TABLE OF CONTENTS

ABST	TRACT	ii
ABST	TRAK	v
ACK	NOWLEDGEMENTS	ix
TABI	LE OF CONTENTS	х
LIST	OF ABBREVIATIONS	xviii
LIST	OF TABLES	xix
LIST	OF FIGURES	xxiii
LIST	OF PLATES	xxix
CHA	PTER 1 INTRODUCTION	
1.1	Background	1
1.2	Effects of Used Lubricating Oil on Human Health	3
1.3	Bioremediation of Contaminated Soil	4
1.4	Objectives	9
CHA	PTER 2 LITERATURE REVIEW	
2.1	Nature of Petroleum Hydrocarbon	10
2.1	Impact of Weathering on Petroleum Composition	12
2.3	Environmental Pollutants and their Biodegradability	15
2.4	Biodegradation of Petroleum Hydrocarbons	18
	2.4.1 Microbial Degradation of Hydrocarbons	19
	2.4.2 Causes of Biodegradation	23
2.5	Chemistry of Petroleum Hydrocarbon xi	24

2.6	Biode	gradation of Di	fferent Hydrocarbons Fractions	30
	2.6.1	Light Hydroc	arbons	31
	2.6.2	Biodegradatio	on Effects on C_{15+} Aliphatic Hydrocarbons	32
	2.6.3	Microbial deg	radation of Polycyclic Aromatic Hydrocarbons	
		(PAHs) in soi	ls	33
	2.6.4	Biodegradatic	on of Aromatic Hydrocarbons	34
		2.6.4.1	Biodegradation of Benzene	35
		2.6.4.2	Biodegradation of Alkylbenzenes	38
2.7	Factor	rs influencing n	nicrobial degradation of hydrocarbon	40
	2.7.1	Bioavailabilit	y of the hydrocarbon contaminant	40
	2.7.2	Chemical con	position of hydrocarbon	41
	2.7.3	Physical state	of the oil or hydrocarbons	42
	2.7.4	Concentration	of Petroleum hydrocarbon	44
	2.7.5	Temperature		45
	2.7.6	Oxygen		47
	2.7.7	Nutrients		49
	2.7.8	pН		50
2.8	Reme	diation strategie	es	51
	2.8.1	In situ soil va	pour extraction	52
	2.8.2	In situ steam	njection vapour extraction	52
	2.8.3	Air sparging		53
	2.8.4	Excavation		53
	2.8.5	Monitored na	tural attenuation	54

	2.8.6	Bioremediati	on strategies	56
		2.8.6.1	In-situ bioremediation technologies	57
		2.8.6.2	Biostimulation	62
		2.8.6.3	Composting bioremediation	63
		2.8.6.4	Bioaugmentation	66
2.10	Kineti	ic of Biodegrad	ation Process	69
2.11	Conta	minated soil to	xicity	73
2.12	Phyto	remediation of	hydrocarbon-contaminated soil	75
	2.12.1	Methods of p	hytoremediation application	77
	2.12.2	Enhancement	of Phytoremediation	80
	2.12.3	Factors affect	ing phytoremediation	81
2.13	Mecha	anisms of Phyte	premediation	84
	2.13.1	Phytodegrada	tion	86
	2.13.2	Rhizodegrada	ation	97
	2.13.3	9 Phytoextracti	on	92
	2.13.4	Phytovolatiliz	zation	94
	2.13.5	6 Phytostabiliz	ation	95
2.14	Jatrop	oha curcas		96
2.15	Hibiso	cus cannabinus	L. (Kenaf)	97

CHAPTER 3 MATERIALS AND METHODS

3.1	Collection of samples	100
3.2	Organic wastes utilized in this study	100

	3.2.1	Banana skin	101
	3.2.2	Brewery Spent Grain	102
	3.2.3	Spent Mushroom Compost	103
3.3	Metho	dology used for biostimulation studies under laboratory	
	Condi	tions	105
	3.3.1	Microcosm Set-up Description	105
	3.3.2	Sampling	105
	3.3.3	Physicochemical properties determination of soil and	
		organic wastes	106
	3.3.4	Total Petroleum Hydrocarbon Determination	106
	3.3.5	Gravimetric measurement of used lubricating oil	
		loss in soil (Biodegradation)	107
	3.3.6	Enumeration and Identification of Bacteria in Soil	107
	3.3.7	Measurement of CO ₂ evolution from contaminated soil	
		amended with organic wastes	109
	3.3.8	Germination toxicity test of remediated soil	110
3.4	Metho	dology used for biostimulation studies under natural conditions	111
	3.4.1	Sampling and analysis	112
3.5	Metho	dology used for phytoremediation studies	112
	3.5.1	Determination of physicochemical Properties of Soil and	
		Organic Wastes	112
	3.5.2	Phytoremediation with Jatropha curcas under laboratory	
		condition and under natural conditions	113

