Contents

Abstı	ract		ii
Ackn	owledge	ements	iv
List	of figure	S	xiii
List	of tables		xviii
Abbr	eviation	s	xx
Chaj	oter one	: Introduction	
1.1	Pseud	omonas aeruginosa	1
	1.1.1	Virulence determinants of <i>P. aeruginosa</i>	2
1.2	Quoru	um sensing	4
	1.2.1	QS in P. aeruginosa	6
	1.2.2	Alkyl quinolone signalling in P. aeruginosa	9
1.3	Prope	rties of AQ	11
	1.3.1	Synthesis of AQs	12
	1.3.2	Autoregulation of AQs	15
	1.3.3	Effects of AQs on gene expression and virulence factor	16
		production	

	1.3.4 The role of AQs in infection	17
1.4	Quorum Quenching	20
	1.4.1 Prevention of QS signal production	20
	1.4.2 Inactivation of signal molecules	21
	1.4.3 Interference with the signal receptor	22
1.5	Project aims	24
Chap	pter two: Materials and methods	
2.1	Bacterial strains	25
	2.1.1 Laboratory bacterial strains	25
	2.1.2 Soil bacterial isolates	26
2.2	Plasmids	26
2.3	Oligonucleotide primers	27
2.4	Chemical reagents	28
	2.4.1 General Chemicals	28
	2.4.2 Synthetic AQs and <i>N</i> -Octanoylanthranilic acid	28
2.5	Growth media and solutions	29
	2.5.1 Luria Bertani media	29
	2.5.2 Pseudomonas Isolation Agar	29

	2.5.3 Antibiotics/ X-Gal/ IPTG	29
	2.5.4 PQS enrichment media	30
	2.5.5 Soft top agar	30
	2.5.6 Phosphate buffer saline	31
2.6	Long term storage of bacterial strains	31
2.7	Soil sampling	31
2.8	Enrichment of PQS metabolising bacteria	32
2.9	Bacterial growth conditions	32
2.10	DNA manipulation	33
	2.10.1 Isolation of plasmid DNA	33
	2.10.2 Preparation of chromosomal DNA	33
	2.10.3 Digestion of DNA with restriction enzymes	34
	2.10.4 DNA agarose gel electrophoresis	34
	2.10.5 DNA molecular weight markers	35
	2.10.6 Extraction and purification of DNA from agarose gels	35
	2.10.7 DNA ligation	35
2.11	Transformation	35
	2.11.1 Preparation of electrocompetent <i>E. coli</i> cells	35
	2.11.2 Electroporation of <i>E. coli</i>	36
	2.11.3 Preparation of electrocompetent <i>P. aeruginosa</i> cells	36
	2.11.4 Electroporation of <i>P. aeruginosa</i>	37
2.12	Conjugation	37
	2.12.1 Gene replacement in <i>P. aeruginosa</i> PAO1-derived strains	37
	using E. coli/pDM40derived suicide plasmids (pDM4-X)	
2.13	Polymerase chain reaction (PCR)	38
	2.13.1 PCR amplification	38

	2.13.2 Cl	oning of PCR products	38
2.14	DNA sequ	nence analysis	39
2.15	Phylogene	etic analysis	39
2.16	AQ extrac	ction	40
2.17	Detection	of AQs in biological culture extracts using lux-based	40
	bioreporte	ers	
	2.17.1 TL	C analysis of AQs	40
	2.17.2 Ov	verlay of TLC plates with bioreporter	41
	2.17.3 De	etermination of bioluminescence and optical density	41
	usi	ing luminometer-spectrometer	
2.18	PQS inact	ivation assay	42
	2.18.1 Pro	eparation of resting cells	42
	2.18.2 PC	QS inactivation assay	42
	2.18.3 Su	pplementation of co-substrate in PQS degradation	43
	2.18.4 Pu	rification of PQS degradation product by TLC	43
2.19	Liquid chi	romatography-Mass spectroscopy (LCMS)	44
Chap	ter three: I	Degradation of PQS quorum sensing signal by a novel soil	
	b	acterium	
3.1	Introduction	on	45
3.2	Results		49
	3.2.1 Sc	reening of AQ producers in soil	49
	3.2	2.1.1 LC-MS identification of AQs in crude cell culture	52
	ex	tracts	

