TABLE OF CONTENTS

TITLE PAGEi
DEDICATIONii
ACKNOWLEDGEMENTSiii
ABSTRACTv
LIST OF PUBLICATION AND PRESENTATIONvii
TABLE OF CONTENTS viii
LIST OF FIGURESxiv
LIST OF TABLESxxi
LIST OF ABBREVIATIONSxxiv

CHAPTER I: INTRODUCTION AND BACKGROUND

1.1	Introd	uction	.2
1.2	Types	of polyethylene	.4
	1.2.1	Low density Polyethylene (LDPE)	.4
	1.2.2	Linear low density polyethylene (LLDPE)	.4
	1.2.3	High density Polyethylene (HDPE)	5

1.3	Types of catalyst system for olefin polymerization8
	1.3.1 Ziegler-Natta catalysts
	1.3.2 Chromium based catalysts10
	1.3.3 The effects of pressure12
1.4	Mechanisms of Ziegler-Natta polymerization12
1.5	Kinetics of Ziegler-Natta polymerization15
1.6	Trinuclear oxo-centered metal carboxylate complexes19
1.7	Scope of this study
1.8	References

CHAPTER II: SYNTHESIS OF CHROMIUM(III) OXO-CENTERED CARBOXYLATE COMPLEXES

2.1	Introd	uction	.33
2.2	Exper	imental	.33
	2.2.1	Materials	.33
	2.2.2	Synthesis of [Cr ₃ O(Cl ₃ CCO ₂) ₆ .2H ₂ O]Cl ₃ CCO ₂ .3H ₂ O	.33
	2.2.3	Synthesis of [Cr ₃ O(F ₃ CCOO) ₆ .3H ₂ O]NO ₃ .H ₂ O	.34
2.3	Analy	sis of chromium(III) complexes	.34

	2.3.1	Elemental analysis
	2.3.2	Thermogravimetry analysis (TGA)35
	2.3.3	Fourier Transfer Infra red spectroscopy (FTIR)35
	2.3.4	Magnetic Susceptibility measurement
	2.3.5	Single crystal X-ray structure determination
2.4	Resul	ts and discussion
	2.4.1	Influence of reactant ratio and reflux time on the synthesis
	2.4.2	Morphology of the complexes40
	2.4.3	Elemental analysis43
	2.4.4	Thermogravimetry analysis (TGA)44
	2.4.5	Infra red spectroscopy48
	2.4.6	Magnetic Susceptibility studies55
	2.4.7	Single crystal X-ray structure analyses
2.5	Concl	usion72
2.6	Refer	ences

CHAPTER III: ETHYLENE POLYMERIZATION: EXPERIMENTAL

3.1	Mater	ials
	3.1.1	Reagents78
	3.1.2	Glasswares and reactor
	3.1.3	Gases
	3.1.4	Catalysts81
3.2	Polym	nerization procedure
3.3	Polym	ner characterization
	3.3.1	Fourier Transform Infrared Spectroscopy (FTIR)84
	3.3.2	Thermogravimetry Analysis (TGA)
	3.3.3	Differential Scanning Calorimetry (DSC)84
	3.3.4	Hardness test
	3.3.5	Density test
	3.3.6	Dynamic Mechanical Analysis
	3.3.7	Nuclear Magnetic resonance spectroscopy (NMR)87
3.4	Refere	ences

CHAPTER IV: RESULTS AND DISCUSSION: [Cr₃O(F₃CCO₂)₆.3H₂O]NO₃.H₂O AS ZIEGLER-NATTA CATALYST

4.1	Inti	oduction
4.2	Kir	etics of ethylene polymerization91
4.3	Eff	ect of monomer pressure
	4.3.1	Correlations between the monomer pressure change and polymer yield98
	4.3.2	Effect of monomer pressure on polymer yield