	3.5.3	Phytoremediation with Hibiscus cannabinus under laboratory	
		condition and under natural conditions	114
	3.5.4	Sampling and analysis of samples	115
	3.5.5	Rate of metal uptake by Jatropha curcas and	
		Hibiscus cannabinus under laboratory condition	116
	3.5.6	Isolation and identification of hydrocarbon utilizing bacteria	116
	3.5.7	Measurement of oil loss in phytoremediated soil	117
3.6	Biode	gradation studies with microorganisms isolated from oil	
	contar	ninated and non-contaminated soil	117
	3.6.1	Isolation and identification of microorganisms	118
	3.6.2	Biodegradation studies with the microbial isolates	119
3.7	Statist	ical analysis	120
CHAI	PTER 4	RESULTS AND DISCUSSION	
4.1	Result	s of biostimulation studies	121
	4.1.1	Physicochemical properties of soil and organic wastes	121
	4.1.2	Biodegradation of used lubricating oil (15% oil pollution)	122
	4.1.3	Biodegradation of used lubricating oil (10% oil pollution)	128
	4.1.4	Biodegradation of used lubricating oil (5% oil pollution)	132
	4.1.5	Biodegradation rate constant and half life of used oil in soil	
		contaminated with 15%, 10% and 5% used lubricating oil	136
	4.1.6	Microbial counts in soil contaminated with 15%	
		used lubricating oil	140
	4.1.7	Microbial counts in soil contaminated with 10%	

		used lubricating oil	145
	4.1.8	Microbial counts in soil contaminated with 5%	
		used lubricating oil	149
	4.1.9	CO_2 evolution in soil contaminated with 15% 10% and 5%	
		used lubricating oil	155
	4.1.10	Correlation between CO ₂ evolution and oil biodegradation	159
	4.1.11	pH of soil contaminated with 5%, 10% and 15%	
		used lubricating oil	164
	4.1.12	Germination toxicity test	168
4.2	Result	s of biostimulation studies conducted for 12 months at the	
	experi	mental site exposed to sunlight and rainfall	172
	4.2.1	Biodegradation of used lubricating oil	172
	4.2.2	Biodegradation of hydrocarbon fractions	175
		4.2.2.1 Biodegradation of $C_7 - C_9$ fractions in	
		used lubricating oil	176
		4.2.2.2 Biodegradation of $C_{10} - C_{14}$ fractions in	
		used lubricating oil	178
		4.2.2.3 Biodegradation of $C_{15} - C_{28}$ fractions in	
		used lubricating oil	180
		4.2.2.4 Biodegradation of $C_{29} - C_{36}$ fractions in	
		used lubricating oil	184
		4.2.2.5 Biodegradation of PAHs in used lubricating oil	185
	4.2.3	Microbial counts in used lubricating oil contaminated soil	188

4.3	Result	s of phytoremediation studies with Jatropha curcas carried	
	out un	der laboratory conditions	191
	4.3.1	Response of plants to the oil	191
	4.3.2	Loss of used lubricating oil in soil contaminated with	
		2.5% and 1% oil	193
	4.3.3	Uptake of oil by Jatropha	195
	4.3.4	Bacterial counts	196
	4.3.5	Uptake of Heavy metals by Jatropha curcas	199
	4.3.6	Rate of metal uptake by Jatropha curcas under	
		laboratory condition	206
	4.3.7	Bioconcentration and translocation factors of metals in	
		Jatropha curcas	207
	4.3.8	pH of soil in Jatropha remediation soil under laboratory	
		Condition	210
4.4	Result	s of phytoremediation studies with Jatropha curcas exposed to	
	sunlig	ht and rainfall	212
	4.4.1	Response of plants to the oil	212
	4.4.2	Loss of used lubricating oil in soil contaminated with	
		2.5% and 1% oil	212
	4.4.3	Uptake of oil by Jatropha	215
	4.4.4	Bacterial counts	216
	4.4.5	Uptake of Heavy metals by Jatropha curcas	219
	4.4.6	Rate of metal uptake by Jatropha curcas under natural	
		Condition	224