	3.2.2	Identification of AQ producers by 16S rDNA Sequencing	54
	3.2.3	Enrichment of PQS degrading consortium	56
	3.2.4	Biodegradation of PQS by pure bacterial cultures	59
	3.2.5	Identification and phylogenetic analysis of the PQS	62
		degrading strain Q19	
	3.2.6	PQS-degradation capacities of Achromobacter xylosoxidans	63
		strain Q19	
	3.2.7	Supplementation of an alternative source of carbon to	66
		increase A. xylosoxidans Q19 PQS biodegradation efficiency	
	3.2.8	Characterisation of PQS degradation metabolite	70
		3.2.8.1 LC-MS/MS identification of the metabolite	70
		3.2.8.2 D-C ₇ -PQS degradation	80
	3.2.9	Elucidation of the molecular formula for the PQS	85
		degradation metabolite	
	3.2.10	Time course analysis of PQS degradation	87
	3.2.11	Degradation capacity of A. xylosoxidans Q19	92
3.3	Discus	sion	94
	3.3.1	Enrichment of PQS degraders from rain forest soil	94
	3.3.2	Inactivation of PQS by pure bacterial cultures	97
	3.3.3	PQS-degradation capacity of A. xylosoxidans Q19	100

	3.3.4	Supplementation of co-substrates	102
	3.3.5	LC-MS/MS analysis	105
	3.3.6	Elucidation of the structure of the unidentified metabolite	107
	3.3.7	Time course analysis of PQS degradation	113
	3.3.8	Metabolism of other PQS analogues by A. xylosoxidans	114
		Q19	
3.5	Concl	usion	116
Chap	ter foui	:: Construction of a biosensor for the screening of PQS	
		quorum sensing inhibitors	
4.1	Introd	uction	118
4.1 4.2	Introd Result		118 122
	Result	ts	122
	Result	PpqsA-sacB PQS Quorum sensing Inhibitor System	122
	Result	PpqsA-sacB PQS Quorum sensing Inhibitor System (PQSIS-1)	122 122
	Result	PpqsA-sacB PQS Quorum sensing Inhibitor System (PQSIS-1) 4.2.1.1 Determination of the extent of the <i>pqsA</i> promoter	122 122
	Result	PpqsA-sacB PQS Quorum sensing Inhibitor System (PQSIS-1) 4.2.1.1 Determination of the extent of the <i>pqsA</i> promoter region that is to be fused to <i>SacB</i>	122 122 122
	Result	PpqsA-sacB PQS Quorum sensing Inhibitor System (PQSIS-1) 4.2.1.1 Determination of the extent of the <i>pqsA</i> promoter region that is to be fused to <i>SacB</i> 4.2.1.2 Construction of PQSIS-1 system 4.2.1.3 Optimisation of sucrose sensitivity in the PQSIS-1	122 122 122
	Result 4.2.1	PpqsA-sacB PQS Quorum sensing Inhibitor System (PQSIS-1) 4.2.1.1 Determination of the extent of the <i>pqsA</i> promoter region that is to be fused to <i>SacB</i> 4.2.1.2 Construction of PQSIS-1 system 4.2.1.3 Optimisation of sucrose sensitivity in the PQSIS-1 system	122 122 122 124 127

		4.2.2.2 Verification of PAO1 $\Delta pqsA\Delta pyrF$ mutants	133
		4.2.2.3 Construction of PAO1-ES2	136
		4.2.2.4 Optimisation of the restoration of phenotypes	139
		4.2.2.5 Evaluation of the importance of PqsR	141
		4.2.2.6 Uracil prototrophy complementation	141
		4.2.2.7 FOA sensitivity complementation	144
4.3	Discu	ssion	146
	4.3.1	PQSIS-1	146
	4.3.2	PQSIS-2 and PQSIS-3	147
4.4	Concl	usion	149
Biblio	graphy	y	150

List of Figures

Chapter On	ne: Introduction	
Figure 1.1	The regulation of bioluminescence in <i>V. fischeri</i> : the quorum	5
	sensing paradigm	
Figure 1.2	Structure of AHLs used by P. aeruginosa	8
Figure 1.3	Structure of the major AQ molecules synthesized by P. aeruginosa	10
Figure 1.4	Mechanism of synthesis of PQS, HHQ and HHQNO in	14
	P. aeruginosa	
Figure 1.5	Phenotypes regulated by PQS in P. aeruginosa	18
Figure 1.6	AHQ and AHL-dependent quorum sensing in P. aeruginosa	19
Chapter Tw Figure 2.1	vo: Materials and Methods Synthetic AQ structures	28
Chapter Th	ree: Degradation of PQS quorum sensing signal by a novel soil bacterium	
Figure 3.1	Conversion of quinaldine (2-methylquinoline) by Arthrobacter	47
	nitroguajacolicus Rü61a	
Figure 3.2	2,4-Dioxygenolytic cleavage of PQS to carbon monoxide and	47

N-octanoylanthranilic acid.

