TABLES OF CONTENTS

Title Page	i
Original Literary Work Declaration	ii
Abstract	iii
Acknowledgements	v
Dedication	vii
Tables of Contents	viii
List of Appendix	xiii
List of Figures	xiv
List of Tables	xvi
List of Abbreviations	xviii

CHAPTER 1: INTRODUCTION

1.1 Problem statement	1
1.2 Significance of study	3
1.3 Aim	7
1.3.1 Objectives	7
1.4 Hypothesis	8

CHAPTER 2: LITERATURE REVIEW

2.1 Oral cancer	
2.1.1 Definition	9
2.1.2 Epidemiology of oral cancer	9
2.1.3 Molecule epidemiology	11

2.1.4 Oral carcinogenesis	12
2.1.4.1 Oncogenes	13
2.1.4.2 Tumor suppressor genes	13
2.2 Risk factors	14
2.2.1 Tobacco smoking	15
2.2.2 Alcohol drinking	16
2.2.3 Betel-quid chewing	18
2.2.4 Diet	20
2.2.4.1 Functional food	21
2.2.4.2 Phytochemicals	21
2.2.5 Human papilloma virus (HPV)	22
2.2.6 Genetic susceptibility	22
2.3 Dietary isothiocyanates (ITCs)	
2.3.1 Sources	28
2.3.2 Estimated dietary ITC intake	29
2.4 Genetic polymorphisms	31
2.4.1 Glutathione s-transferases (GSTs)	31
2.4.1.2 Distribution of GSTs	33
2.5 Dietary ITCs, GSTs and cancer prevention	39
2.5.1 Metabolism of carcinogen	39
2.5.2 ITCs, GSTs as preventive agents against cancer	40
2.6 Dietary ITCs, GSTs polymorphisms and cancer risk	44
2.6.1 Dietary ITCs and cancer risk	44
2.6.2 GSTs polymorphisms and cancer risk	45
2.6.3 GSTs polymorphisms and oral cancer risk	49

polymorphisms and cancer risk

CHAPTER 3: METHODOLOGY

3.1 Study design	59
3.2 Population and sample	59
3.2.1 Reference population	59
3.2.2 Source population	59
3.2.3 Sampling frame	60
3.2.3.1 Inclusion criteria	60
3.2.3.2 Exclusion criteria	61
3.2.4 Sample	61
3.3 Sample size estimation	63
3.4 Variables	63
3.5 Measurement tools	
3.5.1 Dietary ITC intake	65
3.5.1.1 Semi-quantitative food frequency questionnaire (FFQ)	65
3.5.1.2 NutrieMart Version 2	66
3.5.2 GSTM1, GSTT1 and GSTP1 determination	66
3.5.2.1 Qiagen Blood Mini Kit	66
3.5.2.2 PCR and PCR-RFLP	67
3.5.2.3 Agarose gel	67
3.6 Data collection	68
3.6.1 Case ascertainment and socio-demographic profile	68
3.6.2 Information on dietary ITC intake	69

54

3.6.3 Determination GSTM1, GSTT1 and GSTP1 genotypes	72
3.6.3.1 Isolation of genomic DNA	72
3.6.3.2 Genotyping GSTM1, GSTT1 and GSTP1 assays	73
3.6.3.3 Determination of GSTM1, GSTT1 and GSTP1 genotypes	77
3.7 Statistical analysis	

CHAPTER 4: RESULTS

4.1 Socio-demographic profile of cases and controls	91
4.2 Dietary ITC intake and GSTs polymorphisms	94
4.3 Factors associated with oral cancer	97
4.3.1 Socio-demographic profiles and oral cancer	97
4.3.2 Dietary ITC intake and oral cancer	99
4.3.3 GSTs polymorphisms and oral cancer	100
4.3.4 Dietary ITC intake, GSTs polymorphisms and oral cancer	103

CHAPTER 5: DISCUSSIONS

5.1 Distribution of socio-demographic profile	110
5.2 Distribution of dietary ITC intake and GSTs polymorphisms	113
5.3 Socio-demographic profiles and oral cancer	116
5.4 Dietary ITC intake and oral cancer	121
5.5 GSTs polymorphisms and oral cancer	123
5.6 Dietary ITC intake, GSTs polymorphisms and oral cancer	130
5.7 Limitation of study	137

CHAPTER 6: CONCLUSIONS	141
6.1 Recommendations	142
REFERENCES	144
APPENDIX	157

LIST OF APPENDIX

Appendix A: Epi Info	158
Appendix B: NutrieMart report	160
Appendix C: Agarose gel electrophoresis	162
Appendix D: Laboratory procedure during genotyping assays	164

