ABSTRACT

Two trinuclear oxo-centered chromium(III) carboxylate complexes have been synthesized by reacting commercial Cr(NO₃).9H₂O and CrCl₃.6H₂O with F₃CCO₂H and Cl₃CCO₂H respectively. The elemental and thermogravimetric analyses of the green resulting products as well as, FTIR spectroscopy, magnetic susceptibility measurements and single crystal X-ray structure analysis, all revealed that the complexes structure are [Cr₃O(F₃CCOO)₆.3H₂O]NO₃.H₂O (A) and [Cr₃O(Cl₃CCO₂)₆.2H₂O]Cl₃CCO₂.3H₂O (B). Both compounds have a central μ_3 -O atom, with a planar triangular arrangement of the 3d trivalent chromium atoms, bonded to the central oxygen and six acetate ligands, each doubly bridging across the metal center using both oxygen atoms of the carboxylate group.

Both complexes, in combination with AlEt₂Cl, form highly active heterogeneous Ziegler-Natta catalysts for ethylene polymerization. The effects of varying the monomer pressure and Al / Cr ratio were investigated. The activities of the catalysts system were compared under selected reaction conditions. Kinetic data shows that the rate of the polymerization increased with increase in ethylene pressure. In addition, the polymerization rate was first order with respect to ethylene during the initial stage of the reaction. The activity decreased rapidly, probably due to the deactivation of actives sites, increase in solution viscosity and encapsulation of active centers by the polymer. Complex (B) was found to be more reactive than complex (A) under similar conditions. The maximum activity for the $[Cr_3O(F_3CCOO)_{6.3}H_2O]NO_3H_2O / AlEt_2Cl catalytic$ system was 13.9 kg-PE/g-Cr/hr/atm, obtained at Al / Cr molar ratio of 45 and initial monomer pressure of 1320 kpa. The maximum activity, with the [Cr₃O(Cl₃CCO₂)₆.2H₂O]Cl₃CCO₂.3H₂O / AlEt₂Cl catalytic system was 36.71 kg-PE/g-Cr/hr/atm, obtained at Al / Cr ratio of 45 and monomer pressure of 795 kPa.

The produced polymers were characterized using FTIR, TGA, DSC, hardness, density, DMA and NMR techniques. They are high density polyethylene with high melting temperature, molecular weight and crystallinity. Even though the $[Cr_3O(Cl_3CCO_2)_{6.}2H_2O]Cl_3CCO_2.3H_2O$ / AlEt₂Cl catalytic system shows higher activity than the $[Cr_3O(F_3CCOO)_{6.}3H_2O]NO_3.H_2O$ / AlEt₂Cl catalytic system, polyethylene from this second catalyst was found to have higher melting temperature, degree of crystallinity and density than PE from the first catalytic system.

PUBLICATION

B. B. Mougang D. Soume, Rosiyah Yahya, Seng Neon Gan and Seik Weng Ng, Diaqua-μ₃-oxido-hexakis-(μ₂-trichloroacetato-K²O:O')(trichloroacetato-KO)trichromium(III) acetonitrile trisolvate. Acta Cryst., E64, **m1175** (2008).

POSTER (BEST POSTER AWARD)

B. B. Mougang D. Soume, Rosiyah Yahya, Seng Neon Gan and Ward T. Robinson, Synthesis and characterization of [Cr₃O(F₃CCOO)₆.3H₂O]NO₃.H₂O, International Conference on Molecular Chemistry (ICMC 2008), University of Malaya, Kuala Lumpur - Malaysia (25-27 Nov 2008)

ORAL PRESENTATION

B. B. Mougang D. Soume, Ethylene polymerization using $[Cr_3O(F_3CCOO)_{6.}3H_2O]NO_3.H_2O$ / AlEt₂Cl catalytic system as Ziegler-Natta catalyst, Mini Symposium 2009, organized by the chemistry department, University of Malaya , in collaboration with the association of Chemistry Students "Proton", Faculty of Chemistry, Utrecht University, Holland, University of Malaya , Kuala Lumpur, Malaysia (14th April 2009).