	4.3.3	Effect of monomer pressure on reaction rate	101
	4.3.4	Effect of monomer pressure on catalytic activity	103
4.4	Eff	ect of varying aluminum / chromium ratio	108
4.5	Ch	aracterization of polymers	111
	4.5.1	Morphology	111
	4.5.2	Fourier Transform Infrared Spectroscopy (FTIR)	113
	4.5.3	Thermogravimetry Analysis (TGA)	118
	4.5.4	Differential Scanning Calorimetry (DSC)	120
	4.5.5	Hardness	130
	4.5.6	Density	131
	4.5.7	Dynamic Mechanical Analysis (DMA)	133
	4.5.8	Nuclear Magnetic resonance spectroscopy (NMR)	143
4.6	Co	nclusion	149
4.7	Re	ferences	149
4.7	Re	ferences	149
4.7 CH	Re:	ferences R V: RESULTS AND	149 DISCUSSION:
4.7 CH [Cr	Re: APTE 30(Cl3	ferences R V: RESULTS AND CCO2)6.2H2O]Cl3CCO2.3H2O AS ZIEGLER-NATTA C	
4.7 CH [Cr 5.1	Re: APTE 30(Cl ₃ Int:	ferences R V: RESULTS AND CCO2)6.2H2O]Cl3CCO2.3H2O AS ZIEGLER-NATTA C	149 DISCUSSION: CATALYST 154
 4.7 CH [Cr 5.1 5.2 	Re: APTE 3O(Cl3 Int: Kin	ferences R V: RESULTS AND (CCO ₂) ₆ .2H ₂ O]Cl ₃ CCO ₂ .3H ₂ O AS ZIEGLER-NATTA C roduction	
 4.7 CH [Cr 5.1 5.2 5.3 	Re: APTE 30(Cl3 Int: Kin Eff	ferences R V: RESULTS AND CCO₂)₆.2H₂O]Cl₃CCO₂.3H₂O AS ZIEGLER-NATTA C roduction netics of ethylene polymerization Fect of monomer pressure	149 DISCUSSION: CATALYST 154 155
 4.7 CH [Cr 5.1 5.2 5.3 5.4 	Re: APTE 30(Cl3 Int: Kin Eff Ch	ferences R V: RESULTS AND CCO₂)₆.2H₂O]Cl₃CCO₂.3H₂O AS ZIEGLER-NATTA C roduction netics of ethylene polymerization fect of monomer pressure aracterization of polymers	
 4.7 CH [Cr 5.1 5.2 5.3 5.4 	Re: APTE 30(Cl ₃ Int Kin Eff Ch 5.4.1	ferences. R V: RESULTS AND CCO₂)₆.2H₂O]Cl₃CCO₂.3H₂O AS ZIEGLER-NATTA C roduction. netics of ethylene polymerization. Piect of monomer pressure. aracterization of polymers. Morphology.	
 4.7 CH [Cr 5.1 5.2 5.3 5.4 	Re: APTE 30(Cl3 Int: Kin Eff Ch 5.4.1 5.4.2	ferences R V: RESULTS AND CCO ₂) ₆ .2H ₂ O]Cl ₃ CCO ₂ .3H ₂ O AS ZIEGLER-NATTA C roduction netics of ethylene polymerization Fect of monomer pressure aracterization of polymers Morphology Fourier Transform Infrared Spectroscopy (FTIR)	
 4.7 CH [Cr 5.1 5.2 5.3 5.4 	Re: APTE 3O(Cl3 Intr Kin Eff Ch 5.4.1 5.4.2 5.4.3	ferences R V: RESULTS AND CCO2)6.2H2O]Cl3CCO2.3H2O AS ZIEGLER-NATTA C roduction roduction netics of ethylene polymerization rect of monomer pressure aracterization of polymers rector for polymers Morphology Fourier Transform Infrared Spectroscopy (FTIR) Thermogravimetry Analysis (TGA) TGA)	
4.7 CH [Cr 5.1 5.2 5.3 5.4	Re: APTE 3O(Cl3 Int: Kin Eff Ch 5.4.1 5.4.2 5.4.3 5.4.4	ferences. R V: RESULTS AND CCO2)6.2H2O]Cl3CCO2.3H2O AS ZIEGLER-NATTA C roduction. roduction. netics of ethylene polymerization. rect of monomer pressure. rect of monomer pressure. rector for polymers. aracterization of polymers. Morphology. Fourier Transform Infrared Spectroscopy (FTIR). Thermogravimetry Analysis (TGA). Differential Scanning Calorimetry (DSC). The context of	

