
Appendix 2A 
 

Text 1 – Coding of Sentences 
 
4.1 INTRODUCTION 
T1/INT/S1 Suppose that you need to print a string (e.g., "Welcome to Java!") a hundred times. 
T1/INT/S2 It would be tedious to have to write the following statement a hundred times: 
T1/INT/S3 Java provides a powerful control structure called a loop that controls how many times an operation or a sequence of operations is 

performed in succession. 
T1/INT/S4 Using a loop statement, you simply tell the computer to print a string a hundred times without having to code the print statement a 

hundred times. 
T1/INT/S5 Loops are structures that control repeated executions of a block of statements. 
T1/INT/S6 The concept of looping is fundamental to programming. 
T1/INT/S7 Java provides three types of loop statements: while loops, do-while loops, and for loops. 
4.2 THE WHILE LOOP 
T1/WL/S1 The syntax for the while loop is as follows: 
T1/WL/S2 The while loop flow chart is shown in Figure 4.1(a). 
T1/WL/S3 The part of the loop that contains the statements to be repeated is called the loop body. 
T1/WL/S4 A one-time execution of a loop body is referred to as an iteration of the loop. 
T1/WL/S5 Each loop contains a loop-continuation condition, a Boolean expression that controls the execution of the body. 
T1/WL/S6 It is always evaluated before the loop body is executed. 
T1/WL/S7 If its evaluation is true, the loop body is executed.  
T1/WL/S8 If its evaluation is false, the entire loop terminates and the program control turns to the statement that follows the while loop. 
T1/WL/S9 For example, the following while loop prints "Welcome to Java!" a hundred times. 
T1/WL/S10 The flow chart of the preceding statement is shown in Figure 4.1(b). 
T1/WL/S11 The variable count is initially 0. 
T1/WL/S12 The loop checks whether (count < 100) is true. 
T1/WL/S13 If so, it executes the loop body to print the message "Welcome to Java!" and increments count by 1. 
T1/WL/S14 It repeatedly executes the loop body until (count < 100) becomes false. 
T1/WL/S15 When (count < 100) is false (i.e., when count reaches 100), the loop terminates and the next statement after the loop statement is 

executed. 
4.2.1 AN ADVANCED MATH LEARNING TOOL 
T1/AMLT/S1 The Math subtraction learning tool program in Listing 3.5, SubtractionTutor.Java, generates just one question for each run. 
T1/AMLT/S2 You can use a loop to generate questions repeatedly. 
T1/AMLT/S3 Listing 4.1 gives a program that generates ten questions and reports the number of correct answers after a student answers all ten 

questions. 
T1/AMLT/S4 The program also displays the time spent on the test and lists all the questions, as shown in Figure 4.2. 



T1/AMLT/S5 The program uses the control variable count to control the execution of the loop.  
T1/AMLT/S6 Count is initially 0 (line 6) and is increased by 1 in each iteration (line 39). 
T1/AMLT/S7 A subtraction question is displayed and processed in each iteration. 
T1/AMLT/S8 The program obtains the time before the test starts in line 7 and the time after the test ends in line 45, and computes the test time in line 

46. 
T1/AMLT/S9 The test time is in milliseconds and is converted to seconds in line 50. 
4.2.2 CONTROLLING A LOOP WITH A CONFIRMATION DIALOG 
T1/LCD/S1 The preceding example executes the loop ten times. 
T1/LCD/S2 If you want the user to decide whether to take another question, you can use a confirmation dialog to control the loop. 
T1/LCD/S3 A confirmation dialog can be created using the following statement: 
T1/LCD/S4 When a button is clicked, the method returns an option value. 
T1/LCD/S5 The value is JOptionPane.YES_OPTION (0) for the Yes button, JOptionPane.NO_OPTION (1) for the No button, and 

JOptionPane.CANCEL_OPTION (2) for the Cancel button. 
T1/LCD/S6 For example, the following loop continues to execute until the user clicks the No or Cancel button. 
T1/LCD/S7 You can rewrite Listing 4.1 using a confirmation dialog to let the user decide whether to continue the next question. 
4.2.3 CONTROLLING A LOOP WITH A SENTINEL VALUE 
T1/LSV/S1 Another common technique for controlling a loop is to designate a special value when reading and processing a set of values. 
T1/LSV/S2 This special input value, known as a sentinel value, signifies the end of the loop. 
T1/LSV/S3 Listing 4.2 writes a program that reads and calculates the sum of an unspecified number of integers. 
T1/LSV/S4 The input 0 signifies the end of the input. 
T1/LSV/S5 Do you need to declare a new variable for each input value?  
T1/LSV/S6 No. 
T1/LSV/S7 Just use one variable named data (line 9) to store the input value and use a variable named sum (line 12) to store the total. 
T1/LSV/S8 Whenever a value is read, assign it to data and added to sum (line 14) if it is not zero. 
T1/LSV/S9 A sample run of the program is shown in Figure 4.3. 
T1/LSV/S10 If data is not 0, it is added to the sum (line 14) and the next items of input data are read (lines 12–19). 
T1/LSV/S11 If data is 0, the loop body is no longer executed and the while loop terminates. 
T1/LSV/S12 The input value 0 is the sentinel value for this loop. 
T1/LSV/S13 Note that if the first input read is 0, the loop body never executes, and the resulting sum is 0. 
T1/LSV/S14 The program uses a while loop to add an unspecified number of integers. 
4.3 THE DO-WHILE LOOP 
T1/DWL/S1 The do-while loop is a variation of the while loop. 
T1/DWL/S2 Its syntax is given below: 
T1/DWL/S3 Its execution flow chart is shown in Figure 4.4. 
T1/DWL/S4 The loop body is executed first.  
T1/DWL/S5 Then the loop-continuation-condition is evaluated. 
T1/DWL/S6 If the evaluation is true, the loop body is executed again.  



T1/DWL/S7 If it is false, the do-while loop terminates. 
T1/DWL/S8 The major difference between a while loop and a do-while loop is the order in which the loop-continuation-condition is evaluated and the 

loop body executed. 
T1/DWL/S9 The while loop and the do-while loop have equal expressive power. 
T1/DWL/S10 Sometimes one is a more convenient choice than the other. 
T1/DWL/S11 For example, you can rewrite the while loop in Listing 4.2 using a do-while loop, as shown in Listing 4.3. 
4.4 THE FOR LOOP 
T1/FL/S1 Often you write a loop in the following common form. 
T1/FL/S2 A for loop can be used to simplify the preceding loop. 
T1/FL/S3 In general, the syntax of a for loop is as shown below. 
T1/FL/S4 The flow chart of the for loop is shown in Figure 4.5(a). 
T1/FL/S5 The for loop statement starts with the keyword for, followed by a pair of parentheses enclosing initial-action, loop-continuation-condition, 

and action-after-each-iteration, and followed by the loop body enclosed inside braces.  
T1/FL/S6 Initial-action, loop-continuation-condition, and action-after-each-iteration are separated by semicolons. 
T1/FL/S7 A for loop generally uses a variable to control how many times the loop body is executed and when the loop terminates.  
T1/FL/S8 This variable is referred to as a control variable.  
T1/FL/S9 The initial-action often initializes a control variable, the action-after-each-iteration usually increments or decrements the control variable, 

and the loop-continuation-condition tests whether the control variable has reached a termination value.  
T1/FL/S10 For example, the following for loop prints "Welcome to Java!" a hundred times. 
T1/FL/S11 The flow chart of the statement is shown in Figure 4.5(b).  
T1/FL/S12 The for loop initializes i to 0, then repeatedly executes the println statement and evaluates i++ while i is less than 100. 
T1/FL/S13 The initial-action, i=0, initializes the control variable, i.  
T1/FL/S14 The loop-continuation-condition, i< 100 is a Boolean expression. 
T1/FL/S15 The expression is evaluated at the beginning of each iteration. 
T1/FL/S16 If this condition is true, execute the loop body.  
T1/FL/S17 If it is false, the loop terminates and the program control turns to the line following the loop. 
T1/FL/S18 The action-after-each-iteration, i++, is a statement that adjusts the control variable.  
T1/FL/S19 This statement is executed after each iteration. 
T1/FL/S20  It increments the control variable.  
T1/FL/S21 Eventually, the value of the control variable should force the loop-continuation-condition to become false.  
T1/FL/S22 Otherwise the loop is infinite. 
T1/FL/S23 If there is only one statement in the loop body, as in this example, the braces can be omitted. 
T1/FL/S24 The control variable must always be declared inside the control structure of the loop or before the loop. 
T1/FL/S25 If the loop control variable is used only in the loop, and not elsewhere. 
T1/FL/S26 It is good programming practice to declare it in the initial-action of the for loop. 
T1/FL/S27 If the variable is declared inside the loop control structure, it cannot be referenced outside the loop. 
T1/FL/S28 For example, you cannot reference i outside the for loop in the preceding code, because it is declared inside the for loop. 