	4.4.7	Bioconcentration and translocation factors of metals in	
		Jatropha curcas	225
	4.4.8	pH of soil in Jatropha remediation soil exposed to sunlight	
		and rainfall	228
4.5	Result	s of phytoremediation with Hibiscus cannabinus exposed	
	to sunl	ight and rainfall	230
	4.5.1	Loss of used lubricating oil in soil	231
	4.5.2	Bacterial counts	233
	4.5.3	Uptake of oil and metals by Hibiscus cannabinus	237
	4.5.4	Rate of metal uptake by Hibiscus cannabinus	241
	4.5.5	Bioconcentration and translocation factors of metals in	
		Hibiscus cannabinus	243
	4.5.6	pH of soil in Hibiscus cannabinus remediation	245
4.6	Result	s of biodegradation test with bacteria and yeast	
	isolate	d from oil contaminated soil	247
	4.6.1	Biodegradation of hydrocarbon fractions in used lubricating oil	249
4.7	Compa	rison of biostimulation and phytoremediation of	
	used lu	bricating oil contaminated soil	253
4.8	Compa	rison of Jatropha and Hibiscus phytoremediation results	253
4.9	Genera	al Discussion	254
CHAF	TER 5	CONCLUSION	260
REFE	RENC	ES	263
APPE	NDIX 1	Chemical composition of car engine base oil	313
APPE	NDIX 2	Publications	314

LIST OF ABBREVIATIONS

AHB Aerobic Heterotrophic Bacteria BCF **Bioconcentration factor** BS Banana Skin BSG Brewery Spent Grain Benzene, Toluene, Ethyl benzene and Xylenes BTEX CFU **Colony Forming Unit** HUB Hydrocarbon Utilizing Bacteria **ICP-OES** Inductively Coupled Plasma-Optical Emission Spectroscopy In-situ Bioremediation ISB Monitored Natural Attenuation MNA MSM Mineral Salt Medium PAH Polyaromatic Hydrocarbon SMC Spent Mushroom Compost Soil Vapour Extraction SVE TF **Translocation Factor** TPH Total Petroleum Hydrocarbon VOC Volatile Organic Compound

LIST OF TABLES

Table 2.1	Effects of Pollution and those Affected	17
Table 2.2	Genera of Microorganisms Reported to utilize petroleum	
	Fractions for Growth	21
Table 2.3	Examples of in-situ Bioremediation Technologies for Treating Contaminated soil	60
Table 2.4	Advantages and disadvantages of Phytoremediation over	
	Traditional Technologies	76
Table 2.5	Examples of Plants used for Phytoremediation of Organic	
	Contaminants	79
Table 3.1	Chemical Composition (% dray matter) of the Banana Skin	101
Table 3.2	Experimental Design of Phytoremediation	114
Table 4.1	Physicochemical Properties of Soil and Organic Wastes used for Bioremediation	121
Table 4.2	Net percentage Loss of Total Petroleum Hydrocarbon (TPH) in	
	Soil Contaminated with 15% used Lubrication Oil Amended	
	with 10% Organic Wastes	127
Table 4.3	Net Percentage Loss of TPH in Soil Contaminated with 15%	
	Used Lubricating Oil Amended with 5% Organic Wastes	127
Table 4.4	Net Percentage Loss of TPH in Soil Contaminated with 10%	
	Used Lubricating Oil Amended with 10% Organic Wastes	131
Table 4.5	Net Percentage Loss of TPH in Soil Contaminated with 10%	
	Used Lubricating Oil Amended with 5% Organic Wastes	132
Table 4.6	Net Percentage Loss of TPH in Soil Contaminated with 5%	
	Used Lubricating Oil Amended with 10% Organic Wastes	135
Table 4.7	Net Percentage Loss of TPH in Soil Contaminated with 5%	