Figure 3.3	Work flow for the isolation and thorough study of the	48
	PQS degrading soil bacterium.	
Figure 3.4	Screening of AQ producers among the soil isolates	50
Figure 3.5	Growth curves of PAO1 ΔpqsA CTX-lux::pqsA in the presence	51
	of the different whole cell culture extracts	
Figure 3.6	Identification of AQs by LC-MS analysis	53
Figure 3.7	Purified PCR product of 16S rDNA	55
Figure 3.8	Enrichment of PQS degrading consortium	57
Figure 3.9	Growth curve of consortium in the enrichment medium in the	57
	presence or absence of 20 µM PQS	
Figure 3.10	Monitoring of PQS reduction due to degradation by the stable	59
	consortium	
Figure 3.11	Observation of growth for consortium when plated on solid	60
	enrichment medium	
Figure 3.12	Evaluation of individual isolates for PQS degradation ability	61
Figure 3.13	Phylogenetic analysis of strain Q19	62
Figure 3.14	TLC analysis of degradative loss of PQS with the corresponding	65
	appearance of an unidentified metabolite	
Figure 3.15	Time course analysis for the degradation of 20 μM of PQS by Q19	65
Figure 3.16	Evaluation of other carbon sources to improve the rate of PQS	68
	degradation by Q19	
Figure 3.17	Supplementation of different concentrations of succinate as a	69
	co-substrate	
Figure 3.18	UV chromatograms of the triplicates	72
Figure 3.19	Total ion chromatograms of the triplicates obtained in positive ion	73
	mode	

Figure 3.20	Positive full scan ESI spectra under the major peak at retention time	74
	16.8 min	
Figure 3.21	Total ion chromatograms of the triplicates obtained in negative ion	75
	mode	
Figure 3.22	Negative full scan ESI spectra under the peak at retention time	76
	16.7-16.9 min	
Figure 3.23	Total ion chromatograms (TIC) of sample G3 obtained in positive	77
	ion mode	
Figure 3.24	MS/MS analysis of sample G3	78
Figure 3.25	Degradation of D-C7-PQS by strain Q19	82
Figure 3.26	Electrospray Ion Chromatograms (EIC) from +MS/MS detection	83
	of D-C7-PQS, m/z 179 (264.3)	
Figure 3.27	+MS/MS full scan ESI spectra under the prominent peak(s) at	84
	retention time 12.5-14 min.	
Figure 3.28	Calculated peak profile for the PQS degradation metabolite	85
Figure 3.29	TLC analysis of PQS biodegradation samples over a 24 h time	88
	course	
Figure 3.30	LC-MS-MS detection of PQS (m/z 260) from the 24 h degradation	89
	assay	
Figure 3.31	LC-MS-MS detection of degradation product (m/z 276) from the	90
	24 h degradation assay	
Figure 3.32	Degradation of PQS by isolate Q 19	91
Figure 3.33	Accumulation of the PQS degradation product	91
Figure 3.34	TLC analyses of C1-PQS biodegradation samples	93
Figure 3.35	TLC analyses of HHQ biodegradation samples	93

Figure 3.36	Metabolism of quinoline and methylquinoline compounds	111
Figure 3.37	Putative structures of the unidentified hydroxylated compound	112
	(m/z 276)	

Chapter Four: Construction of a biosensor for the screening of PQS quorum sensing inhibitors

Figure 4.1	The three QSIS systems	120
Figure 4.2	Work flow for the PQSIS biosensor construction	121
Figure 4.3	Promoter region of pqsA	122
Figure 4.4	PCR product of pqsA promoter	123
Figure 4.5	Map of pLasB-SacB1	125
Figure 4.6	Digested pLasB-SacB1 plasmid	125
Figure 4.7	Plasmid map of pES1	126
Figure 4.8	Agarose gel containing digested pBluescript II KS (+) vector and pyrFDU/DD inserts	130
Figure 4.9	Verification of the presence of correct inserts in the	130
	pBluescript recombinant plasmids	
Figure 4.10	Verification of the presence of $\Delta pyrF$ fragment in the	131
	pBluescript recombinant plasmids	
Figure 4.11	Agarose gel containing <i>Spe</i> I and <i>Xho</i> I digested products	131