4.5. WHICH LOOP TO USE? 
T1/WLU/S1 The while loop and for loop are called pre-test loops because the continuation condition is checked before the loop body is executed. 
T1/WLU/S2 The do-while loop is called a post-test loop because the condition is checked after the loop body is executed. 
T1/WLU/S3 The three forms of loop statements, while, do-while, and for, are expressively equivalent.  
T1/WLU/S4 That is, you can write a loop in any of these three forms. 
T1/WLU/S5 For example, a while loop in (a) in the following Figure can always be converted into the for loop in (b): 
T1/WLU/S6 A for loop in (a) in the next Figure can generally be converted into the while loop in (b) except in certain special cases (see Review 

Question 4.12 for such a case): 
T1/WLU/S7 Use the loop statement that is most intuitive and comfortable for you. 
T1/WLU/S8 In general, a for loop may be used if the number of repetitions is known, as, for example, when you need to print a message a hundred 

times. 
T1/WLU/S9 A while loop may be used if the number of repetitions is not known, as in the case of reading the numbers until the input is 0. 
T1/WLU/S10 A do-while loop can be used to replace a while loop if the loop body has to be executed before the continuation condition is tested. 
4.6. NESTED LOOPS 
T1/NL/S1 Nested loops consist of an outer loop and one or more inner loops. 
T1/NL/S2 Each time the outer loop is repeated, the inner loops are reentered, and started anew. 
T1/NL/S3 Listing 4.4 presents a program that uses nested for loops to print a multiplication table, as shown in Figure 4.6. 
T1/NL/S4 The program displays a title (line 7) on the first line and dashes (-) (line 8) on the second line. 
T1/NL/S5 The first for loop (lines 12–13) displays the numbers 1 through 9 on the third line. 
T1/NL/S6 The next loop (lines 18–28) is a nested for loop with the control variable i in the outer loop and j in the inner loop. 
T1/NL/S7 For each i, the product i * j is displayed on a line in the inner loop, with j being 1, 2, 3, …, 9. 
T1/NL/S8 The if statement in the inner loop (lines 22–25) is used so that the product will be aligned properly. 
T1/NL/S9 If the product is a single digit, it is displayed with an extra space before it. 
4.7  MINIMIZING NUMERICAL ERRORS 
T1/MNE/S1 Numeric errors involving floating-point numbers are inevitable. 
T1/MNE/S2 This section discusses how to minimize such errors through an example. 
T1/MNE/S3 Listing 4.5 presents an example that sums a series that starts with 0.01 and ends with 1.0. 
T1/MNE/S4 The numbers in the series will increment by 0.01, as follows: 0.01 + 0.02 + 0.03 and so on. 
T1/MNE/S5 The output of the program appears in Figure 4.7. 
T1/MNE/S6 The for loop (lines 9–10) repeatedly adds the control variable i to the sum. 
T1/MNE/S7 This variable, which begins with 0.01, is incremented by 0.01 after each iteration. 
T1/MNE/S8 The loop terminates when i exceeds 1.0. 
T1/MNE/S9 The for loop initial action can be any statement, but it is often used to initialize a control variable. 
T1/MNE/S10 From this example, you can see that a control variable can be a float type. 
T1/MNE/S11 In fact, it can be any data type. 
T1/MNE/S12 The exact sum should be 50.50, but the answer is 50.499985. 
T1/MNE/S13 The result is not precise because computers use a fixed number of bits to represent floating-point numbers, and thus cannot represent 



some floating-point numbers exactly. 
T1/MNE/S14 If you change float in the program to double as follows, you should see a slight improvement in precision because a double variable takes 

sixty-four bits, whereas a float variable takes thirty-two bits. 
T1/MNE/S15 However, you will be stunned to see that the result is actually 49.50000000000003. 
T1/MNE/S16 What went wrong? 
T1/MNE/S17 If you print out i for each iteration in the loop, you will see that the last i is slightly larger than 1 (not exactly 1). 
T1/MNE/S18 This causes the last i not to be added into sum. 
T1/MNE/S19 The fundamental problem is that the floating-point numbers are represented by approximation. 
T1/MNE/S20 Errors commonly occur. 
T1/MNE/S21 There are two ways to fix the problem. 
T1/MNE/S22 Minimizing errors by processing large numbers first. 
T1/MNE/S23 Using an integer count to ensure that all the numbers are processed. 
T1/MNE/S24 To minimize errors, add numbers from 1.0, 0.99, down to 0.1, as follows: 
T1/MNE/S25 To ensure that all the items are added to sum, use an integer variable to count the items.  
T1/MNE/S26 Here is the new loop. 
T1/MNE/S27 After this loop, sum is 50.50000000000003. 
4.8  CASE STUDIES 
T1/CS/S1 Control statements are fundamental in programming. 
T1/CS/S2 The ability to write control statements is essential in learning Java programming. 
T1/CS/S3 If you can write programs using loops, you know how to program! 
T1/CS/S4 For this reason, this section presents three additional examples of how to solve problems using loops. 
4.8.1 EXAMPLE: FINDING THE GREATEST COMMON DIVISOR 
T1/FGCD/S1 This section presents a program that prompts the user to enter two positive integers and finds their greatest common divisor. 
T1/FGCD/S2 The greatest common divisor of two integers 4 and 2 is 2. 
T1/FGCD/S3 The greatest common divisor of two integers 16 and 24 is 8. 
T1/FGCD/S4 How do you find the greatest common divisor? 
T1/FGCD/S5 Let the two input integers be n1 and n2. 
T1/FGCD/S6 You know that number 1 is a common divisor, but it may not be the greatest common divisor. 
T1/FGCD/S7 So you can check whether k (for k = 2, 3, 4 and so on) is a common divisor for n1 and n2, until k is greater than n1 or n2. 
T1/FGCD/S8 Store the common divisor in a variable named gcd. 
T1/FGCD/S9 Initially, gcd is 1. 
T1/FGCD/S10 Whenever a new common divisor is found, it becomes the new gcd. 
T1/FGCD/S11 When you have checked all the possible common divisors from 2 up to n1 or n2, the value in variable gcd is the greatest common divisor. 
T1/FGCD/S12 The idea can be translated into the following loop: 
T1/FGCD/S13 The complete program is given in Listing 4.6, and a sample run of the program is shown in Figure 4.8. 
T1/FGCD/S14 The program finds the greatest common divisor for two integers. 
T1/FGCD/S15 How did you write this program? 



T1/FGCD/S16 Did you immediately begin to write the code? 
T1/FGCD/S17 No. 
T1/FGCD/S18 It is important to think before you type. 
T1/FGCD/S19 Thinking enables you to generate a logical solution for the problem without concern about how to write the code. 
T1/FGCD/S20 Once you have a logical solution, type the code to translate the solution into a Java program. 
T1/FGCD/S21 The translation is not unique.  
T1/FGCD/S22 For example, you could use a for loop to rewrite the code as follows: 
T1/FGCD/S23 A problem often has multiple solutions. 
T1/FGCD/S24 The GCD problem can be solved in many ways. 
T1/FGCD/S25 Exercise 4.15 suggests another solution. 
T1/FGCD/S26 A more efficient solution is to use the classic Euclidean algorithm. 
T1/FGCD/S27 See http://www.cut-the-knot.org/blue/Euclid.shtml for more information. 
T1/FGCD/S28 You might think that a divisor for a number n1 cannot be greater than n1 / 2. 
T1/FGCD/S29 So you would attempt to improve the program using the following loop: 
T1/FGCD/S30 This revision is wrong. 
T1/FGCD/S31 Can you find the reason? 
T1/FGCD/S32 See Review Question 4.9 for the answer. 
4.8.2 EXAMPLE: FINDING THE SALES AMOUNT 
T1/FSA/S1 You have just started a sales job in a department store. 
T1/FSA/S2 Your pay consists of a base salary and a commission. 
T1/FSA/S3 The base salary is $5,000. 
T1/FSA/S4 The scheme shown below is used to determine the commission rate. 
T1/FSA/S5 Your goal is to earn $30,000 a year. 
T1/FSA/S6 This section writes a program that finds the minimum amount of sales you have to generate in order to make $30,000. 
T1/FSA/S7 Since your base salary is $5,000, you have to make $25,000 in commissions to earn $30,000 a year. 
T1/FSA/S8 What is the sales amount for a $25,000 commission? 
T1/FSA/S9 If you know the sales amount, the commission can be computed as follows: 
T1/FSA/S10 This suggests that you can try to find the salesAmount to match a given commission through incremental approximation. 
T1/FSA/S11 For a salesAmount of $0.01 (1 cent), find commission. 
T1/FSA/S12 If commission is less than $25,000, increment salesAmount by 0.01 and find commission again. 
T1/FSA/S13 If commission is still less than $25,000, repeat the process until it is greater than or equal to $25,000. 
T1/FSA/S14 This is a tedious job for humans, but it is exactly what a computer is good for. 
T1/FSA/S15 You can write a loop and let a computer execute it painlessly. 
T1/FSA/S16 The idea can be translated into the following loop: 
T1/FSA/S17 The complete program is given in Listing 4.7, and a sample run of the program is shown in Figure 4.9. 
T1/FSA/S18 The do-while loop (lines 12–24) is used to repeatedly compute commission for an incremental salesAmount. 
T1/FSA/S19 The loop terminates when commission is greater than or equal to a constant COMMISSION_SOUGHT. 



T1/FSA/S20 In Exercise 4.17, you will rewrite this program to let the user enter COMMISSION_SOUGHT dynamically from an input dialog. 
T1/FSA/S21 You can improve the performance of this program by estimating a higher INITIAL_SALES_AMOUNT (e.g., 25000). 
T1/FSA/S22 What is wrong if salesAmount is incremented after the commission is computed, as follows? 
T1/FSA/S23 The change is erroneous because salesAmount is 1 cent more than is needed for the commission when the loop ends. 
T1/FSA/S24 This is a common error in loops, known as the off-by-one error. 
4.8.3 EXAMPLE: DISPLAYING A PYRAMID OF NUMBERS 
T1/DPN/S1 This section presents a program that prompts the user to enter an integer from 1 to 15 and displays a pyramid. 
T1/DPN/S2 If the input integer is 12, for example, the output is shown in Figure 4.10. 
T1/DPN/S3 The program uses nested loops to print numbers in a triangular pattern. 
T1/DPN/S4 Your program receives the input for an integer (numberOfLines) that represents the total number of lines. 
T1/DPN/S5 It displays all the lines one by one. 
T1/DPN/S6 Each line has three parts. 
T1/DPN/S7 The first part comprises the spaces before the numbers;  
T1/DPN/S8 The second part, the leading numbers, such as 3 2 1 in line 3.  
T1/DPN/S9 And the last part, the ending numbers, such as 2 3 in line 3. 
T1/DPN/S10 Each number occupies three spaces. 
T1/DPN/S11 Display an empty space before a double-digit number, and display two empty spaces before a single-digit number. 
T1/DPN/S12 You can use an outer loop to control the lines. 
T1/DPN/S13 At the nth row, there are (numberOfLines – n)*3 leading spaces, the leading numbers are n, n-1, … 1, and the ending numbers are 2, ..., 

n. 
T1/DPN/S14 You can use three separate inner loops to print each part. 
T1/DPN/S15 Here is the algorithm for the problem 
T1/DPN/S16 The complete program is given in Listing 4.8. 
T1/DPN/S17 The program uses the print method (lines 20, 24, and 28) to display a string to the console. 
T1/DPN/S18 The conditional expression (num >= 10) ? " " + num : " " + num in lines 24 and 28 returns a string with a single empty space before the 

number if the number is greater than or equal to 10, and otherwise returns a string with two empty spaces before the number. 
T1/DPN/S19 Printing patterns like this one and the ones in Exercises 4.18 and 4.19 is a good exercise for practicing loop control statements. 
T1/DPN/S20 The key is to understand the pattern and to describe it using loop control variables. 
T1/DPN/S21 The last line in the outer loop (line 31), System.out.println(), does not have any argument in the method. 
T1/DPN/S22 This call moves the cursor to the next line. 
4.9 KEYWORDS BREAK AND CONTINUE 
T1/KBC/S1 Two statements, break and continue, can be used in loop statements to provide the loop with additional control. 
T1/KBC/S2 break immediately ends the innermost loop that contains it.  
T1/KBC/S3 It is generally used with an if statement. 
T1/KBC/S4 continue only ends the current iteration.  
T1/KBC/S5 Program control goes to the end of the loop body.  
T1/KBC/S6 This keyword is generally used with an if statement. 



