TABLE OF CONTENT

CONTENT PAGE DECLARATION i ABSTRACT ii ABSTRAK iii ACKNOWLEDGEMENT iv TABLE OF CONTENT v LIST OF TABLES viii LIST OF FIGURES ix LIST OF ABBREVIATIONS xi

CHAPTER 1: INTRODUCTION

1.0 Introduction	1
1.1 Construction industry in Malaysia	1 – 6
1.2 Objective of study	6 - 7
1.3 Project assumption	7

CHAPTER 2: LITERATURE REVIEW

2.1 Types of construction in construction industry		
2.2 Types of building		
2.2.1 Commercial building	9	
2.2.2 Residential building	9 - 10	
2.3 Type of construction method	10 – 11	
2.3.1 Conventional construction method	11 – 12	
2.3.2 Prefabrication construction method	12 – 13	
2.3.2.1 Cast in situ (PERI formwork, composite method,		
Fully prefabrication method)	13 – 19	
2.3.3 Comparison between conventional method and prefabricate		
Method	19 – 22	

2.3.4 Advantage and disadvantage adopt prefabrication method	22 - 23		
2.4 Building construction	24		
2.4.1 Elements			
2.5 Building construction material	29		
2.5.1 The main group of building materials	29 - 34		
2.6 Construction waste	34 - 38		
2.7 Sources of construction waste			
2.7.1 Construction waste in handling	42		
2.7.1.1Concrete waste	42		
2.7.1.2 Timber waste	43		
2.7.1.3 Steel reinforcement waste	43		
2.7.1.4 Brick waste	43 - 44		
2.8 Factor that influences construction waste composition	44 - 46		
2.9 Storage materials			
2.10 Waste quantification			
2.11Construction and demolition waste management in some selected			
Asian Countries			

CHAPTER 3: METHODOLOGY

3.0 Introduction	55
3.1 Site visit and observation	55 - 56
3.2 Data collection and analysis	
3.2.1 Data collection	56
3.2.2 Data analysis	57

CHAPTER 4: RESULT

4.1 Project and site description	59
4.2 Background of XYZ Berhad	59 - 60
4.3 Project A	61 - 62
4.4 Project B	63 - 64
4.5 Project C	65

4.6 Construction waste generated on site activities		
4.6.1 Waste index	66 - 68	
4.6.2 Wastage level for selected material	68 – 71	
4.7 Storage and handling material	71 – 79	
4.8 Causes of construction waste material on three project site	80 - 83	
4.8.1 Main causes of steel reinforcement waste and concrete		
waste	84	
4.8.2 Cause of steel reinforcement waste	85 -	
4.8.3 Cause of concrete waste	86 - 89	
4.9 Construction waste handling and waste disposal	90 - 93	
4.10 Reused or recycle construction material	94 – 96	
4.11 Summary of the result		
	97 - 99	

CHAPTER 5: DISCUSSION

5.1 Comparison between Project A and Project B (type of building)	100 - 102
5.2 Comparison between Project A and Project C	
(Type of construction method)	102 - 107
5.3 General comparison among Project A, Project B and Project C	108 - 111
5.4 Benefits of study	112 - 113

CHAPTER 6: CONCLUSION

6.1 Conclusion	114 - 115
6.2 Recommendation	116 – 117
6.3 Limitation of study	117 -118

REFERENCES APPENDIXES

LIST OF TABLES

Page

Table 1.1	:	Number and value of projects awarded by status of	
		contractors and project category of June 2008	3
Table 2.1	:	Comparison of Traditional (conventional) methods	
		and Low waste technologies (prefabricate).	20 - 21
Table 2.2	:	Definition and Classification of C&D Waste by Various	
		Authors	35 - 36
Table 2.3	:	Composition of Construction Waste by Construction Type	e
		in The Twin City in Minnesota (By Volume).	46
Table 2.4	:	Estimated composition of C& D debris in US	46
Table 2.5	:	Raw material storage	48
Table 2.6	:	Waste index for various types of project in Hong Kong	50
Table 2.7	:	Summary of C&D waste management in some selected	
		Asian Countries	52 - 53
Table 4.1	:	Projects sites, types and construction methods	59
Table 4.2	:	GFA for three project sites	66
Table 4.3	:	Waste index generation on three project sites	67
Table 4.4	:	Average price of major building materials for Peninsular	
		Malaysia, Sabah and Sarawak for August 2009	69
Table 4.5	:	Wastage of material in percentage on three project sites	70
Table 4.6	:	Storage material method at Project A, Project B and	
		Project C	72 – 74
Table 4.7	:	General causes of construction waste on site	80
Table 4.8	:	The main causes of concrete waste and steel reinforcement	ıt
		Waste on three project sites	84
Table 4.9	:	Comparison result from three project sites	97-98