	Used Lubricating Oil Amended with 5% Organic Wastes	136
Table 4.8	Biodegradation Rate and Half life of Hydrocarbon in Oil	
	polluted Soil Amended with 10% Organic Wastes	137
Table 4.9	Biodegradation Rate and Half life of Hydrocarbon in Oil polluted Soil Amended with 5% Organic Wastes	139
Table 4.10	Concentration of CO_2 (mg) in Soil Treated with 15% Used Lubricating Oil and Amended with Organic Wastes	156
Table 4.11	Concentration of CO_2 (mg) in Soil Treated with 10% Used Lubricating Oil and Amended with Organic Wastes	157
Table 4.12	Concentration of CO_2 (mg) in Soil Treated with 5% Used Lubricating Oil and Amended with Organic Wastes	158
Table 4.13	Seed Germination (%) Toxicity Test	169
Table 4.14	Seed Germination Toxicity Index (%)	171
Table 4.15	Concentrations (mg/kg) of C ₇ -C ₉ Fractions in Soil Contaminated with 5%, 10% and 15% used Lubricating Oil	177
Table 4.16	Concentrations (mg/kg) of C_{10} - C_{14} Fractions in Soil Contaminated with 5%, 10% and 15% used Lubricating Oil	179
Table 4.17	Concentrations (mg/kg) of C_{15} - C_{28} Fractions in Soil Contaminated with 5%, 10% and 15% used Lubricating Oil	182
Table 4.18	Concentrations (mg/kg) of C_{29} - C_{36} Fractions in Soil Contaminated with 5%, 10% and 15% used Lubricating Oil	184
Table 4.19	PAH _s Concentration in Used Lubricating Oil	185
Table 4.20	PAH_S Concentration in Soil Contaminated with 5%, 10% and	
	15% Used Lubricating Oil after 12 Months Remediation	187
Table 4.21	Heavy metal Concentrations of Used Lubricating Oil, Unpolluted Soil (used for phytoremediation) and Soil Contaminated with 1% and 2.5% Oil before Remediation	200

Table 4.22	Residual Mental Concentration in Soil Remediated with Jatropha curcas under Laboratory Condition after 180 days	201
Table 4.23	Heavy Metal Contents in Root of Jatropha Curcas in Soil Contaminated with 2.5% and 1% Used Lubricating Oil	202
Table 4.24	Heavy Metal Contents in Steam of Jatropha Curcas in Soil Contaminated with 2.5% and 1% Used Lubricating Oil	203
Table 4.25	Heavy Metal Contents in Leaves of Jatropha Curcas in Soil Contaminated with 2.5% and 1% Used Lubricating Oil	204
Table 4.26	Rate of Uptake of Fe and Zn by Jatropha Curcas studied under Laboratory	207
Table 4.27	Bioconcentartion (BCF) and translocation (TF) of Zinc in Jatropha Remediated Soil	208
Table 4.28	Bioconcentartion (BCF) and translocation (TF) of Iron in Jatropha Remediated Soil	210
Table 4.29	Residual Metal Concentration in Soil Remediated with Jatropha curcas under simulated natural condition after 180 days	220
Table 4.30	Heavy Metal Contents in Root of Jatropha curcas in Soil Contaminated with 2.5% and 1% used Lubricating Oil	222
Table 4.31	Heavy Metal Contents in Steam of Jatropha curcas in Soil Contaminated with 2.5% and 1% used Lubricating Oil	223
Table 4.32	Rate of Uptake of Fe and Zn by Jatropha curcas studied under Natural Condition	225
Table 4.33	Bioconcentration Factor (BCF) and translocation Factor (TF) of Zn in Jatropha Remediated Soil	226
Table 4.34	Bioconcentration Factor (BCF) and translocation Factor (TF) of Fe in Jatropha Remediated Soil	227
Table 4.35	Residual Metal Concentration in Soil Remediated with	

	H. Cannabinus under Natural Condition after 90 days	238
Table 4.36	Heavy Metal Concentrations in Root of <i>H. Cannabinus</i> in Soil Contaminated with 2.5% and 1% Used Lubricating Oil	239
Table 4.37	Heavy Metal Concentrations in Steam of Hibiscus Cannabinus in Soil Contaminated with 2.5% and 1% Used Lubricating Oil	240
Table 4.38	Rate of Uptake of Fe and Zn by Hibiscus Cannabinus studied under Natural Condition	242
Table 4.39	Bioconcentration Factor (BCF) and translocation Factor (TF) of Zn in Hibiscus Remediated Soil	243
Table 4.40	Bioconcentration Factor (BCF) and translocation Factor (TF) of Fe in Hibiscus Remediated Soil	244
Table 4.41	Percentage of used lubricating oil biodegradation by microbial isolates	248
Table 4.42	Biodegradation of $C_7 - C_9$ hydrocarbon fractions by microbial isolates	250
Table 4.43	Biodegradation of $C_{10} - C_{14}$ hydrocarbon fractions by microbial isolates	251
Table 4.44	Biodegradation of $C_{15} - C_{28}$ hydrocarbon fractions by microbial isolates	252
Table 4.45	Biodegradation of $C_{29} - C_{36}$ hydrocarbon fractions by microbial isolates	252