LIST OF FIGURES

Figure 2.1: Continuum of events between exposure and disease (cancer)	12
Figure 2.2: Structures of isothiocyanates and side-chain structures (R) found	25
commonly in eaten cruciferous vegetables	
Figure 2.3: Hydrolysis of glucosinolates to isothiocyanates	26
Figure 2.4: Isothiocyanates are conjugated to glutathione by glutathione	27
s-transferase (GST), metabolized sequentially by γ -glutamyl	
transpeptidase (GGT), cysteinylglycinase (CG) and	
N-acetyltransferase (AT) to form, ultimately, mercapturic acid,	
NAC, N-acetylcysteine	
Figure 2.5: Broccoli	28
Figure 2.6: Cauliflower	28
Figure 2.7: Bak choy	28
Figure 2.8: Cabbage	28
Figure 2.9: Brussels sprouts	29
Figure 2.10: Kai lan	29
Figure 2.11: Watercress	29
Figure 2.12: Choy sum	29
Figure 3.1: Flowchart of the methodology of the study	62
Figure 3.2: Independent and dependent variables of this study	64
Figure 3.3: Collection of patient information	71
Figure 3.4: Banding patterns of GSTM1 and GSTT1 genotypes	79
Figure 3.5: Banding patterns of the undigested PCR products of GSTP1	82

Figure 3.6: Banding patterns of the BsmA1-digested PCR amplifications	
product of GSTP1	
Figure 3.7: Genotyping of GSTM1, GSTT1 and GSTP1 assays	84

LIST OF TABLES

Table 2.1: Cruciferous vegetables and their total ITC contents		
Table 2.2: Summary of distribution on GSTM1, GSTT1 and GSTP1 genotypes		
in normal population		
Table 2.3: Summary of GSTM1, GSTT1 and GSTP1 polymorphisms and	48	
cancers risk		
Table 2.4: Summary of GSTM1, GSTT1 and GSTP1 polymorphisms and	52	
oral cancer risk		
Table 2.5: Summary of dietary ITC intake and the association with GSTs	58	
polymorphisms and cancer risk		
Table 3.1: Scores for estimated intake of food	70	
Table 3.2: Primer sequences for GSTM1, GSTT1 and albumin		
Table 3.3: Primer sequence for GSTP1		
Table 3.4: 1st reaction master mix		
Table 3.5: 50µl reaction set up		
Table 3.6: Conditions for the reaction mixtures following incubations in the	76	
thermocycler		
Table 3.7: 2 nd restriction enzyme reaction master mix	77	
Table 3.8: Determination of GSTM1 and GSTT1 genotypes	79	
Table 3.9: Determination of GSTP1 genotypes	81	
Table 3.10: Summary of sources of data or information		
Table 3.11: Levels of dietary ITC intake among all case-control subjects		
Table 3.12: Expressions for the GST genotypes		

Table 4.1: Socio-demographic profile of 115 cases and 116 control subjects	
Table 4.2: Distribution of dietary ITC intake and GSTs polymorphism in	96
115 cases and 116 control subjects	
Table 4.3: Association between socio-demographic profiles and oral cancer	98
by simple logistic regression analysis	
Table 4.4: Association between dietary ITC intake and oral cancer by simple	99
logistic regression analysis	
Table 4.5: Association between GSTs polymorphisms and oral cancer by	102
simple logistic regression analysis	
Table 4.6: Association between dietary ITC, GSTs polymorphism and oral	104
cancer by multiple logistic regression analysis	
Table 4.7: Dietary ITC intake in relation to risk of oral cancer stratified by GST	108
genotypes	

89

LIST OF ABBREVIATIONS

ADH	Alcohol Dehydrogenase
ALDH	Aldehyde Dehydrogenase
APC	Antigen Presenting Cell
ASR	Age Specific Incidence Rate
BP	Base Pair
CI	Confidence Interval
СҮР	Cytochrome P450
DNA	Deoxyribonucleic Acid
EGFR	Epidermal Growth Factor Receptor
FFQ	Food Frequency Questionnaire
GGT	γ-Glutamyl Transpeptidase
GSH	Glutathione
GST	Glutathione S-Transferase
GSTM	Glutathione S-Transferase Mu
GSTP	Glutathione S-Transferase Pi
GSTT	Glutathione S-Transferase Theta
HAs	Heterocyclic Amines
HNSCC	Head and Neck Squamous Cell Carcinoma
HPV	Human Papilloma Virus
ICD	International Classification of Diseases
Ile	Isoleucine
IQR	Inter-Quartile Range
ITC	Isothiocyanate

- MLR Multiple Logistic Regression
- NAC N-acetylcysteine
- NAT N-acetyl Transferase
- NCR National Cancer Registry
- NNK 4-(nitrosomethylamino)-1-(3-pyridyl)-1-butanone
- NNN N'-nitrosonornicotine
- OR Odds Ratio
- OSCC Oral Squamous Cell Carcinoma
- PAH Polycyclic Aromatic Hydrocarbon
- PCR Polymerase Chain Reaction
- PCR-RFLP Polymerase Chain Reaction Restriction Fragment Length Polymorphism
- pRB Retinoblastoma Protein
- ROS Reactive Oxygen Species
- SCC Squamous Cell Carcinoma
- SLR Simple Logistic Regression
- SPSS Statistical Package for Social Sciences
- TSN Tobacco Specific Nitrosamine
- Val Valine
- XME Xenobiotic Metabolizing Enzyme