TABLE OF CONTENTS

Contents	Page
ABSTRACT	ii
ABSTRAK	V
ACKNOWLEDGEMENTS	viii
TABLE OF CONTENTS	ix
LIST OF TABLES	xiv
LIST OF FIGURES	xvii
LIST OF APPENDICES	xxi
LIST OF ABBREVIATIONS	xxiii

CHAPTER

1	INTRODUCTION		1	
2	LIT	LITERATURE REVIEW		
	2.1	Cancer		7
		2.1.1	Carcinogenesis	8
		2.1.2	Carcinogen	9
		2.1.3	Natural products and defense against carcinogenesis	10
		2.1.4	Difference between natural products therapeutic and	11
			conventional therapeutic	
	2.2	Free ra	dicals	12
		2.2.1	Types of free radical	13
		2.2.2	Sources of free radicals	16
		2.2.3	Oxidative stress	18
		2.2.4	Antioxidant	22
		2.2.5	Biological antioxidant defense mechanisms	22
		2.2.6	Synthetic antioxidants and natural antioxidants	24

25

	2.3.1	The Por	tulacaceae family	26
	2.3.2	The Por	<i>tulaca</i> genus	27
	2.3.3	Portula	ca oleracea	29
2.4	Bioact	tivity assay	/8	47
	2.4.1	Methods	s to determine antioxidant activity	47
	2.4.2	Principl assay	e of 1,1-diphenyl-2-picrylhydrazyl (DPPH)	48
	2.4.3	•	e of reducing power assay	49
	2.4.4	Principl	e of β -carotene bleaching assay	50
2.5	In vitr	o cytotoxic	e activity tests	50
	2.5.1	Methods	to determine cytotoxic activity	51
	2.5.2	In vitro c	ytotoxicity assay	53
	2.5.3	Principle	of in vitro neutral red cytotoxicity assay	54
2.6	Identi	fication tec	hniques	55
	2.6.1	Gas chroi	natography-mass spectrometry (GC-MS)	55
	2.6.2		romatography-mass spectrometry (LC-MS/MS)	56
	2.6.3	Nuclear N	Magnetic Resonance (NMR)	56
MA	ΓERIAI	LS AND M	IETHODS	57
3.1	Plant]	Materials		57
3.2	Extrac	tion Techr	liques	57
	3.2.1	Extraction	n and fractionation of extract from plant	57
		samples		
	3.2.2	Extraction	n and fractionation of plant samples (activated	58
		charcoal)		
3.3	Bioass	say screeni	ng	60
	3.3.1	Antioxida	ant activity	60
		3.3.1.1	DPPH (1,1-Diphenyl-2-picrylhydryl) free	60
		1	radical scavenging system	

3

х

			3.3.1.2	Reducing power assay	63
			3.3.1.3	β - carotene bleaching assay	64
			3.3.1.4	Statistical analysis	65
		3.3.2	Cytotox	icity screening	65
			3.3.2.1	Neutral red cytotoxicity activity assay	65
			3.3.2.2	Statistical analysis	68
	3.4	Analy	sis of thir	n layer chromatography	68
	3.5	Prepar	rative- Th	in Layer aChromatography	69
	3.6			mical compounds from the ethyl acetate fraction	69
		of <i>P. a</i> 3.6.1	oleracea Isolation oleracea	n fo mixtures from the ethyl acetate fraction of <i>P</i> .	70
	3.7	Spect	cophotom	etry and spectroscopy analysis	71
		3.7.1		comatography-Mass spectrophotometry (GC-MS)	71
		3.7.2		Chromatography-Mass spectrophotometry (LC-	72
			MS/MS		
		3.7.3	Nuclear	Magnetic Resonance (NMR)	72
		3.7.4	Micropl	ate reader	72
		3.7.5	UV-visi	ble spectrophotometer	72
4	RES	ULTS .	AND DIS	SCUSSION	75
	4.1	Extrac	ction yield	d of <i>P. oleracea</i>	75
	4.2	Antio	xidant act	ivity of <i>P. oleracea</i> extracts	77
		4.2.1	Scaveng	ging activity of <i>P. oleracea</i> on 1,1-diphenyl-2-	78
			picrylhy	vdrazyl radicals (DPPH)	
		4.2.2	Reducin	ng power assay of <i>P. oleracea</i> extracts	82
		4.2.3	β-carote	ene bleaching activity of <i>P. oleracea</i> extracts	86