LIST OF FIGURES

Figure 2.1	Hydrocarbons and non-hydrocarbon compounds found in crude oil	11
Figure 2.2	Pathways through which sub terminal oxidation of alkanes yield two fatty acid moieties	27
Figure 2.3	Pathway of diterminal alkane oxidation	29
Figure 2.4	Oxidation of benzene to Catechol	36
Figure 2.5	Ortho cleavage pathways for Catabolism of Catechol	37
Figure 2.6	Meta – Cleavage pathway for Catechol metabolism	38
Figure 2.7	Oxidation of toluene to Catechol by Pseudomonas aeruginosa	39
Figure 2.8	Processes of monitored natural attenuation of petroleum hydrocarbons	55
Figure 2.9	Typical serial enrichment procedures for bioaugmentation	67
Figure 2.10	Typical attenuation mechanisms possessed by plants against xenobiotic	86
Figure 2.11	Schematic representations of the enzymatic and microbial activities responsible for the enhanced remediation in rhizopheric zone	s 89
Figure 2.12	Plant degrader interactions potentially involved in Rhizodegradation	90
Figure 2.13	Rhizoremediation of petroleum hydrocarbon (PHC)	91
Figure 2.14	Phytoextraction mechanisms	94
Figure 2.15	Phytovolatization mechanisms	95
Figure 4.1	Percentage biodegradation of petroleum hydrocarbon in soil contaminated with 15% used lubricating oil amended with 10% organic wastes	123
Figure 4.2	Percentage biodegradation of petroleum hydrocarbon in soil contaminated with 15% used lubricating oil amended with	

	5% organic waste	124
Figure 4.3	Percentage biodegradation of petroleum hydrocarbon in soil contaminated with 10% used lubricating oil amended with 10% organic wastes	129
Figure 4.4	Percentage biodegradation of petroleum hydrocarbon in soil contaminated with 10% used lubricating oil amended with 5% organic wastes	129
Figure 4.5	Percentage biodegradation of petroleum hydrocarbon in soil contaminated with 5% used lubricating oil amended with 10% organic wastes	133
Figure 4.6	Percentage biodegradation of petroleum hydrocarbon in soil contaminated with 5% used lubricating oil amended with 5% organic wastes	134
Figure 4.7	Counts of aerobic heterotrophic bacteria (AHB) population in soil contaminated with 15% used lubricating oil and amended with 10% organic waste	141
Figure 4.8	Counts of AHB population in soil contaminated with 15% used lubricating oil and amended with 5% organic waste	142
Figure 4.9	Counts of hydrocarbon utilizing bacteria (HUB) population in soil contaminated with 15% used lubricating oil amended with 10% organic wastes	143
Figure 4.10	Counts of HUB population in soil contaminated with 15% used lubricating oil and amended with 5% organic waste	144
Figure 4.11	Counts of AHB population in soil contaminated with 10% used lubricating oil and amended with 10% organic waste	145
Figure 4.12	Counts of AHB population in soil contaminated with 10% used lubricating oil and amended with 5% organic waste	146
Figure 4.13	Counts of HUB population in soil contaminated with 10% used lubricating oil and amended with 10% organic waste	147

Figure 4.14	Counts of HUB population in soil contaminated with 10% used lubricating oil and amended with 5% organic waste	149
Figure 4.15	Counts of AHB population in soil contaminated with 5% used lubricating oil and amended with 10% organic waste	150
Figure 4.16	Counts of AHB population in soil contaminated with 5% used lubricating oil and amended with 5% organic waste	151
Figure 4.17	Counts of HUB population in soil contaminated with 5% used lubricating oil and amended with 10 % organic waste	152
Figure 4.18	Counts of HUB population in soil contaminated with 5% used lubricating oil and amended with 5% organic waste	153
Figure 4.19	Correlation between CO_2 evolution and oil biodegradation in 15% oil pollution	161
Figure 4.20	Correlation between CO_2 evolution and oil biodegradation in 10% oil pollution	162
Figure 4.21	Correlation between CO_2 evolution and oil biodegradation in 5% oil pollution	163
Figure 4.22	pH of soil contaminated with 15% used lubricating oil and amended with 10% organic waste	164
Figure 4.23	pH of soil contaminated with 10% used lubricating oil and amended with 10% organic waste	165
Figure 4.24	pH of soil contaminated with 5% used lubricating oil and amended with 10% organic waste	166
Figure 4.25	pH of soil contaminated with 15% used lubricating oil and amended with 5% organic waste	167
Figure 4.26	pH of soil contaminated with 10% used lubricating oil and amended with 5% organic waste	167
Figure 4.27	pH of soil contaminated with 5% used lubricating oil and	