T1/KBC/S7 You have already used the keyword break in a switch statement. 
T1/KBC/S8 You can also use break and continue in a loop. 
T1/KBC/S9 Listings 4.9 and 4.10 present two programs to demonstrate the effect of the break and continue keywords in a loop. 
T1/KBC/S10 The program in Listing 4.9 adds the integers from 1 to 20 in this order to sum until sum is greater than or equal to 100. 
T1/KBC/S11 Without the if statement (line 10), the program calculates the sum of the numbers from 1 to 20. 
T1/KBC/S12 But with the if statement, the loop terminates when the sum becomes greater than or equal to 100. 
T1/KBC/S13 The output of the program is shown in Figure 4.11(a). 
T1/KBC/S14 If you changed the if statement as shown below, the output would resemble that in Figure 4.11(b). 
T1/KBC/S15 In this case, the if condition will never be true. 
T1/KBC/S16 Therefore, the break statement will never be executed. 
T1/KBC/S17 The program in Listing 4.10 adds all the integers from 1 to 20 except 10 and 11 to sum. 
T1/KBC/S18 With the if statement in the program (line 9), the continue statement is executed when number becomes 10 or 11. 
T1/KBC/S19 The continue statement ends the current iteration so that the rest of the statement in the loop body is not executed; therefore, number is 

not added to sum when it is 10 or 11. 
T1/KBC/S20 The output of the program is shown in Figure 4.12(a). 
T1/KBC/S21 Without the if statement in the program, the output would look like Figure 4.12(b). 
T1/KBC/S22 In this case, all of the numbers are added to sum, even when number is 10 or 11. 
T1/KBC/S23 Therefore, the result is 210, which is 21 more than it was with the if statement. 

 



1 
 

    Appendix 2B 
 

Text 2 – Coding of Sentences 
 
 
CHAPTER 9 FEELING A LITTLE LOOPY 
TITLE A LOOP FOR EVERY OCCASION (LEO) 
T2/LEO/S1 Have you ever been talking to someone and it seems like he or she is saying the same thing over and over? 
T2/LEO/S2 I mean, you keep listening, and they keep talking, and it all sounds the same. 
T2/LEO/S3 And they talk somemore and you listen somemore and you wonder if it will ever end! 
T2/LEO/S4 Congratulations, you just experienced a perfect example of a verbal loop! 
T2/LEO/S5 In Java, a loop is a programming construct that enables you to repeat a section of code over and over, much like my conversation 

example. 
T2/LEO/S6 Loops are very valuable in Java because they enable you to tightly control repetitive functions.  
T2/LEO/S7 Three type of loops are used in Java: for loops, while loops and do loops. 
TITLE GETTING REDUNDANT WITH THE FOR LOOP (GRL) 
T2/GRL/S1 Let’s pretend NASA used Java applets to control the launch of the space shuttle.  
T2/GRL/S2 Any ideas on how controllers would initiate the launch sequence? 
T2/GRL/S3 With loops!  
T2/GRL/S4 Counting down from ten to one is a piece of cake with a loop. 
T2/GRL/S5 Granted, without a loop it wouldn’t be too tough either, but it would require some unnecessary code.  
T2/GRL/S6 Following is code to perform the launch sequence without the use of a loop. 
T2/GRL/S7 And now the loop version: 
T2/GRL/S8 See what I mean about tightening up the code? 
T2/GRL/S9 You probably wonder exactly how the loop code works. 
T2/GRL/S10 This code relies on a for loop, which is the most structured type of loop supported by Java. 
T2/GRL/S11 For loops repeat a section of code a fixed number of times.  
T2/GRL/S12 Following is the syntax for the for loop: 
T2/GRL/S13 The for loop repeats the Statement the number of time determined by the InitializationExpression, LoopCondition and StepExpression: 
T2/GRL/S14 The InitializationExpression is used to initialize a loop control variable. 
T2/GRL/S15 The LoopCondition compares the loop control variable to some limit or value. 
T2/GRL/S16 The StepExpression specifies how the loop control variable should be modified before the next iteration of the loop. 
T2/GRL/S17 Let’s take a look at the NASA launch sequence code again to make some sense of this stuff. 
T2/GRL/S18 In this code the InitializationExpression is int i310, which is evaluated initially before the loop begins. 
T2/GRL/S19 This is the code you use to prime the loop and get it ready. 
T2/GRL/S20 The LoopCondition is i>0, which is a Boolean test that is performed before each iteration of the loop.  



2 
 

T2/GRL/S21 If the Boolean test result is true, the Statement is executed, which in this case prints the current value of i. 
T2/GRL/S22 After each iteration the StepExpression is evaluated, which is i--.  
T2/GRL/S23 This serves to decrement i after each iteration, and ultimately proves the countdown. 
T2/GRL/S24 The loop continues to iterate and print numbers as i counts down to 0. 
T2/GRL/S25 After i reaches 0, the LoopCondition test fails (i>0), so the loop bails out without printing any more numbers. 
T2/GRL/S26 Whew, that explanation seemed a little long-winded, and that’s coming from the person that wrote it! 
T2/GRL/S27 Unfortunately, it isn’t always easy to verbalize the flow of program code. 
T2/GRL/S28 This is why it’s easy to fall back on figures. 
T2/GRL/S29 Just ask Ross Perot, who isn’t a Java programmer but who nonetheless relied on diagrams and illustrations to help us grasp his big plans 

for the presidency. 
T2/GRL/S30 You can feel safe and secure knowing that I’m not running for president or trying to help you visualize my answer to global trade. 
T2/GRL/S31 I just want to help you learn how loops work! 
T2/GRL/S32 To help you visualize the looping process, take a look at the following figure. 
T2/GRL/S33 Notice in the figure that Statement 1 and Statement 2 will be repeatedly executed as long as the loop condition is true.  
T2/GRL/S34 When the loop condition goes false, the program falls out of the loop and executes Statement 3.  
T2/GRL/S35 The previous figure alludes to the fact that a loop can execute multiple statements.  
T2/GRL/S36 Loops can execute as many statements as they want, provided curly braces ({}) enclose the statements. 
T2/GRL/S37 If you recall, this grouping of statements is known as a compound statement and was used in the previous chapter when dealing with if-

else branches. 
T2/GRL/S38 Following is an example of a for loop with a compound statement: 
T2/GRL/S39 This code calculates the squares of the numbers 1 through 10, stores them in an array, and prints each one. 
T2/GRL/S40 Notice that the loop counter (i) is used as the index (i-1) into the squares array.  
T2/GRL/S41 This is a very popular way to handle arrays. 
T2/GRL/S42 It is necessary to subtract 1 in this case because all Java array indexes start with 0, which means they are zero based. 
T2/GRL/S43 It might be worth nothing that although zero-based arrays were used in other programming languages in the 1980s and before, they have 

nothing to do with the 80s movie Less than Zero or the 80s hit song saved by Zero. 
T2/GRL/S44 Rest assured I would be the first to tell you if they did! 
TITLE LOOPING FOR JUST A LITTLE WHILE (LJLW) 
T2/LJLW/S1 Like the for loop, the while loop has a loop condition that controls the number of times a loop is repeated. 
T2/LJLW/S2 However, the while loop has no initialization or step expression. 
T2/LJLW/S3 A for loop is like one of those friends who tells you a story three or four times and then waits for a response, whereas a while loop is like 

one of those friends who continues to repeat himself as long as you continue to listen. 
T2/LJLW/S4 They’re both annoying, but in different ways.  
T2/LJLW/S5 Not the loops, the people! 
T2/LJLW/S6 Following is the syntax for the while loop, which should make its usage a little more clear: 
T2/LJLW/S7 If the Boolean LoopCondition evaluates to true, the Statement is executed. 
T2/LJLW/S8 When the Statement finishes executing, the LoopCondition is tested again and the process repeats itself. 



3 
 

T2/LJLW/S9 This continues until the LoopCondition evaluates to false, in which case the loop immediately bails out. 
T2/LJLW/S10 Because the while loop has no step expression, it is important to make sure that the Statement somehow impacts the LoopCondition. 
T2/LJLW/S11 Otherwise, it is possible for the loop to repeat infinitely, which is usually a bad thing. 
T2/LJLW/S12 Following is a simple example of an infinite while loop: 
T2/LJLW/S13 Because the loop condition in this example is permanently set to true, the loop will repeat infinitely, or at least until you manually terminate 

the programme. 
T2/LJLW/S14 Infinite loops are extremely dangerous because they can result in your computer overheating.  
T2/LJLW/S15 Just kidding! 
T2/LJLW/S16 Actually, infinite loops are useful in some situations. 
T2/LJLW/S17 They are never truly infinite because you can typically terminate one by shutting down the application or applet containing it. 
T2/LJLW/S18 You can think of the while loop as a more general for loop. 
T2/LJLW/S19 To understand what I mean by this, check out the following code. 
T2/LJLW/S20 This is the NASA launch sequence implemented using a while loop instead of a for loop. 
T2/LJLW/S21 Because while loops don’t have initialization expressions, the initialization of the counter variable I had to be performed before the loop.  
T2/LJLW/S22 Likewise, the step expression i had to be performed within the Statement part of the loop. 
T2/LJLW/S23 Regardless of the structural differences, this while loop is functionally equivalent to the for loop you saw earlier in the chapter.  
T2/LJLW/S24 If a for loop can do everything a while loop can and in a more organized way, then why do we need while loops? 
T2/LJLW/S25 Because there is a time and a place for everything, and in many situations you have no need for initialization and step expressions.  
T2/LJLW/S26 A for loop is overkill in situations like this. 
T2/LJLW/S27 Even more importantly, a while loop is much more readable than a for loop when you have no need for initialization and step expressions.  
T2/LJLW/S28 Consider the following example: 
T2/LJLW/S29 This code demonstrates how a while loop could be used to ask a question and patiently wait for the correct answer. 
T2/LJLW/S30 The loop repeats itself as long as the Boolean variable correct is false.  
T2/LJLW/S31 This results in the code repeating the question as many times as necessary until the user guesses the correct answer.  
T2/LJLW/S32 The details of the methods askQuestion() and isCorrect() aren’t important for this example.  