	5.4.6	Density	.173
	5.4.7	Dynamic Mechanical Analysis (DMA)	174
	5.4.8	Nuclear Magnetic resonance spectroscopy (NMR)	.180
5.5	Co	nclusion	180
5.6	Ref	ferences	.183

CHAPTER VI: GENERAL CONCLUSION

6.1	Contributions to research	186
6.2	Research limitations	187
6.3	Suggestions for future work	

APPENDIX	18	8	8	Ĉ	8	8	8	8	8	8	8		1	1		•		•	•						•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•				•	•	•	•	•	•	•		•			•		•		•		•		•		•	•		•	•			•			•	•		•	•		•		•	•	•		•	•		•		•		•	• •			•			•	•	•	•		•	•	•	•		•	•	•	•		•	•		•	•		•	•			•		•			•		•			•		•	•		•
----------	----	---	---	---	---	---	---	---	---	---	---	--	---	---	--	---	--	---	---	--	--	--	--	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	--	--	--	---	---	---	---	---	---	---	--	---	--	--	---	--	---	--	---	--	---	--	---	--	---	---	--	---	---	--	--	---	--	--	---	---	--	---	---	--	---	--	---	---	---	--	---	---	--	---	--	---	--	---	-----	--	--	---	--	--	---	---	---	---	--	---	---	---	---	--	---	---	---	---	--	---	---	--	---	---	--	---	---	--	--	---	--	---	--	--	---	--	---	--	--	---	--	---	---	--	---

LIST OF FIGURES

Figure 1.1	2007 consumption of plastics in the world2
Figure 1.2	Projected world PE demand up to 20203
Figure 1.3	Crystal Structure of Polyethylene according to Bensason et al7
Figure1.4	Monometallic structure versus bimetallic structure13
Figure 1.5	Cossee's mechanism of ethylene polymerization14
Figure 1.6	Kinetic scheme for Ziegler-Natta polymerization16
Figure 1.7	General structure of $[M_3O(RCOO)_6L_3]^+$ 20
Figure 2.1	Optical micrographs of complexes41
Figure 2.2	Phenom SEM imaging of complexes42
Figure 2.3	TGA thermogram of [Cr ₃ O(Cl ₃ CCO ₂) ₆ .2H ₂ O]Cl ₃ CCO ₂ .3H ₂ O45 in nitrogen atmosphere
Figure 2.4	TGA thermogram of [Cr ₃ O(Cl ₃ CCO ₂) ₆ .3H ₂ O]NO ₃ H ₂ O46 in nitrogen atmosphere
Figure 2.5	FTIR spectrum of [Cr ₃ O(Cl ₃ CCO ₂) ₆ .2H ₂ O]Cl ₃ CCO ₂ .3H ₂ O51
Figure 2.6	FTIR spectrum of [Cr ₃ O(F ₃ CCOO) ₆ .3H ₂ O]NO ₃ .H ₂ O52
Figure 2.7	Thermal ellipsoid plot of [Cr ₃ O(CCl ₃ CO ₂) ₆ .2H ₂ O]CCl ₃ CO ₂ .3C ₂ H ₃ N59
Figure 2.8	Unit cell plot of $[Cr_3O(F_3CCO_2)_6.3H_2O]NO_3.H_2O67$
Figure 2.9	cationic moiety plot of [Cr ₃ O(F ₃ CCO ₂) ₆ .3H ₂ O]NO ₃ .H ₂ O68
Figure 3.1	Layout of Parr Reactor
Figure 4.1	A plot of monomer pressure vs. reaction time for the
Figure 4.2	A plot of ln P versus reaction time for ethylene polymerization96
Figure 4.3	Plot of experimental yield versus theoretical yield using $[Cr_3O(F_3CCO_2)_{6.}3H_2O]NO_3.H_2O / AlEt_2Cl catalyst system98 Cr/Al ratio = 1/30$
Figure 4.4	Plot of the effect of initial monomer pressure versus polymer99 yield using [Cr ₃ O(F ₃ CCO ₂) ₆ .3H ₂ O]NO ₃ .H ₂ O / AlEt ₂ Cl catalyst system and Cr/Al ratio of 1/30