	amended with 5% organic waste	168
Figure 4.28	Percentage biodegradation of TPH in soil contaminated with 15% used lubricating oil	172
Figure 4.29	Percentage biodegradation of TPH in soil contaminated with 10% used lubricating oil	174
Figure 4.30	Percentage biodegradation of TPH in soil contaminated with 5% used lubricating oil	174
Figure 4.31	Counts of HUB in soil contaminated with 15% used lubricating oil	188
Figure 4.32	Counts of HUB in soil contaminated with 10% used lubricating oil	189
Figure 4.33	Counts of HUB in soil contaminated with 5% used lubricating oil	190
Figure 4.34	Percentage biodegradation of used lubricating oil in soil contaminated with 2.5% used lubricating oil	194
Figure 4.35	Percentage biodegradation of used lubricating oil in soil contaminated with 1% used lubricating oil	195
Figure 4.36	Counts of AHB in soil contaminated with 2.5% used lubricating oil	197
Figure 4.37	Counts of AHB in soil contaminated with 1% used lubricating oil	198
Figure 4.38	Counts of HUB population in soil contaminated with 2.5% used lubricating oil	198
Figure 4.39	Counts of HUB population in soil contaminated with 1% used lubricating oil	199
Figure 4.40	pH of soil contaminated with 2.5% used lubricating oil remediated with and Jatropha	211

Figure 4.41	pH of soil contaminated with 1% used lubricating oil and remediated with Jatropha	211
Figure 4.42	Percentage biodegradation of used lubricating oil in soil contaminated with 2.5% oil	214
Figure 4.43	Percentage biodegradation of used lubricating oil in soil contaminated with 1% oil	215
Figure 4.44	Counts of AHB in soil contaminated with 2.5% used lubricating oil	216
Figure 4.45	Counts of AHB in soil contaminated with 1% used lubricating oil	217
Figure 4.46	Counts of HUB in soil contaminated with 2.5% used lubricating oil	218
Figure 4.47	Counts of HUB in soil contaminated with 1% used lubricating oil	219
Figure 4.48	pH of soil contaminated with 2.5% used lubricating oil remediated with Jatropha	228
Figure 4.49	pH of soil contaminated with 1% used lubricating oil remediated with Jatropha	229
Figure 4.50	Percentage biodegradation of used lubricating oil in soil contaminated with 2.5% oil and remediated with Hibiscus	232
Figure 4.51	Percentage biodegradation of used lubricating oil in soil contaminated with 1% oil and remediated with Hibiscus	233
Figure 4.52	Counts of AHB in soil contaminated with 2.5% used lubricating oil	234
Figure 4.53	Counts of AHB in soil contaminated with 1% used lubricating oil	235
Figure 4.54	Counts of HUB in soil contaminated with 2.5% used	

	lubricating oil	236
Figure 4.55	Counts of HUB in soil contaminated with 1% used lubricating oil	236
Figure 4.56	pH of soil contaminated with 2.5% used lubricating oil remediated with <i>Hibiscus cannabinus</i>	245
Figure 4.57	pH of soil contaminated with 1% used lubricating oil remediated with <i>Hibiscus cannabinus</i>	246

LIST OF PLATES

Plate 2.1	Picture of Jatropha curcas plant and seed	97
Plate 2.2	Hibiscus cannabinus	98
Plate 3.1	Dry banana skin used for bioremediation	102
Plate 3.2	Brewery spent grain used for bioremediation	103
Plate 3.3	Spent mushroom compost used for bioremediation	104
Plate 4.1	J. curcas used for phytoremediation	192
Plate 4.2	<i>H. cannabinus</i> used for phytoremediation of soil contaminated with used lubricating oil	230