T2/LJLW/S33 Just assume that they somehow present the user with a question, retrieve an answer, and then judge the correctness of the answer.  

T2/LJLW/S34 The main concern is that the isCorrect () method returns a Boolean value that indicates whether or not the answer is correct. 
T2/LJLW/S35 In this example, it is impossible to know how many times the user will miss the answer and need the question repeated.  
T2/LJLW/S36 For this reason, the structured step expression of a for loop wouldn’t be of much use.  
T2/LJLW/S37 While loops are perfect in situations where you don’t know ahead of time how many times a loop needs to be repeated.  
T2/LJLW/S38 If you aren’t completely satisfied with while loops, however, there is one other option.  
TITLE TO DO , OR NOT TO DO (TDNTD) 
T2/TDNTD/S1 The while loop has a very close relative known as the do loop, or do-while loop, that is surprisingly similar to the while loop. 
T2/TDNTD/S2 Because you’re becoming pretty loop savvy, I’ll show you the syntax for the do-while loop first and see if you can figure out how it works. 



4 
 

T2/TDNTD/S3 Give up? 
T2/TDNTD/S4 The do-while loop is basically a while loop with the LoopCondition moved to the end. 
T2/TDNTD/S5 Why is this necessary? 
T2/TDNTD/S6 Because there are some situations where you would like the Statement to execute before evaluating the LoopCondition, instead of 

afterward.  
T2/TDNTD/S7 This also guarantees that the Statement is executed at least once, regardless of the LoopCondition. 
T2/TDNTD/S8 Let’s take a look at the question and answer example implemented using a do-while loop: 
T2/TDNTD/S9 The code really isn’t much different than before, except that you no longer need to initialise the correct variable. 
T2/TDNTD/S1
0 

It is always initially set during the first pass through the loop. 

T2/TDNTD/S1
1 

Although both types of loops accomplish the goal of this example, the do-while loop is a better fit because of its structure more closely 
mimics the function of the code. 

T2/TDNTD/S1
2 

What do I mean by this? 

T2/TDNTD/S1
3 

Well, if you “read” the code, it is saying “ask the question and if the answer is not correct, ask it again.” 

T2/TDNTD/S1
4 

This makes more sense than if it read “if the answer is not correct, ask the question and then check the answer again.” 

T2/TDNTD/S1
5 

Admittedly, this is a subtle difference, but a large part of successful programming is keeping things logical and straightforward. 

T2/TDNTD/S1
6 

You won’t always succeed because sometimes code gets complicated regardless of how you construct it, but using loops intelligently is a 
good start.  

TITLE APPLET COUNTDOWN (AC) 
T2/AC/S1 Have you ever visited a Web page that directed you to another page, but informed you that if you waited a few second sit would 

automatically take you there? 
T2/AC/S2 I used to run across these pages and wonder how you could make a page wait a few seconds and then automatically navigate to a new 

page. 
T2/AC/S3 After I started programming in Java, I realised what a trivial task this is. 
T2/AC/S4 In this section you use your knowledge of loops to build a “countdown” applet that counts down from ten to one and then navigates to a 

new Web page. 
T2/AC/S5 The following figure shows the Countdown applet in action. 
T2/AC/S6 When the applet finishes counting down, it navigates to the web page identified by the page applet parameter. 
T2/AC/S7 As an example, what web site could be better than NASA’s to demonstrate how this applet works? 
T2/AC/S8 Following is NASA’s Web site, to which the Countdown applet will take you after it finishes its countdown. 
T2/AC/S9 To understand how the Countdown applet works, let’s first take a look at the Countdown. Html Web page that contains the embedded 

applet. 
T2/AC/S10 All this stuff should look pretty familiar to you by now.  



5 
 

T2/AC/S11 The main thing on which I want you to focus is the page parameter, which is defined as. 
T2/AC/S12 Notice that the value of the page parameter is set to http://www.nasa.gov, which is the URL of NASA’s Web site. 
T2/AC/S13 Changing this value enables you to change the page that is loaded after the applet finishes counting down. 
T2/AC/S14 This page could have easily been set as a variable within the applet code, but a recompile would be required to change the page. 
T2/AC/S15 That is the beauty of applet parameters.  
T2/AC/S16 They enable you to customize the function of applets without doing any real programming! 
T2/AC/S17 Let’s move on to the actual code required of the countdown applet. 
T2/AC/S18 Unfortunately, the Countdown applet requires some code that is a little beyond the lesson, so I don’t expect all of this applet to make 

sense to you. 
T2/AC/S19 However, you can download the complete source code for the applet from the book’s companion Web site, which was mentioned a little 

earlier in this section. 
T2/AC/S20 Also, the core mechanics of the applet are very straightforward and should be familiar to you from your recent study of loops. 
T2/AC/S21 Following is the run() method in the Countdown applet class, which forms the heart of the applet: 
T2/AC/S22 Ouch, that looks a little messy! 
T2/AC/S23 Try not to get intimidated by any code that doesn’t look familiar. 
T2/AC/S24 Just concentrate on the loop code. 
T2/AC/S25 As you can see, the for loop counts down from 10 to 1 just like the Countdown code you saw earlier in the chapter.  
T2/AC/S26 The Statement part of this for loop is completely new territory, however.  
T2/AC/S27 The call to the repaint () method is necessary to update the applet’s window with the new countdown number. 
T2/AC/S28 The call to the thread.sleep() method results in the applet waiting one second, which effectively pauses the countdown for one second 

between numbers.  
T2/AC/S29 When the for loop finishes, the code gets the page applet parameter and proceed to navigate to the Web page identified by it.  
T2/AC/S30 The code required to navigate to the Web page is probably pretty strange looking to you because it has to deal with exceptions. 
T2/AC/S31 Exceptions are errors caused by unforeseen problems such as your computer running out of memory, your modem coming unplugged, 

spilling coffee on your keyboard, hurling your monitor out the window, and so on. 
T2/AC/S32 I’ll explain exceptions as you encounter them throughout the book.  
T2/AC/S33 The complete source code for the countdown applet follows. 
T2/AC/S34 Although this is a longer program than you are accustomed to seeing, a lot of it should look familiar to you. 
T2/AC/S35 For example, the paint() method code is very similar to the code used in the DateTime applet from Chapter 4, “constructing Applets of 

Your Own.”  
T2/AC/S36 On the other hand, the start() method is entirely new and is related to the applet’s use of threads.  
T2/AC/S37 You don’t need to understand it fully at this point.  
TITLE  BREAKING AWAY (BA) 
T2/BA/S1 If you recall from the previous chapter, each case section of a switch branch ends with a break statement. 
T2/BA/S2 Following is an example to recap: 
T2/BA/S3 The purpose of the break statement in this example is to bail out of the switch branch so that no other code is executed.  
T2/BA/S4 The break statement serves a similar purpose in loops. 



6 
 

T2/BA/S5 It breaks out of a loop regardless of the loop condition.  
T2/BA/S6 Following is an example of circumventing an infinite loop with a break statement:  
T2/BA/S7 Without the assistance of the break statement, this while loop would continue forever thanks to the permanent true loop condition. 
T2/BA/S8 The break statement sidesteps this problem by breaking out of the loop after one hundred iterations (0-99).  
T2/BA/S9 Of course, it is rare that you would purposely create an infinite loop and then use a break statement to bail out of it. 
T2/BA/S10 However, the break statement can be very useful in some tricky loops when you need to exit at an otherwise inconvenient time.  
T2/BA/S11 A close relative of the break statement is the continue statement, which is used to skip to the next iteration of a loop.  
T2/BA/S13 The following example shows how  a continue statement can be used to print only the even numbers between 1 and 100: 
T2/BA/S14 Having trouble seeing how this one works? 
T2/BA/S15 Think back to the modulus operator (%), which returns the remainder of a division.  
T2/BA/S16 Now consider what the remainder of a division by 2 yields for even and odd numbers.  
T2/BA/S17 Aha! 
T2/BA/S18 Even numbers divided by 2 always yield a remainder of 0, and odd numbers always leave a remainder of 1! 
T2/BA/S19 The example code exploits this characteristic of even and odd numbers to skip to the next iteration bypasses the println() call, which 

prevents odd numbers from being printed. 
T2/BA/S20 Pretty tricky! 
TITLE THE LEAST YOU NEED TO KNOW (LNK) 
T2/LNK/S1 Computers are often called upon to perform tasks we humans find to be utterly redundant.  
T2/LNK/S2 As dull as some humans can be, I guarantee you computers are much duller when it comes to repeating the same thing over and over.  
T2/LNK/S3 Java enables you to build programs that repeat themselves through the use of loops. 
T2/LNK/S4 The different types of loops basically perform the same function.  
T2/LNK/S5 They repeat a section of code over and over.  
T2/LNK/S6 Let’s go over the main points you learned about loops in this chapter. 
T2/LNK/S7 Loops can execute as many statements as you want them to, provided the statements are grouped together as a single compound 

statement enclosed by curly braces ({}). 
T2/LNK/S8 A for loop is used to repeat a section of code a given number of iterations.  
T2/LNK/S9 A while loop is a more general for loop.  
T2/LNK/S10 A do while is a while loop with the loop condition moved to the end.  
T2/LNK/S11 The break statement is used to break out of a loop regardless of the loop condition.  
T2/LNK/S12 The continue statement is used to skip to the next iteration of a loop.  

 



Appendix 3A 
 

Text 1 – Features of Metaphor of Mood  
 
 
 
 
 

 
 
 
 
 
4.1 INTRODUCTION Code 
T1/INT/S1 Suppose that you need to print a string (e.g., "Welcome to Java!") a hundred times.  
T1/INT/S2 It would be tedious to have to write the following statement a hundred times.  
T1/INT/S3 Java provides a powerful control structure called a loop that controls how many times an operation or a sequence of 

operations is performed in succession. 
 