LIST OF FIGURES

Figure 1.1		Contractors registration by category	3
Figure 1.2	•	Total waste generated in Peninsular Malaysia 2007	4
Figure 1.3	•	Composition of generated construction waste materials	•
I Iguie 1.5	·	on the site	5
Figure 2.1		Types of construction method	11
Figure 2.1	•	Product of PERI	15
Figure 2.2	•	GT 24	16
Figure 2.4	•	VT 20	10
Figure 2.4	•	Virio GT 24	17
Figure 2.6	•	DEDL Climbing system	17
Figure 2.7	•	A much concretion rate of C &D motorials in Hong Kong	10
Figure 2.7	•	Annual generation rate of C&D materials in Hong Kong	3/
Figure 2.8 Γ^{\prime}	:	Construction waste disposal in 2000-2004	38
Figure 2.9	:	Sources of construction waste generated by many aspects	41
Figure 3.1	:	Research Methodology Flowcharts	58
Figure 4.1	:	Project A building under construction	61
Figure 4.2	:	Location of Project A	62
Figure 4.3	:	Project B building under construction	63
Figure 4.4	:	Location of Project B	64
Figure 4.5	:	Project C building under construction	65
Figure 4.6	:	Storage of brick (Store in original packaging until required	l)75
Figure 4.7	:	Storage of PERI formwork at open space	75
Figure 4.8	:	Storage of cement bags	76
Figure 4.9	:	Storage of tiles (keep in original packaging until used)	76
Figure 4.10	:	Storage of pipe	77
Figure 4.11	:	Improper storage of plaster	78
Figure 4.12	:	Storage of wood to be reused	79
Figure 4.13	:	Pallet to be returned to supplier	79
Figure 4.14	:	Cement waste caused by worker attitude	81
Figure 4.15	:	Waste materials are not segregated from useful material	81
Figure 4.16	:	Cutting waste of reinforcement	82

Figure 4.17	:	Cement packaging waste	82
Figure 4.18	:	Incorrect dimension cause formwork giveaway	83
Figure 4.19	:	Jump system can cause wood waste (improper handling)	83
Figure 4.20	:	Steel waste ready to sent back to vendor for recycle	86
Figure 4.21	:	Causes of concrete waste on site	86
Figure 4.22	:	Tower crane	87
Figure 4.23	:	Concrete pump	88
Figure 4.24	:	Hacking off concrete becomes waste	89
Figure 4.25	:	Waste handling and waste disposal general	
		operation on site	90
Figure 4.26	:	Rubbish chute	91
Figure 4.27	:	Rubbish chute attach to open space (dump area)	92
Figure 4.28	:	Construction waste (debris) ready to be	
		disposed by subcontractor	92
Figure 4.29	:	Wood waste are segregated; gathered at one corner	93
Figure 4.30	:	Telescopic shoulder bracket	94
Figure 4.31	:	Air conditioner conduit will returned to	
		supplier for recycling	95
Figure 4.32	:	Scaffolding will be reuse	95
Figure 4.33	:	Packaging of cement (SIKA) be reuse	96
Figure 5.1	:	Waste index between two types of project with	
		different type of building	100
Figure 5.2	:	Wastage level of material between two types of	
		project with different type of building	103
Figure 5.3	:	Waste index between two types of construction	
		project with different method	105
Figure 5.4	:	Wastage level of material between two types of	
		construction project with different method	106
Figure 5.5	:	Wastage level of material at three construction projects	108
Figure 5.6	:	General factors affecting of waste index and wastage	
		level	110

LIST OF ABBREVIATIONS

CIDB	Construction industry Development Board
C&D	Construction and Demolition waste
CW	Construction waste
DW	Demolition waste
EPD	Environmental Protection Department
GDP	Gross Domestic Product
GFA	Gross Floor Area
IBS	Industrialized Building System
KTM	Keretapi Tanah Melayu
PA	Project A
PB	Project B
PC	Project C
TEFMA	Tertiary Education Facilities Management
	Association
UK	United Kingdom
3R	Reduce, Reuse, Recycle