Figure 4.12	Verification of the presence of $\Delta pyrF$ fragment in the pDM4	132
	recombinant plasmids via SpeI and XhoI digestion	
Figure 4.13	Uracil auxotrophy conferred by $pyrF$ deletion in PAO1 $\Delta pqsA$	134
Figure 4.14	Agarose gel containing PCR reactions run using the primer	134
	pair <i>pyrF</i> DUF/ <i>pyrF</i> DDR	
Figure 4.15	Agarose gel containing PCR reactions performed with the	135
	primer pair <i>pyrFF/pyrF</i> R	
Figure 4.16	SphI and HindIII digested pES1 plasmid and pyrF gene PCR	137
	product	
Figure 4.17	Verification of the presence of <i>pyrF</i> gene inserts in the clones	137
	via SphI and HindIII digestion	
Figure 4.18	Plasmid map of pES2	138
Figure 4.19	Growth curve of PAO-ES3 in M9 minimal medium in the	143
	absence of uracil	
Figure 4.20	FOA sensitivity assay for PAO-ES3	145

List of Tables

Chapter	One:	Introd	uction
---------	------	--------	--------

Table 1.1	Examples of virulence determinants of <i>Pseudomona s</i>	
	aeruginosa and their biological effects	3
Table 1.2	General steps and key components of AHL-type QS systems	
	as well as the prospective quorum-quenching strategy	23
Chapter Two	e: Materials and Methods	
Table 2.1	Bacterial strains used in this study	25
Table 2.2	Plasmids used in this study	26
Table 2.3	Oligonucleotide primers used in this study	27
Chapter Thr	ee: Degradation of PQS quorum sensing signal by a novel soil	
	bacterium	
Table 3.1	Summary of positive precursor ions and the respective fragment	
	ions that were detected under MS/MS analysis	79
Table 3.2	Accurate mass measurement of the hydroxylated compound	86

Chapter Four: Construction of a biosensor for the screening of PQS quorum sensing inhibitors

Table 4.1 Result summary for uracil prototrophy and FOA sensitivity 140 assay

Abbreviations

AHL: N-acylhomoserine lactone

Amp : ampicillin

AQ : 2-alkyl-4-quinolone

AUC : area under curve

bp : basepair

°C : degree Celcius

C1-PQS : 2-methyl-3-hydroxy-4-quinolone

C5-PQS : 2-pentyl-3-hydroxy-4-quinolone

C9-PQS : 2-nonyl-3-hydroxy-4-quinolone

C11-HHQ : 2-undecyl-4-quinolone

C11-PQS : 2-undecyl-3-hydroxy-4-quinolone

Da : Dalton

DCM : dichloromethane

DNA : deoxyribonucleic acid

 $D\text{-}C_7\text{-}PQS \hspace{0.5cm} : \hspace{0.5cm} 5,\!6,\!7,\!8\text{-}tetradeutero\text{-}4,\!3\text{-}dihydroxy\text{-}2\text{-}heptylquinoline}$

EIC : Electrospray Ion Chromatograms

ESI : Electrospray ionization

FTMS : Fourier transform mass spectrometry

g : gram

kb : kilobase pair

MeOH : methanol

h : hour

HHQ : 2-heptyl-4-quinolone

HHQNO : 2-heptyl-4-quinolone *N*-oxide

HPLC : high performance liquid chromatography

IPTG : isopropyl-1-thio-(-D-galactopyranoside)

KH₂PO4 : potassium dihydrogen phosphate

L : litre

LB : Luria Bertani

LCMS : liquid chromatography-mass spectrometry

M : molar

ml : milliliter

μg : microgram

 μM : micromolar concentration

NMR : nuclear magnetic resonance

PQS : Pseudomonas quinolone signal; 2-heptyl-3-hydroxy-4-quinolone

ppm : parts per million

QS : quorum sensing

Rf : retention factor

RLU : relative light unit

rpm : revolutions per minute

TLC : thin layer chromatography

v/v : volume per volume

w/v : weight per volume