 

T1/INT/S4 Using a loop statement, you simply tell the computer to print a string a hundred times without having to code the print 
statement a hundred times. 
Using a loop statement, tell the computer to print a string a hundred times without having to code the print statement a 
hundred times. 

Dec/St/Co 
 

T1/INT/S5 Loops are structures that control repeated executions of a block of statements.  
T1/INT/S6 The concept of looping is fundamental to programming.  
T1/INT/S7 Java provides three types of loop statements: while loops, do-while loops, and for loops.  
4.2 THE WHILE LOOP  
T1/WL/S1 The syntax for the while loop is as follows.  
T1/WL/S2 The while loop flow chart is shown in Figure 4.1(a).  
T1/WL/S3 The part of the loop that contains the statements to be repeated is called the loop body.  
T1/WL/S4 A one-time execution of a loop body is referred to as an iteration of the loop.  
T1/WL/S5 Each loop contains a loop-continuation condition, a Boolean expression that controls the execution of the body.  
T1/WL/S6 It is always evaluated before the loop body is executed.  
T1/WL/S7 If its evaluation is true, the loop body is executed.   
T1/WL/S8 If its evaluation is false, the entire loop terminates and the program control turns to the statement that follows the while 

loop. 
 

T1/WL/S9 For example, the following while loop prints "Welcome to Java!" a hundred times.  

Note: 
1. For every table entry with metaphorical clauses with Metaphor of Mood, the 

metaphorical sentence precedes the congruent sentence.  
 
Keys: 
1. Dec/St/Co denotes Declarative clauses realizing Statement and Command  
2. Int/Qu/St denotes Interrogative clauses realizing Question and Statement 
3. Int/Qu/Co denotes Interrogative clauses realizing Question and Command 
4. Imp/Co/St denotes Imperative clauses realizing Command and Statement 



T1/WL/S10 The flow chart of the preceding statement is shown in Figure 4.1(b).  
T1/WL/S11 The variable count is initially 0.  
T1/WL/S12 The loop checks whether (count < 100) is true.  
T1/WL/S13 If so, it executes the loop body to print the message "Welcome to Java!" and increments count by 1.  
T1/WL/S14 It repeatedly executes the loop body until (count < 100) becomes false.  
T1/WL/S15 When (count < 100) is false (i.e., when count reaches 100), the loop terminates and the next statement after the loop 

statement is executed. 
 
 

4.2.1 AN ADVANCED MATH LEARNING TOOL  
T1/AMLT/S1 The Math subtraction learning tool program in Listing 3.5, SubtractionTutor.Java, generates just one question for each run.  
T1/AMLT/S2 You can use a loop to generate questions repeatedly. 

Use a loop to generate questions repeatedly. 
 

T1/AMLT/S3 Listing 4.1 gives a program that generates ten questions and reports the number of correct answers after a student 
answers all ten questions. 

 
 

T1/AMLT/S4 The program also displays the time spent on the test and lists all the questions, as shown in Figure 4.2.  
T1/AMLT/S5 The program uses the control variable count to control the execution of the loop.   
T1/AMLT/S6 Count is initially 0 (line 6) and is increased by 1 in each iteration (line 39).  
T1/AMLT/S7 A subtraction question is displayed and processed in each iteration.  
T1/AMLT/S8 The program obtains the time before the test starts in line 7 and the time after the test ends in line 45, and computes the 

test time in line 46. 
 

T1/AMLT/S9 The test time is in milliseconds and is converted to seconds in line 50.  
4.2.2 CONTROLLING A LOOP WITH A CONFIRMATION DIALOG  
T1/LCD/S1 The preceding example executes the loop ten times.  
T1/LCD/S2 If you want the user to decide whether to take another question, you can use a confirmation dialog to control the loop. 

If you want the user to decide whether to take another question, use a confirmation dialog to control the loop. 
Dec/St/Co 

T1/LCD/S3 A confirmation dialog can be created using the following statement. 
Create a confirmation dialog using the following statement. 

Dec/St/Co 

T1/LCD/S4 When a button is clicked, the method returns an option value.  
T1/LCD/S5 The value is JOptionPane.YES_OPTION (0) for the Yes button, JOptionPane.NO_OPTION (1) for the No button, and 

JOptionPane.CANCEL_OPTION (2) for the Cancel button. 
 
 

T1/LCD/S6 For example, the following loop continues to execute until the user clicks the No or Cancel button.  
T1/LCD/S7 You can rewrite Listing 4.1 using a confirmation dialog to let the user decide whether to continue the next question. 

Rewrite Listing 4.1 using a confirmation dialog to let the user decide whether to continue the next question. 
Dec/St/Co 

4.2.3 CONTROLLING A LOOP WITH A SENTINEL VALUE  
T1/LSV/S1 Another common technique for controlling a loop is to designate a special value when reading and processing a set of 

values. 
 

T1/LSV/S2 This special input value, known as a sentinel value, signifies the end of the loop.  
T1/LSV/S3 Listing 4.2 writes a program that reads and calculates the sum of an unspecified number of integers.  



T1/LSV/S4 The input 0 signifies the end of the input.  
T1/LSV/S5 Do you need to declare a new variable for each input value?  Int/Qu/St 
T1/LSV/S6 No. 

There is no need to declare a new variable for each input. 
 

T1/LSV/S7 Just use one variable named data (line 9) to store the input value and use a variable named sum (line 12) to store the 
total. 
One variable named data (line 9) is used to store the input value and a variable named sum (line 12) is used to store the 
total 

Imp/Co/St 

T1/LSV/S8 Whenever a value is read, assign it to data and added to sum (line 14) if it is not zero.  
T1/LSV/S9 A sample run of the program is shown in Figure 4.3. 

See Figure 4.3 for a sample run of the program 
Dec/St/Co 

T1/LSV/S10 If data is not 0, it is added to the sum (line 14) and the next items of input data are read (lines 12–19).  
T1/LSV/S11 If data is 0, the loop body is no longer executed and the while loop terminates.  
T1/LSV/S12 The input value 0 is the sentinel value for this loop.  
T1/LSV/S13 Note that if the first input read is 0, the loop body never executes, and the resulting sum is 0. 

If the first input read is 0, the loop body never executes, and the resulting sum is 0. 
Imp/Co/St 

T1/LSV/S14 The program uses a while loop to add an unspecified number of integers.  
4.3 THE DO-WHILE LOOP  
T1/DWL/S1 The do-while loop is a variation of the while loop.  
T1/DWL/S2 Its syntax is given below: 

See below for its syntax: 
Dec/St/Co 

T1/DWL/S3 Its execution flow chart is shown in Figure 4.4. 
See Figure 4.4 for its execution flow chart. 

Dec/St/Co 

T1/DWL/S4 The loop body is executed first.   
T1/DWL/S5 Then the loop-continuation-condition is evaluated.  
T1/DWL/S6 If the evaluation is true, the loop body is executed again.   
T1/DWL/S7 If it is false, the do-while loop terminates.  
T1/DWL/S8 The major difference between a while loop and a do-while loop is the order in which the loop-continuation-condition is 

evaluated and the loop body executed. 
 

T1/DWL/S9 The while loop and the do-while loop have equal expressive power.  
T1/DWL/S10 Sometimes one is a more convenient choice than the other.  
T1/DWL/S11 For example, you can rewrite the while loop in Listing 4.2 using a do-while loop, as shown in Listing 4.3. 

For example, rewrite the while loop in Listing 4.2 using a do-while loop, as shown in Listing 4.3. 
Dec/St/Co 

4.4 THE FOR LOOP  
T1/FL/S1 Often you write a loop in the following common form.  
T1/FL/S2 A for loop can be used to simplify the preceding loop. 

Use a for loop to simplify the preceding loop. 
Dec/St/Co 



T1/FL/S3 In general, the syntax of a for loop is as shown below. 
In general, see below for the syntax of a for loop. 

Dec/St/Co 

T1/FL/S4 The flow chart of the for loop is shown in Figure 4.5(a). 
See Figure 4.5(a) for the flow chart of the for loop. 

 

T1/FL/S5 The for loop statement starts with the keyword for, followed by a pair of parentheses enclosing initial-action, loop-
continuation-condition, and action-after-each-iteration, and followed by the loop body enclosed inside braces.  
Start the for loop statement with the keyword for, enclose initial-action, loop-continuation-condition with a pair of 
parenthesis, and enclose the loop body inside braces. 

Dec/St/Co 

T1/FL/S6 Initial-action, loop-continuation-condition, and action-after-each-iteration are separated by semicolons. 
Separate Initial-action, loop-continuation-condition, and action-after-each-iteration with semicolons.  

Dec/St/Co 

T1/FL/S7 A for loop generally uses a variable to control how many times the loop body is executed and when the loop terminates.  
Use a variable in a for loop to control how many times the loop body is executed and when the loop terminates. 

Dec/St/Co 

T1/FL/S8 This variable is referred to as a control variable.  
Refer this variable as a control variable. 

Dec/St/Co 

T1/FL/S9 The initial-action often initializes a control variable, the action-after-each-iteration usually increments or decrements the 
control variable, and the loop-continuation-condition tests whether the control variable has reached a termination value.  

 

T1/FL/S10 For example, the following for loop prints "Welcome to Java!" a hundred times. 
See the following to understand how for loop prints "Welcome to Java!" a hundred times. 

Dec/St/Co 

T1/FL/S11 The flow chart of the statement is shown in Figure 4.5(b).  
See Figure 4.5(b) for the flow chart of the statement. 

Dec/St/Co 

T1/FL/S12 The for loop initializes i to 0, then repeatedly executes the println statement and evaluates i++ while i is less than 100.  
T1/FL/S13 The initial-action, i=0, initializes the control variable, i.   
T1/FL/S14 The loop-continuation-condition, i< 100 is a Boolean expression.  
T1/FL/S15 The expression is evaluated at the beginning of each iteration.  
T1/FL/S16 If this condition is true, execute the loop body.   
T1/FL/S17 If it is false, the loop terminates and the program control turns to the line following the loop.  
T1/FL/S18 The action-after-each-iteration, i++, is a statement that adjusts the control variable.   
T1/FL/S19 This statement is executed after each iteration.  
T1/FL/S20  It increments the control variable.   
T1/FL/S21 Eventually, the value of the control variable should force the loop-continuation-condition to become false.   
T1/FL/S22 Otherwise the loop is infinite.  
T1/FL/S23 If there is only one statement in the loop body, as in this example, the braces can be omitted. 