	4.2.4	Comparison of antioxidant activity of P. oleracea	90
		extracts	
4.3	In vitr	ro neutral red cytotoxicity assay	93
	4.3.1	Cytotoxic activity of P. oleracea extracts	95
		(i) Human hormone-dependent breast carcinoma	95
		cell line (MCF7)	
		(ii) Human cervical carcinoma cell line (Ca SKi)	98
		(iii) Human lung carcinoma cell line (A549)	100
		(iv) Human colon carcinoma cell line (HT-29)	102
		(v) Human colon carcinoma cell line (HCT 116)	104
		(vi) Human nasopharyngeal cell line (KB)	106
		(vii) Non-cancer human fibroblast cell line	108
		(MRC5)	
	4.3.2	Cytotoxic activity of Doxorubicin	110
	4.3.3	Comparison of cytotoxic activity of <i>P. oleracea</i>	111
4.4	Chem	ical investigation on the hexane fraction of <i>P. oleracea</i>	117
4.5	Chem	ical constituents from the ethyl acetate fraction of <i>P</i> .	119
	olerad	cea	
	(i) Ch	emical constituents in mixture (I)	119
	(ii) Cl	hemical constituents in mixture (II)	121
	(iii) C	Chemical constituents in mixture (III)	121
	(iv) C	hemical constituents in mixture (IV)	122
4.6	Cytot	oxic effect of mixtures isolated from the ethyl acetate	123
	fractio	on of <i>P. oleracea</i>	
	4.6.1	Cytotoxic effect of mixture (I)	123
	4.6.2	Cytotoxic effect of mixture (II)	124
	4.6.3	Cytotoxic effect of mixture (III)	125
	4.6.4	Cytotoxic effect of mixture (IV)	126
	4.6.5	Comparison of cytotoxic effect of mixtures isolated from	127
		the ethyl acetate fraction of <i>P. oleracea</i>	

5	CONCLUSION	131
RE	EFERENCES	134
AP	PPENDICES	155

LIST OF TABLES

Table		Page
2.1	Compounds isolated from <i>P.oleracea</i>	45
3.1	Concentration mixture of ascorbic acid, DPPH and methanol for DPPH assay	61
3.2	Concentration mixtures of extracts, methanol and DPPH	62
3.3	Fractions obtained from VLC of ethyl acetate fraction of <i>P</i> . <i>oleracea</i>	70
4.1	Yield of methanol extracts of <i>P. oleracea</i>	75
4.2	Yield of extracts fractionated from <i>P. oleracea</i> methanol extract	76
4.3	Yield of methanol extracts of <i>P. oleracea</i> (treated with activated charcoal)	76
4.4	Yield of extracts fractionated from <i>P. oleracea</i> methanol extract (treated with of activated charcoal)	77
4.5	The scavenging activity (EC ₅₀ values) of <i>P. oleracea</i> extracts and positive references standards (ascorbic acid and BHA) on the inhibition of scavenging activity on DPPH radicals	81
4.6	Reducing power of <i>P. oleracea</i> extracts and positive reference standards at various concentrations	85