Figure 4.5	Plot of accumulative yield versus reaction time using100 $[Cr_3O(F_3CCO_2)_6.3H_2O]NO_3.H_2O / AlEt_2Cl catalyst system with Cr/Al ratio of 1/50 and initial monomer pressures of 93, 286, 445, 869 and 1083 kPa respectively$
Figure 4.6	Effect of initial monomer pressure on the polymerization102 of ethylene using $[Cr_3O(F_3CCO_2)_6.3H_2O]NO_3.H_2O / AlEt_2Cl$ catalyst system with temperature of 40°C, stirrer speed of 300 rpm Cr/Al ratio of 1/50 and initial monomer pressure of 93, 286, 445, 869 and 1083 kPa respectively
Figure 4.7	Plot of intercept (c) from the graph ($\ln P = -kt + c$)103 versus the calculated value of $\ln P_i$, where P_i is the initial monomer pressure of the polymerization.
Figure 4.8	Effect of pressure on catalyst activity, temperature of 40 $^{\circ}$ C,104 Al /Cr ratio of 45 using [Cr ₃ O(F ₃ CCO ₂) ₆ .3H ₂ O]NO ₃ .H ₂ O / AlEt ₂ Cl catalyst system
Figure 4.9	Kinetic curves of ethylene polymerization at 40° C,107 Al /Cr ratio = 45, stirrer speed of 300 rpm and variable initial ethylene pressures using [Cr ₃ O(F ₃ CCO ₂) ₆ .3H ₂ O]NO ₃ .H ₂ O / AlEt ₂ Cl catalyst system
Figure 4.10	Initial catalytic activity as a function of Al / Cr109 ratio for the polymerization of ethylene at 40 $^{\circ}$ C, stirrer speed of 300 rpm and constant initial ethylene pressure using [Cr ₃ O(F ₃ CCO ₂) ₆ .3H ₂ O]NO ₃ .H ₂ O / AlEt ₂ Cl catalytic system
Figure 4.11	Kinetic curves of ethylene polymerization at 40 °C,110 stirrer speed of 300 rpm, constant initial ethylene pressure and variable A1 /Cr ratios using [Cr ₃ O(F ₃ CCO ₂) ₆ .3H ₂ O]NO ₃ .H ₂ O / AlEt ₂ Cl catalytic system
Figure 4.12	(a) Optical micrograph, (b) PHENOM SEM imaging at112 magnification of 4050 of the polyethylene from $[Cr_3O(F_3CCO_2)_6.3H_2O]NO_3.H_2O$ / AlEt ₂ Cl catalytic system
Figure 4.13	FTIR spectrum of PE obtained from
Figure 4.14	A representative TGA thermogram of the decomposition119 of high density polyethylene in nitrogen; Al / Cr ratio = 30; $P=730 \text{ kPa}$; $T = 40 ^{\circ}\text{C}$; reaction time = 60 min using $[Cr_3O(F_3CCO_2)_6.3H_2O]NO_3.H_2O / AlEt_2Cl catalytic system$