If there is only one statement in the loop body, as in this example, omit the braces. 
Dec/St/Co 

T1/FL/S24 The control variable must always be declared inside the control structure of the loop or before the loop. 
Declare the control variable inside the control structure of the loop or before the loop. 

Dec/St/Co 

T1/FL/S25 The loop control variable is used only in the loop, and not elsewhere. 
Use the loop control variable only in the loop, and not elsewhere. 

Dec/St/Co 



T1/FL/S26 It is good programming practice to declare it in the initial-action of the for loop.  
T1/FL/S27 If the variable is declared inside the loop control structure, it cannot be referenced outside the loop.  
T1/FL/S28 For example, you cannot reference i outside the for loop in the preceding code, because it is declared inside the for loop. 

Do not reference i outside the for loop in the preceding code, because it is declared inside the for loop. 
Dec/St/Co 

4.5. WHICH LOOP TO USE?  
T1/WLU/S1 The while loop and for loop are called pre-test loops because the continuation condition is checked before the loop body is 

executed. 
Refer the while loop and for loop as pre-test loops because the continuation condition is checked before the loop body is 
executed. 

Dec/St/Co 

T1/WLU/S2 The do-while loop is called a post-test loop because the condition is checked after the loop body is executed. 
Refer The do-while loop as a post-test loop because the condition is checked after the loop body is executed 

Dec/St/Co 

T1/WLU/S3 The three forms of loop statements, while, do-while, and for, are expressively equivalent.   
T1/WLU/S4 That is, you can write a loop in any of these three forms. 

Write a loop in any of these three forms. 
Dec/St/Co 

T1/WLU/S5 For example, a while loop in (a) in the following figure can always be converted into the for loop in (b): 
See the following figure on how , a while loop in (a) can always be converted into the for loop in (b): 

Dec/St/Co 

T1/WLU/S6 A for loop in (a) in the next figure can generally be converted into the while loop in (b) except in certain special cases (see 
Review Question 4.12 for such a case): 
See the next figure on how A for loop in (a) can generally be converted into the while loop in (b) except in certain special 
cases (see Review Question 4.12 for such a case): 

Dec/St/Co 

T1/WLU/S7 Use the loop statement that is most intuitive and comfortable for you. 
You can use the loop statement that is most intuitive and comfortable for you. 

Imp/Co/St 

T1/WLU/S8 In general, a for loop may be used if the number of repetitions is known, as, for example, when you need to print a 
message a hundred times. 
In general, use a for loop used if the number of repetitions is known, as, for example, when you need to print a message a 
hundred times. 

Dec/St/Co 

T1/WLU/S9 A while loop may be used if the number of repetitions is not known, as in the case of reading the numbers until the input is 
0. 
Use a while loop if the number of repetitions is not known, as in the case of reading the numbers until the input is 0. 

Dec/St/Co 

T1/WLU/S10 A do-while loop can be used to replace a while loop if the loop body has to be executed before the continuation condition 
is tested. 
Use a do-while loop to replace a while loop if the loop body has to be executed before the continuation condition is tested. 

Dec/St/Co 

4.6. NESTED LOOPS  
T1/NL/S1 Nested loops consist of an outer loop and one or more inner loops.  
T1/NL/S2 Each time the outer loop is repeated, the inner loops are reentered, and started anew.  
T1/NL/S3 Listing 4.4 presents a program that uses nested for loops to print a multiplication table, as shown in Figure 4.6. 

See Listing 4.4 that presents a program that uses nested for loops to print a multiplication table, as shown in Figure 4.6 
Dec/St/Co 

T1/NL/S4 The program displays a title (line 7) on the first line and dashes (-) (line 8) on the second line.  



T1/NL/S5 The first for loop (lines 12–13) displays the numbers 1 through 9 on the third line.  
T1/NL/S6 The next loop (lines 18–28) is a nested for loop with the control variable i in the outer loop and j in the inner loop.  
T1/NL/S7 For each i, the product i * j is displayed on a line in the inner loop, with j being 1, 2, 3, …, 9.  
T1/NL/S8 The if statement in the inner loop (lines 22–25) is used so that the product will be aligned properly.  
T1/NL/S9 If the product is a single digit, it is displayed with an extra space before it.  
4.7  MINIMIZING NUMERICAL ERRORS  
T1/MNE/S1 Numeric errors involving floating-point numbers are inevitable.  
T1/MNE/S2 This section discusses how to minimize such errors through an example. 

Read this section that discusses how to minimize such errors through an example. 
Dec/St/Co 

T1/MNE/S3 Listing 4.5 presents an example that sums a series that starts with 0.01 and ends with 1.0. 
See Listing 4.5 that presents an example that sums a series that starts with 0.01 and ends with 1.0. 

Dec/St/Co 

T1/MNE/S4 The numbers in the series will increment by 0.01, as follows: 0.01 + 0.02 + 0.03 and so on.  
T1/MNE/S5 The output of the program appears in Figure 4.7. 

See the output of the program in Figure 4.7. Dec/St/Co 
 

T1/MNE/S6 The for loop (lines 9–10) repeatedly adds the control variable i to the sum.  
T1/MNE/S7 This variable, which begins with 0.01, is incremented by 0.01 after each iteration.  
T1/MNE/S8 The loop terminates when i exceeds 1.0.  
T1/MNE/S9 The for loop initial action can be any statement, but it is often used to initialize a control variable.  
T1/MNE/S10 From this example, you can see that a control variable can be a float type. 

From this example, see that a control variable can be a float type. 
Dec/St/Co 

T1/MNE/S11 In fact, it can be any data type.   
T1/MNE/S12 The exact sum should be 50.50, but the answer is 50.499985.  
T1/MNE/S13 The result is not precise because computers use a fixed number of bits to represent floating-point numbers, and thus 

cannot represent some floating-point numbers exactly. 
 

T1/MNE/S14 If you change float in the program to double as follows, you should see a slight improvement in precision because a double 
variable takes sixty-four bits, whereas a float variable takes thirty-two bits. 
If you change float in the program to double as follows, notice a slight improvement in precision because a double variable 
takes sixty-four bits, whereas a float variable takes thirty-two bits. 

Dec/St/Co 

T1/MNE/S15 However, you will be stunned to see that the result is actually 49.50000000000003. 
However, see that the result is actually 49.50000000000003. 

Dec/St/Co 

T1/MNE/S16 What went wrong? 
There is a mistake. 

Int/Qu/St 

T1/MNE/S17 If you print out i for each iteration in the loop, you will see that the last i is slightly larger than 1 (not exactly 1).  
T1/MNE/S18 This causes the last i not to be added into sum.  
T1/MNE/S19 The fundamental problem is that the floating-point numbers are represented by approximation.  
T1/MNE/S20 Errors commonly occur.  
T1/MNE/S21 There are two ways to fix the problem.  



T1/MNE/S22 Minimizing errors by processing large numbers first. 
Minimize errors by processing large numbers first. 

Dec/St/Co 

T1/MNE/S23 Using an integer count to ensure that all the numbers are processed. 
Use an integer count to ensure that all the numbers are processed. 

Dec/St/Co 

T1/MNE/S24 To minimize errors, add numbers from 1.0, 0.99, down to 0.1, as follows: 
To minimize errors, you can add numbers from 1.0, 0.99, down to 0.1, as follows: 

Imp/Co/St 

T1/MNE/S25 To ensure that all the items are added to sum, use an integer variable to count the items.  
To minimize errors, you can use an integer variable to count the items. 

Imp/Co/St 

T1/MNE/S26 Here is the new loop. 
See here for the new loop. 

Dec/St/Co 

T1/MNE/S27 After this loop, sum is 50.50000000000003.  
4.8  CASE STUDIES  
T1/CS/S1 Control statements are fundamental in programming.  
T1/CS/S2 The ability to write control statements is essential in learning Java programming.  
T1/CS/S3 If you can write programs using loops, you know how to program!  
T1/CS/S4 For this reason, this section presents three additional examples of how to solve problems using loops. 

For this reason, read this section that presents three additional examples of how to solve problems using loops. 
Dec/St/Co 

4.8.1 EXAMPLE: FINDING THE GREATEST COMMON DIVISOR  
T1/FGCD/S1 This section presents a program that prompts the user to enter two positive integers and finds their greatest common 

divisor. 
Read this section that presents a program that prompts the user to enter two positive integers and finds their greatest 
common divisor. 

Dec/St/Co 

T1/FGCD/S2 The greatest common divisor of two integers 4 and 2 is 2.  
T1/FGCD/S3 The greatest common divisor of two integers 16 and 24 is 8.  
T1/FGCD/S4 How do you find the greatest common divisor? 

Find the greatest common divisor 
Dec/St/Co 

T1/FGCD/S5 Let the two input integers be n1 and n2. 
You can let the two input integers be n1 and n2. 

Imp/Co/St 

T1/FGCD/S6 You know that number 1 is a common divisor, but it may not be the greatest common divisor.  
T1/FGCD/S7 So you can check whether k (for k = 2, 3, 4 and so on) is a common divisor for n1 and n2, until k is greater than n1 or n2. 

Check whether k (for k = 2, 3, 4 and so on) is a common divisor for n1 and n2, until k is greater than n1 or n2. 
Dec/St/Co 

T1/FGCD/S8 Store the common divisor in a variable named gcd. 
You can store the common divisor in a variable named gcd. 

Imp/Co/St 

T1/FGCD/S9 Initially, gcd is 1.  
T1/FGCD/S10 Whenever a new common divisor is found, it becomes the new gcd.  
T1/FGCD/S11 When you have checked all the possible common divisors from 2 up to n1 or n2, the value in variable gcd is the greatest 

common divisor. 
Dec/St/Co 

T1/FGCD/S12 The idea can be translated into the following loop: Dec/St/Co 



Translate the idea into the following loop 
T1/FGCD/S13 The complete program is given in Listing 4.6, and a sample run of the program is shown in Figure 4.8. 

See the complete program in Listing 4.6 and a sample run of the program in Figure 4.8. 
 