4.7	Antioxidant activity (%) of <i>P. oleracea</i> extracts and positive reference standard at various concentrations by β -carotene bleaching assay.	89
4.8	The cytotoxic activity (IC ₅₀ μ g ml ⁻¹) of <i>P. oleracea</i> extracts tested against MCF7 cell line	96
4.9	The cytotoxic activity (IC ₅₀ μ g ml ⁻¹) of <i>P. oleracea</i> extracts tested against Ca Ski cell line	98
4.10	The cytotoxic activity (IC ₅₀ μ g ml ⁻¹) of <i>P. oleracea</i> extracts tested against A549 cell line	100
4.11	The cytotoxic activity (IC ₅₀ μ g ml ⁻¹) of <i>P. oleracea</i> extracts tested against HT-29 cell line	102
4.12	The cytotoxic activity (IC ₅₀ μ g ml ⁻¹) of <i>P. oleracea</i> extracts tested against HCT 116 cell line	104
4.13	The cytotoxic activity (IC ₅₀ μ g ml ⁻¹) of <i>P. oleracea</i> extracts tested against KB cell line	106
4.14	The cytotoxic activity (IC ₅₀ μ g ml ⁻¹) of <i>P. oleracea</i> extracts tested against MRC5 cell line	108
4.15	The cytotoxic activity (IC ₅₀ μ g ml ⁻¹) of doxorubicin against various cancer and non-cancer cell lines tested	111
4.16	Comparison between IC_{50} values of <i>P. oleracea</i> extracts against various cancer and non-cancer cell lines	116
4.17	The cytotoxic activity (IC ₅₀ μ g ml ⁻¹) of mixture (I) tested against HT-29 and MRC5 cell lines	123

4.18	The cytotoxic activity (IC ₅₀ μ g ml ⁻¹) of mixture (II) tested	124
	against HT-29 and MRC5 cell lines	
4.19	The cytotoxic activity (IC ₅₀ μ g ml ⁻¹) of mixture (III) tested	125
	against HT-29 and MRC5 cell lines	
4.20	The cytotoxic activity (IC ₅₀ μ g ml ⁻¹) of mixture (IV) tested	126
	against HT-29 and MRC5 cell lines	

LIST OF FIGURES

Figure		Page
1.1	Outline of general procedures	6
2.1	The mechanism of lipid peroxidation (Gutteridge and Halliwell, 1990)	21
2.2	The appearance of <i>P. oleracea</i>	31
2.3	The leaves of <i>P. oleracea</i>	31
2.4	The flower of <i>P. oleracea</i>	32
2.5	The seeds of <i>P. oleracea</i>	32
2.6	The structure of phenolic glucoside (Youngwan et al., 2003)	38
2.7	The structure of monoterpene glucosides (Youngwan <i>et al.</i> , 2003)	39
2.8	The structures of Allantoin and N,N'-dicyclohexylurea (Asia <i>et al.</i> , 2004)	40
2.9	The structures of oleracein A-E (Xiang et al., 2005)	42
2.10	The structures of compound isolated by Ehab et al. (2008)	43
2.11	The structure of portulacerebroside A (Xin et al., 2008)	44
2.12	Diagram of 1, 1-diphenyl-2-picrylhydrazyl radical (DPPH)	48

3.1	The extraction and fractionation procedures leading to the isolation of mixtures from the active ethyl acetate fraction of <i>P. oleracea</i>	73
3.2	The isolation of mixtures I-IV from the active ethyl acetate fraction of <i>P. oleracea</i>	74
4.1	Scavenging effect of positive reference standards (BHA and ascorbic acid) on DPPH radicals. Each value is expressed as mean \pm standard deviation of three measurements	80
4.2	Scavenging effect of <i>P. oleracea</i> extracts on DPPH radicals. Each value is expressed as mean \pm standard deviation of three measurements	80
4.3	Comparison of reducing power of ascorbic acid, BHA and extracts of <i>P. oleracea</i> at various concentrations. Each value is expressed as mean \pm standard deviation	86
4.4	Antioxidant activity (%) of <i>P. oleracea</i> extracts and BHA measured by β -carotene bleaching method. Each value is expressed as mean \pm standard deviation	90
4.5	The <i>in vitro</i> growth inhibitions of MCF7cells by <i>P. oleracea</i> extracts (without treatment with activated charcoal) determined by neutral red cytotoxicity assay	97
4.6	The <i>in vitro</i> growth inhibitions of MCF7cells by <i>P. oleracea</i> extracts (upon treatment with activated charcoal) determined by neutral red cytotoxicity assay	97
4.7	The <i>in vitro</i> growth inhibitions of Ca Ski cells by <i>P. oleracea</i> extracts (without treatment with activated charcoal) determined by neutral red cytotoxicity assay	99