Figure 4.15	Effect of the initial monomer pressure on the first DSC122 scan of polyethylene samples produced at Al / Cr ratio = 30; $P_i = 500, 730, 384, 825, 913$ and 855 kPa respectively from bottom to the top; T = 40 °C; reaction time = 60 min using [Cr ₃ O(F ₃ CCO ₂) ₆ .3H ₂ O]NO ₃ .H ₂ O / AlEt ₂ Cl catalytic system
Figure 4.16	Effect of the initial monomer pressure on the cooling
Figure 4.17	Effect of the initial monomer pressure on the second124 DSC scan of polyethylene samples produced at Al / Cr ratio = 30; $P_i = 500, 730, 384, 825, 913$ and 855 kPa respectively from bottom to the top; T = 40 °C; reaction time = 60 min using [Cr ₃ O(F ₃ CCO ₂) ₆ .3H ₂ O]NO ₃ .H ₂ O / AlEt ₂ Cl catalytic system
Figure 4.18	Effect of various Al / Cr ratios on the first DSC
Figure 4.19	Effect of various Al / Cr ratios on the cooling DSC126 scan of polyethylene samples produced at Al / Cr ratio = 20, 35, 50, 45 and 30 respectively; $P_{i\approx} 855 \text{ kPa}$ from the top to the bottom using [Cr ₃ O(F ₃ CCO ₂) ₆ .3H ₂ O]NO ₃ .H ₂ O / AlEt ₂ Cl catalytic system reaction, at T = 40 °C and 60 min reaction time
Figure 4.20	Effect of various Al / Cr ratios on the second DSC127 scan of polyethylene samples produced at Al / Cr ratio = 20, 35, 50, 45 and 30 respectively; $P_{i \approx} 855$ kPa from bottom to the top using [Cr ₃ O(F ₃ CCO ₂) ₆ .3H ₂ O]NO ₃ .H ₂ O / AlEt ₂ Cl catalytic system reaction, at T = 40 °C and 60 min reaction time
Figure 4.21	Effect of temperature on the storage modulus of PE138 with various initial monomer pressures, Al / Cr ratio of 30, reaction time = 60 min, T = 40 °C, catalytic system: $[Cr_3O(F_3CCO_2)_6.3H_2O]NO_3.H_2O$ / AlEt ₂ Cl
Figure 4.22	Effect of temperature on the stiffness of PE139 with various initial monomer pressures, Al / Cr ratio = 30, reaction time = 60 min, T = 40 °C catalytic system: $[Cr_3O(F_3CCO_2)_6.3H_2O]NO_3.H_2O / AlEt_2Cl$
Figure 4.23	Effect of temperature on the loss modulus of PE140 with various initial monomer pressures, Al / Cr ratio = 30, reaction time = 60 min, T = 40 °C catalytic system: $[Cr_3O(F_3CCO_2)_{6.}3H_2O]NO_3.H_2O / AlEt_2Cl$

Figure 4.24	Effect of temperature on the Tan Delta of PE
Figure 4.25	Effect of temperature on the complex viscosity of PE142 with various initial monomer pressures, Al / Cr ratio = 30, reaction time = 60 min, T = 40 °C, catalytic system: $[Cr_3O(F_3CCO_2)_6.3H_2O]NO_3.H_2O / AlEt_2Cl$
Figure 4.26	¹ H- NMR spectrum obtained from highly crystalline145 PE samples, produced at 40° C, stirrer speed of 300 rpm in 60 min reaction time using [Cr ₃ O(F ₃ CCO ₂) ₆ .3H ₂ O]NO ₃ .H ₂ O / AlEt ₂ Cl catalytic system
Figure 4.27	13 C- NMR spectrum obtained from highly crystalline PE146 samples, produced at 40°C, stirrer speed of 300 rpm in 60 min reaction time using [Cr ₃ O(F ₃ CCO ₂) ₆ .3H ₂ O]NO ₃ .H ₂ O / AlEt ₂ Cl catalytic system
Figure 4.28	Second type of ¹ H- NMR spectrum obtained from PE147 samples, produced at 40° C, stirrer speed of 300 rpm in 60 min reaction time using [Cr ₃ O(F ₃ CCO ₂) ₆ .3H ₂ O]NO ₃ .H ₂ O / AlEt ₂ Cl catalytic system
Figure 4.29	Second type of ¹³ C- NMR spectrum obtained from PE148 samples, produced at 40°C, stirrer speed of 300 rpm in 60 min reaction time using $[Cr_3O(F_3CCO_2)_6.3H_2O]NO_3.H_2O / AlEt_2Cl$ catalytic system
Figure 5.1	Homopolymerization of ethylene with initial
Figure 5.2	Plot of ln P as a function of reaction time for the156 polymerization of ethylene
Figure 5.3	Accumulative polymer yield as a function of reaction157 time, using $[Cr_3O(Cl_3CCO_2)_6.2H_2O]Cl_3CCO_2.3H_2O$ / AlEt ₂ Cl catalytic system with initial monomer pressure of 672 kPa, Al / Cr = 45, reaction temperature = 40 °C, aging time = 40 minutes.
Figure 5.4	Kinetic curve for ethylene polymerization, using

