CONTENTS

Acknowledgements iii
Abstract iv
Contents vi
List of figures xiii
List of tables xvi

CHAPTER 1: INTRODUCTION

2

CHAPTER 2: LITERATURE REVIEW

2.1 Immature permanent teeth 6
2.2 Treatment 9
2.2.1 Control of infection 9
2.2.2 Short-fill 9
2.2.3 Customized cone 10
2.2.4 Periapical surgery 10
2.2.5 Apexification 11
2.2.6 One-visit Apexification 12
2.3 Materials for induction of apexification 14
2.3.1 Antiseptic and antibiotic pastes 14
2.3.2 Tricalcium phosphate 15
2.3.3 Osteogenic protein-1 15
2.3.4 Mineral Trioxide Aggregate (MTA) 16
2.3.5 Calcium hydroxide 18
2.3.5.1 Chemical properties 19
2.3.5.2 Biological properties 19
2.3.5.2.1 Antimicrobial activity 19
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.5.2.2 Mechanism of antimicrobial action</td>
<td>19</td>
</tr>
<tr>
<td>2.3.5.2.3 Induction of repair by hard tissue formation</td>
<td>22</td>
</tr>
<tr>
<td>2.3.5.2.4 Tissue-dissolving activity</td>
<td>23</td>
</tr>
<tr>
<td>2.3.5.2.5 Effect on physical properties of dentine</td>
<td>23</td>
</tr>
<tr>
<td>2.3.5.3 Types of calcium hydroxide vehicles</td>
<td>24</td>
</tr>
<tr>
<td>2.3.5.3.1 Aqueous vehicles</td>
<td>25</td>
</tr>
<tr>
<td>2.3.5.3.2 Viscous vehicles</td>
<td>26</td>
</tr>
<tr>
<td>2.3.5.3.3 Oily vehicles</td>
<td>27</td>
</tr>
<tr>
<td>2.3.5.3.4 Effect of vehicle</td>
<td>27</td>
</tr>
<tr>
<td>2.3.5.4 Dissociation and pH of calcium hydroxide</td>
<td>28</td>
</tr>
<tr>
<td>2.3.5.5 Antimicrobial properties of calcium hydroxide</td>
<td>28</td>
</tr>
<tr>
<td>2.3.5.6 Uses of calcium hydroxide (other than apexification)</td>
<td>29</td>
</tr>
<tr>
<td>2.3.5.6.1 Indirect pulp capping</td>
<td>29</td>
</tr>
<tr>
<td>2.3.5.6.2 Direct pulp capping</td>
<td>30</td>
</tr>
<tr>
<td>2.3.5.6.3 Pulpotomy</td>
<td>31</td>
</tr>
<tr>
<td>2.3.5.6.3.1 Partial pulpotomy (Cvek’s Pulpotomy)</td>
<td>31</td>
</tr>
<tr>
<td>2.3.5.6.3.2 Cervical (full) pulpotomy</td>
<td>32</td>
</tr>
<tr>
<td>2.3.5.6.4 Root canal dressing</td>
<td>33</td>
</tr>
<tr>
<td>2.3.5.6.5 Perforation repair</td>
<td>33</td>
</tr>
<tr>
<td>2.3.5.6.6 Prevention of root resorption</td>
<td>34</td>
</tr>
<tr>
<td>2.3.5.6.7 Treatment of root fracture</td>
<td>35</td>
</tr>
<tr>
<td>2.4 Methods of calcium hydroxide placement</td>
<td>36</td>
</tr>
<tr>
<td>2.4.1 Amalgam carrier</td>
<td>36</td>
</tr>
<tr>
<td>2.4.2 McSpadden compactor</td>
<td>37</td>
</tr>
<tr>
<td>2.4.3 Messing gun</td>
<td>37</td>
</tr>
</tbody>
</table>
2.4.4 Pastinject 38
2.4.5 Lentulo spiral 39
2.4.6 Syringe 39

CHAPTER 3: PURPOSE OF STUDY

3.1 Aim 41
3.2 Objectives 41
3.3 Research questions 42
3.3.1 Test of main effects 42
3.3.2 Test of interaction 42

CHAPTER 4: PRELIMINARY STUDY

4.1 Preliminary study 44
4.1.1 Teeth selection 44
4.1.2 Preparation of tooth 45
4.1.3 Preparation of specimen 46
4.1.3.1 Mounting of specimen 46
4.1.3.2 Preparation of the apical part of the canal 49
4.1.3.3 Cross-sectioning of the specimens 51
4.1.3.4 Fabrication of muffle to hold the cross-sections 53
4.1.3.5 Preparation of the coronal part of the canal 55
4.1.4 Radiographic –taking technique 56
4.1.5 Image acquisition and determination of exposure time 58
4.1.6 Time interval to separate the cross-sections after calcium hydroxide placement 61
4.1.8 Removal of the uncovered apical part 61
4.2 Findings of preliminary study 62
4.2.1 Preparation of specimen