4.8	The <i>in vitro</i> growth inhibitions of Ca Ski cells by <i>P. oleracea</i> extracts (upon treatment with activated charcoal)	99
4.9	The <i>in vitro</i> growth inhibitions of A549 cells by <i>P. oleracea</i> extracts (without treatment with activated charcoal) determined by neutral red cytotoxicity assay	101
4.10	The <i>in vitro</i> growth inhibitions of A549 cells by <i>P. oleracea</i> extracts (upon treatment with activated charcoal) determined by neutral red cytotoxicity assay	101
4.11	The <i>in vitro</i> growth inhibitions of HT-29 cells by <i>P. oleracea</i> extracts (without treatment with activated charcoal) determined by neutral red cytotoxicity assay	103
4.12	The <i>in vitro</i> growth inhibitions of HT-29 cells by <i>P. oleracea</i> extracts (upon treatment with activated charcoal) determined by neutral red cytotoxicity assay	103
4.13	The <i>in vitro</i> growth inhibitions of HCT 116 cells by <i>P</i> . <i>oleracea</i> extracts (without treatment with activated charcoal) determined by neutral red cytotoxicity assay	105
4.14	The <i>in vitro</i> growth inhibitions of HCT 116 cells by <i>P</i> . <i>oleracea</i> extracts (upon treatment with activated charcoal) determined by neutral red cytotoxicity assay	105
4.15	The <i>in vitro</i> growth inhibitions of KB cells by <i>P. oleracea</i> extracts (without treatment with activated charcoal) determined by neutral red cytotoxicity assay	107
4.16	The <i>in vitro</i> growth inhibitions of KB cells by <i>P. oleracea</i> extracts (upon treatment with activated charcoal) determined by neutral red cytotoxicity assay	107

xix

4.17	The in vitro growth inhibitions of MRC5 cells by P. oleracea	109
	extracts (without treatment with activated charcoal)	
	determined by neutral red cytotoxicity assay	
4.18	The <i>in vitro</i> growth inhibitions of MRC5 cells by <i>P. oleracea</i>	109
	extracts (upon treatment with activated charcoal) determined	
	by neutral red cytotoxicity assay	
4.19	The structures of compounds identified in the hexane fraction	118
	of <i>P. oleracea</i>	
4.20	The structures of chemical constituents found in mixture (I)	120
4.21	The structures of chemical constituents found in mixture (IV)	122
4.22	The <i>in vitro</i> growth inhibitions of HT-29 cells of mixture (I)	124
	determined by neutral red cytotoxicity assay	
4.23	The <i>in vitro</i> growth inhibitions of HT-29 cells of mixture (III)	125
	determined by neutral red cytotoxicity assay	
4.24	The <i>in vitro</i> growth inhibitions of HT-29 cells of mixture (IV)	126
- 7.∠ +	determined by neutral red cytotoxicity assay	120

LIST OF APPENDICES

Appendix		Page
A1	Preparation of stock solution and reagents for DPPH assay	155
A2	Preparation of stock solution and reagents for Reducing power assay	156
A3	Preparation of stock solutions and reagents for β - carotene bleaching assay	158
A4	Chemicals and media for Neutral Red cytotoxicity assay	159
A5	The total ion chromatogram of the hexane fraction of <i>P</i> . <i>oleracea</i>	165
A6	Mass spectrum of methyl palmitate	166
A7	Mass spectrum of methyl oleate	166
A8	Mass spectrum of methyl linoleate	167
A9	Mass spectrum of methyl linolenate	167
A10	Mass spectrum of phytol	168
A11	Mass spectrum of palmitic acid	168
A12	Mass spectrum of squalene	169
A13	The total ion chromatogram of mixture (I)	170
A14	Mass spectrum of friedelin from mixture (I)	171
A15	Mass spectrum of β -sitosterol from mixture (I)	171
A16	Mass spectrum of camphesterol from mixture (I)	172
A17	¹ H NMR spectrum of mixture (I)	173
A18	¹³ C NMR spectrum of mixture (I)	174
A19	HMBC spectrum of mixture (I)	175

