Appendices

Appendix A: Real-time quantitative reverse transcription-PCR (RT-PCR)

A1: RNA extraction protocol

- 1. Disrupt samples in Lysis/Binding Solution
- 2. Add an equal volume of 64% Ethanol and mix
- 3. Draw the lysate/ethanol mixture through a Filter Cartridge
- 4. Wash with 700 µl Wash Solution #1
- 5. Wash with $2 \times 500 \mu$ l Wash Solution #2/3
- 6. Elute RNA with 40-60 µl preheated Elution Solution
- 7. Elute with a second 10-60 µl aliquot of Elution Solution

A2: Reverse transcription of RNA to cDNA

Reaction Components:

Volume per Reaction	Final Concentration
4 µl	1X
_µ1*	1 µg
_µ ^{**}	-
20 µl	-
	Volume per Reaction 4 µl µl* µl* 20 µl

^{*}Volume needed for 1 µg RNA

** Volume needed after subtracted volume of Complete Master Mix and RNA

Thermal cycler conditions

Step 1: 5 minutes at 25 ℃

Step 2: 30 minutes at 42 °C

Step 3: 5 minutes at 85 °C

Step 4: Hold at 4 $^{\circ}$ C

A3: Gene expression analysis

Reaction Components

Component	Volume per Reaction	Final Concentration
Taqman Gene Expression	5 µl	1X
Master Mix		
cDNA	1 µl	-
Nuclease free water	4 µl	-
Total volume	10 µl	-

Thermal cycler conditions

Step 1: 2 minutes at 50 °C

Step 2: 10 minutes at 95 ℃

Step 3: 40 cycles of 15 seconds at 95 $^\circ$ C and 1 minutes at 60 $^\circ$ C

Appendix B: Graph of gallic acid standard

The phenolic content of F.deltoidea's extracts and its fractions were calculated based on the equation y=0.0178x.

C2: Fraction 30 curve

C3: Fraction 60 curve

C4: Fraction 90 curve

C5: Ascorbic acid curve

Appendix D: Dose-response curve of samples and ascorbic acid in lipid

peroxidation assays

D1: Crude sample curve

D2: Fraction 30 curve

D3: Fraction 60 curve

D4: Fraction 90 curve

D5: Ascorbic acid curve

Appendix E: Viable cells curve upon different treatment

E1: Treatment of SF crude and fractions towards Ca Ski cells

E2: Treatment of SF crude and fractions towards Hep G2 cells

E3: Treatment of SF crude and fractions towards Chang Liver cells

E4: Treatment of doxorubicin towards different cell lines

The catalase concentration of cell lysate upon treatment were estimated and calculated based on the equation $y = -4.4286x^2 + 5.7438x - 0.0172$.

Appendix G: DNA fragmentation results

G1: Ca Ski cells upon different treatments

SF samples: left to right

Lane 1: 100bp marker, Lane 2: 0.125mg/ml, Lane 3: 0.25mg/ml, Lane 4: 0.5mg/ml, Lane 5: 0.75mg/ml, Lane 6: 1mg/ml, Lane 7: control, Lane 8: 1kb marker.

Doxorubicin: left to right

Lane 1: 100bp marker, Lane 2: $0.125 \mu g/ml$, Lane 3: $0.25 \mu g/ml$, Lane 4: $0.5 \mu g/ml$, Lane 5: $1 \mu g/ml$, Lane 6: $2 \mu g/ml$, Lane 7: control, Lane 8: 1kb marker.

G2: Hep G2 cells upon different treatments

(a) SF(b) SF30(c) SF60Image: A state of the state of the

(d) SF90

SF samples: left to right

Lane 1: 100bp marker, Lane 2: 0.125mg/ml, Lane 3: 0.25mg/ml, Lane 4: 0.5mg/ml, Lane 5: 0.75mg/ml, Lane 6: 1mg/ml, Lane 7: control, Lane 8: 1kb marker.

Doxorubicin: left to right

Lane 1: 100bp marker, Lane 2: $0.125 \mu g/ml$, Lane 3: $0.25 \mu g/ml$, Lane 4: $0.5 \mu g/ml$, Lane 5: $1 \mu g/ml$, Lane 6: $2 \mu g/ml$, Lane 7: control, Lane 8: 1kb marker.

G3: Chang Liver cells upon different treatments

SF samples: left to right

Lane 1: 100bp marker, Lane 2: 0.125mg/ml, Lane 3: 0.25mg/ml, Lane 4: 0.5mg/ml, Lane 5: 0.75mg/ml, Lane 6: 1mg/ml, Lane 7: control, Lane 8: 1kb marker.

Doxorubicin: left to right

Lane 1: 100bp marker, Lane 2: 0.125 µg/ml, Lane 3: 0.25 µg/ml, Lane 4: 0.5 µg/ml, Lane 5: 1 µg/ml, Lane 6: 2 µg/ml, Lane 7: control, Lane 8: 1kb marker.

Appendix H

H1: Hep G2 cells treated with SF30

H2: Hep G2 cells treated with SF60

H3: Hep G2 cells treated with SF90

H4: Hep G2 cells treated with doxorubicin

H5: Ca Ski cells treated with SF30

H6: Ca Ski cells treated with SF60

H7: Ca Ski cells treated with SF90

H8: Ca Ski cells treated with doxorubicin

H9: Chang Liver cells treated with SF30

H10: Chang Liver cells treated with SF60

H11: Chang Liver cells treated with SF90

H12: Chang Liver cells treated with doxorubicin

