CHAPTER ONE: INTRODUCTION

CHAPTER TWO: OBJECTIVES OF THE STUDY

2.1. Aim of the study

2.2. Objectives of the study

CHAPTER THREE: REVIEW OF LITERATURE

3.1. Root canal therapy

3.1.1. Introduction

3.1.2. Phases of root canal therapy

3.1.3. Rationale of root canal therapy

3.2. Preparation of the root canal system

3.2.1. Introduction

3.2.2. Techniques for root canal preparation

3.2.2.1. Standardized technique

3.2.2.2. Step-back technique

3.2.2.3. Crown-down techniques

3.2.2.4. Balanced force technique

3.2.2.5. Automated root canal preparation

3.2.2.6. Sonic and ultrasonic preparation

3.2.2.7. Other methods

3.2.3. Preparation of oval canals

3.3. Obturation of the canal system

3.3.1. Introduction
Materials for root canal obturation

3.4. Introduction

3.4.2. Dental gutta-percha

3.4.3. Root canal sealers

3.4.3.1. Overview

3.4.3.2. Types of root canal sealers
- **3.4.3.2(a). Zinc oxide and eugenol sealers**
- **3.4.3.2(b). Calcium hydroxide-based sealers**
- **3.4.3.2(c). Resin sealers**
- **3.4.3.2(d). Glass ionomer-based sealers**
- **3.4.3.2(e). Silicone-based sealers**
- **3.4.3.2(f). Urethane methacrylates**

3.4.4. Resin obturation materials

3.4.4.1. Composition of the Resilon obturation system

3.5. Methods of filling the root canal

3.5.1. Lateral compaction technique

3.5.1.1. Variants of cold lateral compaction

3.5.2. Vertical compaction technique

3.5.3. Thermocompaction technique

3.5.4. Thermoplastic injection technique

3.5.5. Core carrier technique

3.6. Evaluation of the quality of root obturation materials

3.6.1. Overview

3.6.2. Microleakage of root filling materials

3.7. Methods for the evaluation of the quality of root canal obturation

3.7.1. Tooth sectioning

3.7.1.1. Introduction

3.7.1.2. Cross-sections

4.7.1.3. Longitudinal sections

3.7.2. Scanning electron microscopy

3.7.3. Tooth-clearing technique

3.7.4. Radiographic method

3.8. Summary
CHAPTER FOUR: MATERIALS AND METHOD

4.1. Collection and preparation of teeth 65
 4.1.1. Collection of teeth 65

4.2. Teeth selection and preparation 65
 4.2.1. Teeth selection 65
 4.2.2. Preparation of root canal system 66
 4.2.2.1. Radicular access 66
 4.2.2.2. Provisional working length 67
 4.2.2.3. True working length and instrumentation sequence 67

4.3. Compatibility between finger spreaders and accessory filling cores 69

4.4. Obturation of root canal system 69
 4.4.1. Lateral compaction of RealSeal™ as experimental group I 69
 4.4.2. Lateral compaction of gutta-percha as control group I 72
 4.4.3. Warm vertical compaction of RealSeal™ as experimental group II 72
 4.4.4. Warm vertical compaction of gutta-percha as control group II 74

4.5. Radiographic evaluation 75

4.6. Evaluation of root canal obturation 78
 4.6.1. Time taken during obturation 78
 4.6.2. Assessment of extrusion of root filling materials 78
 4.6.3. Assessment of obturation quality 78
 4.6.3.1. Assessment of cross-sections 78
 4.6.3.1(a). Sectioning of specimens 78
 4.6.3.1(b). Measurements of cross-sections 80
 4.6.3.1(c). Reliability measurement 80
 4.6.3.2. Scanning electron microscopic observation 81

4.7. Data analysis 85
 4.7.1. Time taken for obturation 85
 4.7.2. Extrusion of filling materials through apical foramen 85
 4.7.3. Percentages of filling core materials, sealers and voids 85

CHAPTER FIVE: RESULTS 86

5.1. Compatibility between finger spreaders and accessory cores 87
5.2. Post-operative radiographic evaluation 87
5.3. Time taken for obturation
5.4. Extrusion of filling materials through apical foramen
5.5. Percentages of canal area occupied by filling cores, sealers and voids
 5.5.1. First section (L1)
 5.5.2. First section (L3)
 5.5.3. Third section (L6)
5.6. Quality of the obturation
 5.6.1. Root canal shapes
 5.6.2. Lateral compaction of RealSeal™
 5.6.3. Lateral compaction of gutta-percha
 5.6.4. Warm vertical compaction of RealSeal™
 5.6.5. Warm vertical compaction of gutta-percha
5.7. Reliability test
5.8. Scanning electron microscopy