T1/FGCD/S14 The program finds the greatest common divisor for two integers.  
T1/FGCD/S15 How did you write this program? 

Describe how you wrote this program. 
Dec/St/Co 

T1/FGCD/S16 Did you immediately begin to write the code?  
T1/FGCD/S17 No. 

You didn’t immediately begin to write the code. 
Int/Qu/St 

T1/FGCD/S18 It is important to think before you type. 
Think before you type. 

Dec/St/Co 

T1/FGCD/S19 Thinking enables you to generate a logical solution for the problem without concern about how to write the code.  
T1/FGCD/S20 Once you have a logical solution, type the code to translate the solution into a Java program. 

Once you have a logical solution, you can type the code to translate the solution into a Java program. 
Imp/Co/St 

T1/FGCD/S21 The translation is not unique.   
T1/FGCD/S22 For example, you could use a for loop to rewrite the code as follows: 

For example, use a for loop to rewrite the code as follows: 
Dec/St/Co 

T1/FGCD/S23 A problem often has multiple solutions.  
T1/FGCD/S24 The GCD problem can be solved in many ways. 

You can solve The GCD problem in many ways. 
 

T1/FGCD/S25 Exercise 4.15 suggests another solution. 
See Exercise 4.15 that suggests another solution. 

 

T1/FGCD/S26 A more efficient solution is to use the classic Euclidean algorithm. 
For a more efficient solution, use the classic Euclidean algorithm. 

Dec/St/Co 

T1/FGCD/S27 See http://www.cut-the-knot.org/blue/Euclid.shtml for more information. 
You can see http://www.cut-the-knot.org/blue/Euclid.shtml for more information. 

Imp/Co/St 

T1/FGCD/S28 You might think that a divisor for a number n1 cannot be greater than n1 / 2.  
T1/FGCD/S29 So you would attempt to improve the program using the following loop:  
T1/FGCD/S30 This revision is wrong.  
T1/FGCD/S31 Can you find the reason? 

Find the reason. 
Int/Qu/Co 

T1/FGCD/S32 See Review Question 4.9 for the answer. 
You can see Review Question 4.9 for the answer. 

Imp/Co/St 

4.8.2 EXAMPLE: FINDING THE SALES AMOUNT  
T1/FSA/S1 You have just started a sales job in a department store.  
T1/FSA/S2 Your pay consists of a base salary and a commission.  
T1/FSA/S3 The base salary is $5,000.  
T1/FSA/S4 The scheme shown below is used to determine the commission rate.  



T1/FSA/S5 Your goal is to earn $30,000 a year.  
T1/FSA/S6 This section writes a program that finds the minimum amount of sales you have to generate in order to make $30,000. 

Read this section that writes a program that finds the minimum amount of sales you have to generate in order to make 
$30,000. 

Dec/St/Co 

T1/FSA/S7 Since your base salary is $5,000, you have to make $25,000 in commissions to earn $30,000 a year.  
T1/FSA/S8 What is the sales amount for a $25,000 commission? 

Find the sales amount for a $25,000 commission. 
Dec/St/Co 

T1/FSA/S9 If you know the sales amount, the commission can be computed as follows. 
If you know the sales amount, compute the commission as follows. 

Dec/St/Co 

T1/FSA/S10 This suggests that you can try to find the salesAmount to match a given commission through incremental approximation. 
Try to find the salesAmount to match a given commission through incremental approximation. 

Dec/St/Co 

T1/FSA/S11 For a salesAmount of $0.01 (1 cent), find commission.  
T1/FSA/S12 If commission is less than $25,000, increment salesAmount by 0.01 and find commission again.  
T1/FSA/S13 If commission is still less than $25,000, repeat the process until it is greater than or equal to $25,000.  
T1/FSA/S14 This is a tedious job for humans, but it is exactly what a computer is good for.  
T1/FSA/S15 You can write a loop and let a computer execute it painlessly. 

Write a loop and let a computer execute it painlessly.  
Dec/St/Co 

T1/FSA/S16 The idea can be translated into the following loop: 
Translate the idea into the following loop: 

Dec/St/Co 

T1/FSA/S17 The complete program is given in Listing 4.7, and a sample run of the program is shown in Figure 4.9. 
Read the complete program given in Listing 4.7, and a sample run of the program in Figure 4.9. 

 

T1/FSA/S18 The do-while loop (lines 12–24) is used to repeatedly compute commission for an incremental salesAmount.  
T1/FSA/S19 The loop terminates when commission is greater than or equal to a constant COMMISSION_SOUGHT.  
T1/FSA/S20 In Exercise 4.17, you will rewrite this program to let the user enter COMMISSION_SOUGHT dynamically from an input 

dialog. 
In Exercise 4.17, rewrite this program to let the user enter COMMISSION_SOUGHT dynamically from an input dialog. 

Dec/St/Co 

T1/FSA/S21 You can improve the performance of this program by estimating a higher INITIAL_SALES_AMOUNT (e.g., 25000). 
Improve the performance of this program by estimating a higher INITIAL_SALES_AMOUNT (e.g., 25000). 

Dec/St/Co 

T1/FSA/S22 What is wrong if salesAmount is incremented after the commission is computed, as follows? 
Find the mistake if salesAmount is incremented after the commission is computed, as follows? 

Dec/St/Co 

T1/FSA/S23 The change is erroneous because salesAmount is 1 cent more than is needed for the commission when the loop ends.  
T1/FSA/S24 This is a common error in loops, known as the off-by-one error.  
4.8.3 EXAMPLE: DISPLAYING A PYRAMID OF NUMBERS Dec/St/Co 
T1/DPN/S1 This section presents a program that prompts the user to enter an integer from 1 to 15 and displays a pyramid. 

Read this section that presents a program that prompts the user to enter an integer from 1 to 15 and displays a pyramid. 
Dec/St/Co 

T1/DPN/S2 If the input integer is 12, for example, the output is shown in Figure 4.10. 
If the input integer is 12, for example, see the output in Figure 4.10. 

 

T1/DPN/S3 The program uses nested loops to print numbers in a triangular pattern.  



T1/DPN/S4 Your program receives the input for an integer (numberOfLines) that represents the total number of lines.  
T1/DPN/S5 It displays all the lines one by one.  
T1/DPN/S6 Each line has three parts.  
T1/DPN/S7 The first part comprises the spaces before the numbers;   
T1/DPN/S8 The second part, the leading numbers, such as 3 2 1 in line 3.   
T1/DPN/S9 And the last part, the ending numbers, such as 2 3 in line 3.  
T1/DPN/S10 Each number occupies three spaces.  
T1/DPN/S11 Display an empty space before a double-digit number, and display two empty spaces before a single-digit number.  
T1/DPN/S12 You can use an outer loop to control the lines. 

Use an outer loop to control the lines. 
Dec/St/Co 

T1/DPN/S13 At the nth row, there are (numberOfLines – n)*3 leading spaces, the leading numbers are n, n-1, … 1, and the ending 
numbers are 2, ..., n. 

 

T1/DPN/S14 You can use three separate inner loops to print each part. 
Use three separate inner loops to print each part. 

Dec/St/Co 

T1/DPN/S15 Here is the algorithm for the problem. 
Read the algorithm for the problem. 

Dec/St/Co 

T1/DPN/S16 The complete program is given in Listing 4.8. 
See the complete program in Listing 4.8. 

Dec/St/Co 

T1/DPN/S17 The program uses the print method (lines 20, 24, and 28) to display a string to the console.  
T1/DPN/S18 The conditional expression (num >= 10) ? " " + num : " " + num in lines 24 and 28 returns a string with a single empty 

space before the number if the number is greater than or equal to 10, and otherwise returns a string with two empty 
spaces before the number. 

 

T1/DPN/S19 Printing patterns like this one and the ones in Exercises 4.18 and 4.19 is a good exercise for practicing loop control 
statements. 

 

T1/DPN/S20 The key is to understand the pattern and to describe it using loop control variables. 
Understand the pattern and to describe it using loop control variables. 

 

T1/DPN/S21 The last line in the outer loop (line 31), System.out.println(), does not have any argument in the method.  
T1/DPN/S22 This call moves the cursor to the next line.  
4.9 KEYWORDS BREAK AND CONTINUE  
T1/KBC/S1 Two statements, break and continue, can be used in loop statements to provide the loop with additional control. 

Use the two statements, break and continue in loop statements to provide the loop with additional control. 
Dec/St/Co 

T1/KBC/S2 break immediately ends the innermost loop that contains it.   
T1/KBC/S3 It is generally used with an if statement. 

Use it with an if statement. 
Dec/St/Co 

T1/KBC/S4 continue only ends the current iteration.   
T1/KBC/S5 Program control goes to the end of the loop body.   
T1/KBC/S6 This keyword is generally used with an if statement. Dec/St/Co 



Use this keyword with an if statement. 
T1/KBC/S7 You have already used the keyword break in a switch statement.  
T1/KBC/S8 You can also use break and continue in a loop. 

Use break and continue in a loop. 
Dec/St/Co 

T1/KBC/S9 Listings 4.9 and 4.10 present two programs to demonstrate the effect of the break and continue keywords in a loop. 
See Listings 4.9 and 4.10 that present two programs which demonstrate the effect of the break and continue keywords in a 
loop. 

 

T1/KBC/S10 The program in Listing 4.9 adds the integers from 1 to 20 in this order to sum until sum is greater than or equal to 100.  
T1/KBC/S11 Without the if statement (line 10), the program calculates the sum of the numbers from 1 to 20.  
T1/KBC/S12 But with the if statement, the loop terminates when the sum becomes greater than or equal to 100.  
T1/KBC/S13 The output of the program is shown in Figure 4.11(a).  
T1/KBC/S14 If you changed the if statement as shown below, the output would resemble that in Figure 4.11(b).  
T1/KBC/S15 In this case, the if condition will never be true.  
T1/KBC/S16 Therefore, the break statement will never be executed.  
T1/KBC/S17 The program in Listing 4.10 adds all the integers from 1 to 20 except 10 and 11 to sum.  
T1/KBC/S18 With the if statement in the program (line 9), the continue statement is executed when number becomes 10 or 11.  
T1/KBC/S19 The continue statement ends the current iteration so that the rest of the statement in the loop body is not executed; 

therefore, number is not added to sum when it is 10 or 11. 
 

T1/KBC/S20 The output of the program is shown in Figure 4.12(a). 
See the output of the program in Figure 4.12(a). 