A20	HSQC spectrum of mixture (I)	176
A21	DEPT spectrum of mixture (I)	177
A22	Chromatogram of mixture (II) and the mass spectra of the compounds in the chromatogram	178
A23	¹ H NMR spectrum of mixture (II)	181
A24	Chromatogram of mixture (III) and the mass spectra of the compounds in the chromatogram	182
A25	¹ H NMR spectrum of mixture (III)	184
A26	The total ion chromatogram of mixture (IV)	185
A27	Mass spectrum of 4-hydroxy-3,5,5-trimethyl-4-(3-oxo-1- butenyl)-2-cyclohexen-1-one from mixture (IV)	186
A28	Mass spectrum of sesquiterpene from mixture (IV)	186
A29	Mass spectrum of from 3-buten-2-one, 4-(2,2,6-trimethyl- 7-oxabicyclo[4.1.0] hept-1-yl) from mixture (IV)	187
A30	Chromatogram of HPLC for ethyl acetate fraction of <i>P</i> . <i>oleracea</i>	187
A31	HPLC separation method for ethyl acetate fraction of <i>P.oleracea</i>	187

LIST OF ABBREVIATIONS

ATCC	American Tissue Culture Collection
BHA	butylated hydroxyanisole
BHT	butylated hydroxytoluene
CAT	Catalase
CDCl ₃	Deuterated chloroform
CHCl ₃	Chloroform
CO_2	Carbon dioxide
°C	degree Celsius
DMSO	Dimethylsulfoxide
DNA	Deoxyribonucleotide
DPPH	1 .1-Diphenyl-2-picrylhydrazyl
EDTA	Ethylenediamine tetraacetic acid
ELISA	Enzyme-linked immunosorbent assay
EtOAc	Ethyl acetate
FBS	Foetal Bovine Serum
g	Gram
GCMS	Gas Chromatography Mass Spectroscopy
GSH	Glutathione peroxidase
HEPES	N-2-Hydroxylethyl-1-Piperazine-N-2-Ethane-Sulfonic
HOCL	Hypochlorous Acid
HPLC	High Pressured Liquid Chromatography
Н	Hour
H ₂ O	Water
H_2O_2	Hydrogen Peroxide

IC ₅₀	Inhibition concentration at 50%
Kg	kilogram
L	Litre
LCMS/MS	Liquid Chromatography Tandem-Mass Spectroscopy
LDH	Lactate Dehydrogenase
μg	Microgram
μl	Microlitre
М	Molar
mM	Milimolar
MeOH	Methanol
mg	Milligram
min	Minute
ml	Milliliter
MS	Mass spectroscopy
Na ₂ CO ₃	Sodium carbonate
NaHCO ₃	Sodium bicarbonate
NMR	Nuclear Magnetic Resonance
nm	Nanometre
NR	Neutral red
OD	Optical density
ОН•	Hydroxyl radical
O_2^-	Superoxide anion
O_2	Oxygen
ONOO ⁻	Peroxynitrite anion
PBS	Phosphate buffered saline
Prep-TLC	Preparative- Thin Layer Chromatography

PUFA	Polyunsaturated fatty acid
SOD	Superoxide Dismutase
RO•	Alkoxyl radical
ROS	Reactive oxygen species
rpm	Rotation per minute
S	second
SD	Standard deviation
Spp.	Species
TLC	Thin Layer Chromatography
UV	Ultraviolet
VLC	Vacuum liquid chromatography
%	Percentage