CHAPTER SIX: DISCUSSION

6.1. Methodology
 6.1.1. Tooth collection
 6.1.2. Root canal preparation and irrigation
 6.1.2.1. Root canal preparation
 6.1.2.2. Irrigation protocol
 6.1.3. Pilot study
 6.1.4. Evaluation method
 6.1.5. Root canal sealer
6.2. Results
 6.2.1. Time taken for obturation
 6.2.2. Extrusion of filling materials
 6.2.3. Materials and techniques used for obturation
 6.2.4. Scanning electron microscopy
6.3. Limitations of this study

CHAPTER SEVEN: CONCLUSIONS AND SUGGESTIONS

7.1. Conclusions
7.2. Suggestions
References

Appendix I
List of materials and instruments/equipment

Appendix II
Data analysis
LIST OF FIGURES

Chapter Four: Materials and Method

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Medium size finger spreader and accessory cores (gutta-percha and RealSeal™)</td>
<td>71</td>
</tr>
<tr>
<td>4.2</td>
<td>RealSeal™ obturation system</td>
<td>71</td>
</tr>
<tr>
<td>4.3</td>
<td>Root canal pluggers #5, #7, #9 and #11</td>
<td>76</td>
</tr>
<tr>
<td>4.4</td>
<td>Elements™ obturation unit</td>
<td>76</td>
</tr>
<tr>
<td>4.5</td>
<td>Elements RealSeal™ obturation cartridge</td>
<td>77</td>
</tr>
<tr>
<td>4.6</td>
<td>Elements gutta-percha obturation cartridge</td>
<td>77</td>
</tr>
<tr>
<td>4.7</td>
<td>ISOMET™ Low speed saw</td>
<td>79</td>
</tr>
<tr>
<td>4.8</td>
<td>Schematic diagram of root canal sections</td>
<td>79</td>
</tr>
<tr>
<td>4.9</td>
<td>Video camera and zoom microscope</td>
<td>82</td>
</tr>
<tr>
<td>4.10</td>
<td>Measurement of percentages of canal area occupied by RealSeal™ core material and sealer</td>
<td>83</td>
</tr>
<tr>
<td>4.11</td>
<td>Measurement of percentages of canal area occupied by gutta-percha</td>
<td>83</td>
</tr>
<tr>
<td>4.12</td>
<td>Field-emission gun scanning electron microscope (FESEM)</td>
<td>84</td>
</tr>
</tbody>
</table>
Chapter Five: Results

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Extrusion of filling materials against no extrusion</td>
<td>90</td>
</tr>
<tr>
<td>5.2</td>
<td>Mean percentages of filling cores (RealSeal™ and gutta-percha), sealers and voids using lateral compaction and warm vertical compaction of injected materials (WVCI) at L1</td>
<td>92</td>
</tr>
<tr>
<td>5.3</td>
<td>Mean percentages of filling cores (RealSeal™ and gutta-percha), sealers and voids using lateral compaction and warm vertical compaction of injected materials (WVCI) at L3</td>
<td>96</td>
</tr>
<tr>
<td>5.4</td>
<td>Mean percentages of filling cores (RealSeal™ and gutta-percha), sealers and voids using lateral compaction and warm vertical compaction of injected materials (WVCI) at L6</td>
<td>101</td>
</tr>
<tr>
<td>5.5</td>
<td>Photomicrographs of specimens utilizing LC/R at L1, L3 and L6</td>
<td>107</td>
</tr>
<tr>
<td>5.6</td>
<td>Photomicrographs of specimens utilizing LC/GP at L1, L3 and L6</td>
<td>109</td>
</tr>
<tr>
<td>5.7</td>
<td>Photomicrographs of specimens utilizing WC/R at L1, L3 and L6</td>
<td>111</td>
</tr>
<tr>
<td>5.8</td>
<td>Photomicrographs of specimens utilizing WC/GP at L1, L3 and L6</td>
<td>113</td>
</tr>
<tr>
<td>5.9</td>
<td>Low power (200×) SEM micrographs of longitudinal root sections. (A) Lateral compaction of gutta-percha, (B) lateral compaction of RealSeal™, (C) warm vertical compaction of gutta-percha and (D) warm vertical compaction of RealSeal™</td>
<td>116</td>
</tr>
<tr>
<td>5.10</td>
<td>Medium power (600×) SEM micrographs of longitudinal root sections. (A) Lateral compaction of gutta-percha, (B) lateral compaction of RealSeal™, (C) warm vertical compaction of gutta-percha and (D) warm vertical compaction of RealSeal™</td>
<td>117</td>
</tr>
<tr>
<td>5.11</td>
<td>High power (1000×) SEM micrographs of longitudinal root sections. (A) Lateral compaction of gutta-percha, (B) lateral compaction of RealSeal™, (C) warm vertical compaction of gutta-percha and (D) warm vertical compaction of RealSeal™</td>
<td>118</td>
</tr>
<tr>
<td>5.12</td>
<td>High power (4000×) SEM micrographs of longitudinal root sections. (A) Lateral compaction of gutta-percha, (B) lateral compaction of RealSeal™, (C) warm vertical compaction of gutta-percha and (D) warm vertical compaction of RealSeal™</td>
<td>119</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Chapter Three: Review of Literature