Figure 5.5	Polyethylene yield versus initial monomer pressure,
Figure 5.6	Accumulative yield versus reaction time, at
Figure 5.7	Maximum initial activity versus initial monomer pressure,
Figure 5.8	Drop in ethylene pressure versus reaction time,
Figure 5.9	Kinetic curves for ethylene polymerization,
Figure 5.10	Optical micrograph of PE from162 $[Cr_3O(Cl_3CCO_2)_{6.}2H_2O]Cl_3CCO_2.3H_2O / AlEt_2Cl catalytic system.$
Figure 5.11	A representative FTIR spectrum of polyethylene
Figure 5.12	A representative thermogram for the decomposition of
Figure 5.13	A representative DSC first scan of polyethylene produced169 using $[Cr_3O(Cl_3CCO_2)_6.2H_2O]Cl_3CCO_2.3H_2O / AlEt_2Cl catalytic system$
Figure 5.14	A representative DSC cooling scan of polyethylene produced170 using [[$Cr_3O(Cl_3CCO_2)_{6.}2H_2O$] $Cl_3CCO_2.3H_2O$ / AlEt ₂ Cl catalytic system.
Figure 5.15	A representative DSC rescanning of polyethylene produced171 using $[Cr_3O(Cl_3CCO_2)_6.2H_2O]Cl_3CCO_2.3H_2O / AlEt_2Cl catalytic system.$

Figure 5.16	Effect of temperature on storage modulus of PE175 samples produced at various initial monomer pressures using [Cr ₃ O(Cl ₃ CCO ₂) ₆ .2H ₂ O]Cl ₃ CCO ₂ .3H ₂ O / AlEt ₂ Cl catalytic system
Figure 5.17	Effect of temperature on stiffness of PE
Figure 5.18	Effect of temperature on loss modulus of PE177 samples produced at various initial monomer pressures using [Cr ₃ O(Cl ₃ CCO ₂) ₆ .2H ₂ O]Cl ₃ CCO ₂ .3H ₂ O / AlEt ₂ Cl catalytic system
Figure 5.19	Effect of temperature on Tan Delta of PE178 samples produced at various initial monomer pressures using [Cr ₃ O(Cl ₃ CCO ₂) ₆ .2H ₂ O]Cl ₃ CCO ₂ .3H ₂ O / AlEt ₂ Cl catalytic system
Figure 5.20	Effect of temperature on the complex viscosity of PE179 samples produced at various initial monomer pressure susing [Cr ₃ O(Cl ₃ CCO ₂) ₆ .2H ₂ O]Cl ₃ CCO ₂ .3H ₂ O / AlEt ₂ Cl catalytic system
Figure 5.21	¹ H- NMR spectra obtained from PE
Figure 5.22	 ¹³C- NMR spectra obtained from PE

LIST OF TABLES

Table 1.1	Summary of commercial polyethylene
Table 2.1	Changes in ratio of reactants, refluxing time
Table 2.2	Changes in ratio of reactants, refluxing time
Table 2.3	Analytical data of Complex 1 and Complex 244
Table 2.4	TGA data of chromium(III) oxo-centered carboxylate complexes48
Table 2.5	Infrared frequencies of the two trinuclear oxo-centered49 carboxylate complexes
Table 2.6	Effective magnetic moment per metal atom of56 chromium(III) carboxylate complexes at 297K.
Table 2.7	Single-crystal X- ray data for both chromium(III)57 carboxylate complexes
Table 2.8	Fractional atomic coordinates and isotropic
Table 2.9	Atomic displacement parameters (\AA^2) of
Table 2.10	Geometric parameters (Å, °) of
Table 2.11	Hydrogen-bond geometry (Å, °) of
Table 2.12	Atomic coordinates (x 10^{-4}) and equivalent isotropic
Table 2.13	Bond lengths (Å) and angles (°) for
Table 2.14	Anisotropic displacement parameters (Å x 10^{-3})
Table 3.1	Specification of the reagents used in experiments79
Table 3.2	Specification of the gases used in experiments
Table 4.1	Kinetic data of a typical polymerization reaction