4.2.1.1 Preparation of the apical part of the canal

4.2.1.2 Reassembling the cross-sections of the specimen

4.2.1.3 Muffle to hold the specimen

4.2.2 Radiographic taking technique

4.2.3 Exposure time

4.2.4 Removal of the uncovered apical part

4.2.5 Time interval to separate the cross-sections of the specimen after calcium hydroxide placement

4.3 Summary and conclusion from the preliminary study

CHAPTER 5: MATERIALS AND METHOD

5.1 Collection and storage of specimen

5.2 Preparation of specimen

5.3 Method of calcium hydroxide placement

5.4 Post-insertion radiograph

5.4.1 Three-dimensional view

5.4.2 Two-dimensional view

5.5 Investigation of the cross-sections using Image Analyser

5.6 Determination of the accuracy of length from the radiographs (quality of filling)

5.7 Determination of the quality of filling/surface area from the cross-sections of the specimens

5.8 Data analysis

5.8.1 Analysis of quality of filling from the radiographs

5.8.2 Analysis of quality of filling from the cross sections
5.8.3 Analysis of presence/location of voids

CHAPTER 6: RESULTS

6.1 Introduction

6.2 Quality of calcium hydroxide filling

6.2.1 Scores based on radiograph

6.2.2 Surface area from the cross sections

6.2.2.1 Boxplots for visualization of distribution

6.2.2.1.1 Pulpdent® Tempcanal™

6.2.2.1.2 Vitapex™

6.2.2.2 Normality of distribution of percentage of surface area data

6.2.2.3 Mean percentage of filling/surface area

6.2.2.4 Assessment of differences between groups using multivariate analysis of variance (MANOVA)

6.2.2.4.1 Assessment of normality of distribution of the data

6.2.2.4.2 Assessment of the homogeneity of dependent and independent variables

6.2.2.4.3 Assessment of homogeneity of variance for each dependent variable

6.2.2.4.4 Relationship between methods of placement and vehicles used

6.2.2.4.4 Interaction of percentage of surface area and methods of placement at both levels

6.2.2.4.6 Determination of method of placement that effecting the quality of filling at level B

6.3 Presence of voids from the cross section
6.4 Three-dimensional investigation 103
6.5 Summary of findings 108

CHAPTER 7: DISCUSSION

7.1 Limitations of the study 111
7.2 Discussions 113

CHAPTER 8: CONCLUSIONS AND RECOMMENDATION

8.1 Conclusions 126
8.2 Recommendations for further study 128

REFERENCES 130

APPENDICES

A: Chi-square tests for quality of calcium hydroxide filling and methods of placement 145
B: Chi-square tests for quality of calcium hydroxide filling and types of vehicles of calcium hydroxide 146
C: Skewness and kurtosis values of surface area at the level A and B 147
D: Data and Z score or standard score for the percentage of surface area data 148
E: Skewness and kurtosis values of surface area at level A and B after outlier was removed 152
F: Box’s M Test of equality of covariance matrices 153
G: Levene’s test of equality of error variances 154
H: Multivariate tests of significance between the dependent variables (percentage of surface area) 155
I: Test of between-subjects effects for methods of placement at different levels 156
J: Data for quality of filling/scoring system-radiograph 157
K: Data for percentage of surface area from the cross sections 159