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Advantages and disadvantages of microleakage evaluation methods</td>
<td>48</td>
</tr>
<tr>
<td>3.2</td>
<td>Results of comparative microleakage studies</td>
<td>51</td>
</tr>
</tbody>
</table>

Chapter Five: Results

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Mean times (minutes) taken for obturation</td>
<td>88</td>
</tr>
<tr>
<td>5.2</td>
<td>Extrusion cross tabulation</td>
<td>90</td>
</tr>
<tr>
<td>5.3</td>
<td>Mean percentages of filling core materials, sealers and voids using lateral compaction (LC) and warm vertical “continuous wave” techniques (WVCW) at L1</td>
<td>92</td>
</tr>
<tr>
<td>5.4</td>
<td>The effect of different materials and different techniques on percentages of filling core materials, sealers, and voids at L1</td>
<td>93</td>
</tr>
<tr>
<td>5.5</td>
<td>The effect of different materials on the mean percentages of filling core materials using lateral compaction technique (LC) at L1</td>
<td>94</td>
</tr>
<tr>
<td>5.6</td>
<td>The effect of different materials on the mean percentages of filling core materials using warm vertical “continuous wave” technique (WVCW) at L1</td>
<td>94</td>
</tr>
<tr>
<td>5.7</td>
<td>Mean percentages of filling core materials, sealers and voids using lateral compaction (LC) and warm vertical compaction techniques (WVCW and WVC1) at L3</td>
<td>96</td>
</tr>
<tr>
<td>5.8</td>
<td>The effect of different materials and different techniques on percentages of filling core materials, sealers, and voids at L3</td>
<td>97</td>
</tr>
<tr>
<td>5.9</td>
<td>The effect of different materials on the mean percentages of filling core materials and voids using lateral compaction technique (LC) at L3</td>
<td>98</td>
</tr>
<tr>
<td>5.10</td>
<td>The effect of different materials on the mean percentages of sealers using lateral compaction technique (LC) at L3</td>
<td>98</td>
</tr>
</tbody>
</table>
5.11 The effect of different materials on the mean percentages of filling core materials and voids using warm vertical compaction technique (WVCW and WVCI) at L3

5.12 The effect of different materials on the mean percentages of sealers using warm vertical compaction technique (WVCW and WVCI) at L3

5.13 The effect of different techniques on the mean percentages of gutta-percha core material and sealer at L3

5.14 The effect of different techniques on the mean percentages of RealSeal™ core material and sealer at L3

5.15 Mean percentages of filling core materials, sealers and voids using lateral compaction and warm vertical compaction of injected materials (WVCI) at L6

5.16 The effect of different materials and different techniques on percentages of filling core materials, sealers, and voids at L6

5.17 The effect of different techniques on the mean percentages of RealSeal™ core material, sealer and voids at L6

5.18 The effect of different techniques on the mean percentages of gutta-percha core material, sealer and voids at L6

5.19 Shapes of root canals at L1

5.20 Shapes of root canals at L3

5.21 Shapes of root canals at L6