Table 4.2	Polymerization data from variable initial
Table 4.3	Effect of monomer pressure on reaction rate102
Table 4.4	Catalyst activity obtained at various initial104 monomer pressures (P _i)
Table 4.5	Catalyst activity obtained at various Al / Cr ratios108
Table 4.6	Bands assignments for FTIR spectra of polyethylene115 at various initial monomer pressures using [Cr ₃ O(F ₃ CCO ₂) ₆ .3H ₂ O]NO ₃ .H ₂ O / AlEt ₂ Cl catalytic system.
Table 4.7	Absorbance ratio of polyethylene at various
Table 4.8	Absorbance ratio of polyethylene at various Al / Cr ratio116
Table 4.9	DSC data for HDPE samples obtained
Table 4.10	DSC data for HDPE samples obtained at variable
Table 4.11	Hardness data of HDPE samples obtained at constant
Table 4.12	Hardness data of HDPE samples prepared at variable131 Al / Cr ratios and similar initial monomer pressure
Table 4.13	Density data and comparison of degree of crystallinity
Table 5.1	Catalyst activity and polymer yield at various158 initial monomer pressures
Table 5.2	Band assignments for FTIR spectra of polyethylene164 produced at various initial monomer pressures using $[Cr_3O(Cl_3CCO_2)_6.2H_2O]Cl_3CCO_2.3H_2O / AlEt_2Cl$ catalytic system
Table 5.3	Absorbance ratio of polyethylene produced at164 various initial monomer pressures using [Cr ₃ O(Cl ₃ CCO ₂) ₆ .2H ₂ O]Cl ₃ CCO ₂ .3H ₂ O / AlEt ₂ Cl catalytic system

Table 5.4	DSC data for polyethylene produced at
Table 5.5	Hardness data of PE samples produced at constant
Table 5.6	Density data of PE samples produced at constant

LIST OF ABBREVIATIONS

Al/Cr	aluminum/chromium ratio
DMA	dynamic mechanical analysis
DSC	differential scanning calorimetry
ΔH	melting enthalphy (J/g)
Ε'	storage modulus (Pa)
E"	loss modulus (Pa)
FTIR	Fourier transfer infrared spectroscopy
HDPE	high density polyethylene
ki	Initiation Rate Constant
kp	Propagation Rate Constant
kt	Termination Rate Constant
LDPE	low density polyethylene
LLDPE	Linear Low Density Polyethylene
${M_u}^*$	Complex Viscosity (MPa.sec)
NMR	nuclear magnetic resonance spectroscopy
PE	polyethylene
Р	Pressure (kPa)
R	universal gas constant
SEM	scanning electron microscopy
Т	temperature(°C)
Tg	Glass transition
TGA	Thermogravimetry analyses
Tm	melt temperature (°C)
Tc	Crystallization Temperature (°C)
Tan delta (Tan δ)	Ratio of the Loss Modulus (E'') and Storage Modulus (E')
X_c^{-1}	Crystallinity estimated from the DSC data
X _g	mass susceptibility
X _m	molar susceptibility
$M_{\rm w}$	molecular weight of the chromium complexes
$X_m^{\ \ corr}$	corrected molar susceptibility
X _{dia}	diamagnetic susceptibility
W _c	Crystallinity estimated from the density
Z-N	Ziegler-Natta

α	Alpha Transition
β	Beta Transition
γ	Gamma transition
ρ	polymer density
$\mu_{\rm eff}$	magnetic susceptibility of the chromium complex