heterogenous microfilled composite resins

2.1.4.4.1 Heterogenous microfilled composite resins with splintered prepolymerized particles

2.1.4.4.2 Heterogenous microfilled composite resins with spherical prepolymerized particles

2.1.4.4.3 Heterogenous microfilled composite resins with agglomerated microfiller complexes

2.1.4.4.4 Nanofilled resin composite

2.1.5 Technique to overcome shrinkage and improve marginal leakage

2.2 Microleakage

2.2.1 Definition

2.2.2 Causes of microleakage
2.2.3 Biological effects of microleakage

2.2.4 In-vitro testing of microleakage

2.2.4.1 Dyes

2.2.4.2 Chemical tracers

2.2.4.3 Radioactive tracer

2.2.4.4 Bacteria

2.2.4.5 Air pressure

2.2.4.6 Artificial caries

2.2.4.7 Scanning electron microscope (SEM)

2.2.4.8 Neutron activation analysis

2.2.4.9 Electrochemical methods

2.2.5 Thermocycling and microleakage testing

2.3 pH and saliva

2.4 Effects of different pH on tooth structure and filling materials

2.5 Bonding agents

2.5.1 Overview

2.5.2 Classification

2.5.2.1 First generation

2.5.2.2 Second generation

2.5.2.3 Third generation

2.5.2.4 Fourth generation

2.5.2.5 Fifth generation

2.5.2.6 Sixth generation
CHAPTER 3: MATERIALS & METHODS

3.1 Tooth Collection 39
3.2 Tooth Selection 39
3.3 Preparation of Class V composite restoration 39
3.4 Thermocycling 49

3.5 Evaluation of microleakage
 3.5.1 Preparation prior to immersion in dye solution 52
 3.5.2 Microleakage test 54
 3.5.3 Sectioning of specimens 56
 3.5.4 Microleakage evaluation procedure 61
 3.5.5 Criteria for microleakage evaluation 61
 3.5.6 SEM evaluation 61

CHAPTER 4: RESULTS

4.1 Test Specimen
 4.1.1 Controlled Group 64
 4.1.2 Acidic Group
 4.1.2.1 pH 2.5 64
 4.1.2.2 pH 3.5 64
 4.1.2.3 pH 4.5 64
 4.1.2.4 pH 5.5 65
 4.1.3 Alkaline Group
 4.1.3.1 pH 8.5 65
 4.1.3.2 pH 11.5 65
CHAPTER 5: DISCUSSION

5.1 Methodology

5.1.1 Tooth collection

5.1.2 Tooth selection

5.1.3 Cavity preparation

5.1.4 Etching and bonding systems

5.1.5 Restorative material

5.1.6 Dye penetration study

5.1.7 Test condition

5.1.8 Different pH immersion groups

5.1.9 pH and time of immersion

5.1.10 Evaluation of microleakage

5.1.11 SEM evaluation

5.2 Results

5.3 Limitation of the Study

CHAPTER 6: CONCLUSION AND SUGGESTIONS FOR FUTURE STUDIES

6.1 Conclusion

6.2 Suggestions for future studies