L: Data for presence/location of voids 162
LIST OF FIGURES

Figure 4.1 File Tip Just Visible At The Apical Opening 46
Figure 4.2 Apical Part Of The Tooth Embedded In A Block of Wax 47
Figure 4.3 A Spectrophotometric Clear Curvette 47
Figure 4.4 The Curvette Placed Directly On The Wax Block 48
Figure 4.5 The Specimen Mounted With Clear Acrylic In The Curvette With The Apical Part Of The Tooth Uncovered 48
Figure 4.6 Gates-Glidden Bur Of Different Sizes 49
Figure 4.7 Radiographs Of Specimen With Apical Preparation Using Gates-Glidden Bur Size 1 To 6 50
Figure 4.8 ISOMET Low Speed Saw 51
Figure 4.9 (a) and (b) Diagonal Line Drawn Using A Marker Pen And Separated Cross-sections With The Diagonal Line 52
Figure 4.10 (a) and (b) Diagonal Line Made From Small Round Bur On High Speed Handpiece And The Separated Cross-sections 52
Figure 4.11 Muffle From Dental Stone And Plaster Of Paris At Different Views 53
Figure 4.12 Side View Of Clear Perspex Muffle With “Key-and-hole” System 54
Figure 4.13 Anterior View Of Clear Perspex Muffle 54
Figure 4.14 (a) and (b) Anterior And Lateral View Of The Specimen In The Muffle, Ready For Canal Preparation 55
Figure 4.15 K-Flexofile And K-File From Size 015 To 140 55
Figure 4.16 Film Holder In Horizontal Arrangement Designed From A Conventional Film Holder And A Special Attachment 56
Figure 4.17 Horizontal Platform With Specimen In The Special Attachment 56
Figure 4.18 Film Holder In Vertical Arrangement Designed From A Book Stand 57
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.19(a)</td>
<td>Intraoral Phosphor Storage Plate And Special Container That Can Held Up To 4 Image Plates</td>
<td>59</td>
</tr>
<tr>
<td>4.20</td>
<td>Phosphor Storage Plate Placed In Light Protection Cover</td>
<td>59</td>
</tr>
<tr>
<td>4.21</td>
<td>Foil Cassette To Hold The Exposed Image Plates</td>
<td>60</td>
</tr>
<tr>
<td>4.22</td>
<td>Dürr VistaScan Intra 2130-60</td>
<td>60</td>
</tr>
<tr>
<td>4.23</td>
<td>Radiograph Taken Using Dental Stone/Plaster Of Paris Muffle</td>
<td>63</td>
</tr>
<tr>
<td>4.24</td>
<td>Radiograph Taken Using Perspex Muffle</td>
<td>63</td>
</tr>
<tr>
<td>4.25</td>
<td>Different Exposures (0.02s-0.16s) Of Specimen With Vitapex™ In The Canal</td>
<td>66</td>
</tr>
<tr>
<td>4.26</td>
<td>Different Exposures Of Specimen With Pulpdent® Tempcanal™ In The Canal</td>
<td>67</td>
</tr>
<tr>
<td>5.1</td>
<td>Oil Suspension Calcium Hydroxide (Vitapex™, Morita)</td>
<td>74</td>
</tr>
<tr>
<td>5.2</td>
<td>Aqueous Suspension Calcium Hydroxide (Pulpdent® Tempcanal™)</td>
<td>74</td>
</tr>
<tr>
<td>5.3</td>
<td>Radiograph Of Specimen with Pulpdent® Tempcanal™ At 0.14s Exposure, Normal View And Embossed View</td>
<td>77</td>
</tr>
<tr>
<td>5.4(a)</td>
<td>Cross-sections Of The Specimen Showing Surfaces A And B</td>
<td>78</td>
</tr>
<tr>
<td>5.5</td>
<td>Image Analyser (Leica Qwin, Leica Imaging Systems Ltd., Cambridge, England)</td>
<td>79</td>
</tr>
<tr>
<td>5.6</td>
<td>Anterior View Of The Jig With Central Hollow Column And A Screw To Move The Platform</td>
<td>80</td>
</tr>
<tr>
<td>5.7</td>
<td>Lateral View Of The Jig</td>
<td>81</td>
</tr>
<tr>
<td>5.8</td>
<td>Top View Of The Specimen Placed Inside The Jig, Ready To Be Examined Under The Image Analyser</td>
<td>81</td>
</tr>
<tr>
<td>6.1</td>
<td>Graph chart for Pulpdent® Tempcanal™</td>
<td>89</td>
</tr>
<tr>
<td>6.2</td>
<td>Graph chart for Vitapex™</td>
<td>89</td>
</tr>
<tr>
<td>6.3</td>
<td>Boxplot Of Percentage Of Filling/Surface Area Of Pulpdent® Tempcanal™ By Placement Methods At Level A</td>
<td>91</td>
</tr>
<tr>
<td>6.4</td>
<td>Boxplot Of Percentage Of Filling/Surface Area Of Pulpdent®</td>
<td>92</td>
</tr>
</tbody>
</table>
Tempcanal™ By Placement Methods At Level B

Figure 6.5 Boxplot Of Percentage Of Filling/Surface Area Of Vitapex™ By Placement Methods At Level A 93

Figure 6.6 Boxplot Of Percentage Of Filling/Surface Area Of Vitapex™ By Placement Methods At Level B 94

Figure 6.7 (a), (b) and (c) Longitudinal Views Of Material Pulpdent® Tempcanal™ For Method Syringe, Syringe + Lentulo Spiral and Lentulo Spiral 103

Figure 6.8 (a), (b) and (c) Longitudinal Views Of Material Vitapex™ For Method Syringe, Syringe + Lentulo Spiral and Lentulo Spiral 104

Figure 6.9 Pulpdent® Tempcanal™ With Syringe Method 105

Figure 6.10 Pulpdent® Tempcanal™ With Syringe + Lentulo Spiral Method 105

Figure 6.11 Pulpdent® Tempcanal™ With Lentulo Spiral Method 105

Figure 6.12 Vitapex™ With Syringe Method 106

Figure 6.13 Vitapex™ With Syringe + Lentulo Spiral Method 106

Figure 6.14 Vitapex™ With Lentulo Spiral Method 106
LIST OF TABLES

Table 4.1 Model Of Visual Inspection Of Calcium Hydroxide At Different Time Interval 61
Table 4.2 Time Lapse To Achieve Hardening Of Materials 68
Table 5.1 Sampling According To Method Of Placement And Material 72
Table 6.1 Method*Type*Score Crosstabulation Multiway Contingency Table 88
Table 6.2 Mean Percentage Of Filling/Surface Area 90
Table 6.3 Mean Percentage Of Filling/Surface Are After Outlier Was Removed 96
Table 6.4 Significance Level Of Percentage Of Surface Area At Level B For Different Methods Of Placement 99
Table 6.5 Presence/Absence Of Voids At Level A And B According To Types Of Vehicle And Methods Of Placement 101
Table 6.6 One-to-one Interaction Between Level, Methods, Types And Voids 102
Table 6.7 Percentage Of Surface Area From 3-dimensional And 2-Dimensional Views 107