Dec/St/Co 

T1/KBC/S21 Without the if statement in the program, the output would look like Figure 4.12(b). 
Without the if statement in the program, see how the output would look like in Figure 4.12(b). 

 

T1/KBC/S22 In this case, all of the numbers are added to sum, even when number is 10 or 11.  
T1/KBC/S23 Therefore, the result is 210, which is 21 more than it was with the if statement.  

 



1 
 

Appendix 3B 
 

Text 2 – Features of Metaphor of Mood  
 
 
 
 
 
 
 

 
 
 
CHAPTER 9 FEELING A LITTLE LOOPY 

 
Code  

TITLE A LOOP FOR EVERY OCCASION (LEO)  
T2/LEO/S1 Have you ever been talking to someone and it seems like he or she is saying the same thing over and over? 

There is probably a time when you talk to someone and it seems like he or she is saying the same thing over and over. 
Int/Qu/St 

T2/LEO/S2 I mean, you keep listening, and they keep talking, and it all sounds the same. 
I mean, you keep listening, and they keep talking, doesn’t it all sound the same? 

 

T2/LEO/S3 And they talk somemore and you listen somemore and you wonder if it will ever end! 
And they talk somemore and you listen somemore and you wonder, will it ever end? 

 

T2/LEO/S4 Congratulations, you just experienced a perfect example of a verbal loop! 
Congratulations, experience a perfect example of a verbal loop! 

Dec/St/Co 

T2/LEO/S5 In Java, a loop is a programming construct that enables you to repeat a section of code over and over, much like my 
conversation example. 

 

T2/LEO/S6 Loops are very valuable in Java because they enable you to tightly control repetitive functions.   
T2/LEO/S7 Three type of loops are used in Java: for loops, while loops and do loops.  
TITLE GETTING REDUNDANT WITH THE FOR LOOP (GRL)  
T2/GRL/S1 Let’s pretend NASA used Java applets to control the launch of the space shuttle.  

Pretend NASA used Java applets to control the launch of the space shuttle. 
Dec/St/Co 

T2/GRL/S2 Any ideas on how controllers would initiate the launch sequence? 
Think of how controllers would initiate the launch sequence. 

Int/Qu/Co 

T2/GRL/S3 With loops!   
T2/GRL/S4 Counting down from ten to one is a piece of cake with a loop.  

Note: 
1. For every table entry with metaphorical clauses with Metaphor of Mood, the 

metaphorical sentence precedes the congruent sentence.  
 
Keys: 
1. Dec/St/Co denotes Declarative clauses realizing Statement and Command  
2. Int/Qu/St denotes Interrogative clauses realizing Question and Statement 
3. Int/Qu/Co denotes Interrogative clauses realizing Question and Command 
4. Imp/Co/St denotes Imperative clauses realizing Command and Statement 
 



2 
 

T2/GRL/S5 Granted, without a loop it wouldn’t be too tough either, but it would require some unnecessary code.   
T2/GRL/S6 Following is code to perform the launch sequence without the use of a loop. 

See the following for the code to perform the launch sequence without the use of a loop. 
Dec/St/Co 

T2/GRL/S7 And now the loop version: 
And now see the loop version: 

Dec/St/Co 

T2/GRL/S8 See what I mean about tightening up the code? 
This is what I mean about tightening up the code.  

Int/Qu/St 

T2/GRL/S9 You probably wonder exactly how the loop code works. 
Think of how does the loop code work. 

Dec/St/Co 

T2/GRL/S10 This code relies on a for loop, which is the most structured type of loop supported by Java.  
T2/GRL/S11 For loops repeat a section of code a fixed number of times.   
T2/GRL/S12 Following is the syntax for the for loop: 

See the following for the syntax for the for loop. 
 

T2/GRL/S13 The for loop repeats the Statement the number of time determined by the InitializationExpression, LoopCondition and 
StepExpression: 

 

T2/GRL/S14 The InitializationExpression is used to initialize a loop control variable. 
Use the InitializationExpression to initialize a loop control variable. 

Dec/St/Co 

T2/GRL/S15 The LoopCondition compares the loop control variable to some limit or value.  
T2/GRL/S16 The StepExpression specifies how the loop control variable should be modified before the next iteration of the loop.  
T2/GRL/S17 Let’s take a look at the NASA launch sequence code again to make some sense of this stuff. 

Take a look at the NASA launch sequence code again to make some sense of this stuff. 
Dec/St/Co 

T2/GRL/S18 In this code the InitializationExpression is int i310, which is evaluated initially before the loop begins.  
T2/GRL/S19 This is the code you use to prime the loop and get it ready. 

Use this code to prime the loop and get it ready. 
Dec/St/Co 

T2/GRL/S20 The LoopCondition is i>0, which is a Boolean test that is performed before each iteration of the loop.   
T2/GRL/S21 If the Boolean test result is true, the Statement is executed, which in this case prints the current value of i.  
T2/GRL/S22 After each iteration the StepExpression is evaluated, which is i--.   
T2/GRL/S23 This serves to decrement i after each iteration, and ultimately proves the countdown.  
T2/GRL/S24 The loop continues to iterate and print numbers as i counts down to 0.  
T2/GRL/S25 After i reaches 0, the LoopCondition test fails (i>0), so the loop bails out without printing any more numbers.  
T2/GRL/S26 Whew, that explanation seemed a little long-winded, and that’s coming from the person that wrote it!  
T2/GRL/S27 Unfortunately, it isn’t always easy to verbalize the flow of program code.  
T2/GRL/S28 This is why it’s easy to fall back on figures.  
T2/GRL/S29 Just ask Ross Perot, who isn’t a Java programmer but who nonetheless relied on diagrams and illustrations to help us 

grasp his big plans for the presidency. 
You can ask Ross Perot, who isn’t a Java programmer but who nonetheless relied on diagrams and illustrations to help 
us grasp his big plans for the presidency. 

Imp/Co/St 

T2/GRL/S30 You can feel safe and secure knowing that I’m not running for president or trying to help you visualize my answer to Dec/St/Co 



3 
 

global trade. 
Be safe and secure knowing that I’m not running for president or trying to help you visualize my answer to global trade. 

T2/GRL/S31 I just want to help you learn how loops work!  
T2/GRL/S32 To help you visualize the looping process, take a look at the following figure. 

To help you visualize the looping process, you can take a look at the following figure. 
Imp/Co/St 

T2/GRL/S33 Notice in the figure that Statement 1 and Statement 2 will be repeatedly executed as long as the loop condition is true.  
You can notice in the figure that Statement 1 and Statement 2 will be repeatedly executed as long as the loop condition is 
true.  

Imp/Co/St 

T2/GRL/S34 When the loop condition goes false, the program falls out of the loop and executes Statement 3.   
T2/GRL/S35 The previous figure alludes to the fact that a loop can execute multiple statements.   
T2/GRL/S36 Loops can execute as many statements as they want, provided curly braces ({}) enclose the statements.  
T2/GRL/S37 If you recall, this grouping of statements is known as a compound statement and was used in the previous chapter when 

dealing with if-else branches. 
Recall that this grouping of statements is known as a compound statement and was used in the previous chapter when 
dealing with if-else branches. 

Dec/St/Co 

T2/GRL/S38 Following is an example of a for loop with a compound statement: 
See the following for an example of a for loop with a compound statement: 

Dec/St/Co 
 

T2/GRL/S39 This code calculates the squares of the numbers 1 through 10, stores them in an array, and prints each one.  
T2/GRL/S40 Notice that the loop counter (i) is used as the index (i-1) into the squares array.  

You can notice that the loop counter (i) is used as the index (i-1) into the squares array. 
Imp/Co/St 

T2/GRL/S41 This is a very popular way to handle arrays.  
T2/GRL/S42 It is necessary to subtract 1 in this case because all Java array indexes start with 0, which means they are zero based. 

Subtract 1 in this case because all Java array indexes start with 0, which means they are zero based. 
Dec/St/Co 

T2/GRL/S43 It might be worth nothing that although zero-based arrays were used in other programming languages in the 1980s and 
before, they have nothing to do with the 80s movie Less than Zero or the 80s hit song saved by Zero. 

 

T2/GRL/S44 Rest assured I would be the first to tell you if they did! 
You can be rest assured I would be the first to tell you if they did! 

Imp/Co/St 

TITLE LOOPING FOR JUST A LITTLE WHILE (LJLW)  
T2/LJLW/S1 Like the for loop, the while loop has a loop condition that controls the number of times a loop is repeated.  
T2/LJLW/S2 However, the while loop has no initialization or step expression.  
T2/LJLW/S3 A for loop is like one of those friends who tells you a story three or four times and then waits for a response, whereas a 

while loop is like one of those friends who continues to repeat himself as long as you continue to listen. 
 

T2/LJLW/S4 They’re both annoying, but in different ways.   
T2/LJLW/S5 Not the loops, the people!  
T2/LJLW/S6 Following is the syntax for the while loop, which should make its usage a little more clear: 

See the following for the syntax for the while loop, which should make its usage a little more clear: 
Dec/St/Co 

T2/LJLW/S7 If the Boolean LoopCondition evaluates to true, the Statement is executed.  
T2/LJLW/S8 When the Statement finishes executing, the LoopCondition is tested again and the process repeats itself.  



4 
 

T2/LJLW/S9 This continues until the LoopCondition evaluates to false, in which case the loop immediately bails out.  
T2/LJLW/S10 Because the while loop has no step expression, it is important to make sure that the Statement somehow impacts the 

LoopCondition. 
Because the while loop has no step expression, make sure that the Statement somehow impacts the LoopCondition. 

Dec/St/Co 

T2/LJLW/S11 Otherwise, it is possible for the loop to repeat infinitely, which is usually a bad thing.  
T2/LJLW/S12 Following is a simple example of an infinite while loop: 

See the following for a simple example of an infinite while loop: 
Dec/St/Co 

T2/LJLW/S13 Because the loop condition in this example is permanently set to true, the loop will repeat infinitely, or at least until you 
manually terminate the programme. 

 

T2/LJLW/S14 Infinite loops are extremely dangerous because they can result in your computer overheating.   
T2/LJLW/S15 Just kidding!  
T2/LJLW/S16 Actually, infinite loops are useful in some situations.  
T2/LJLW/S17 They are never truly infinite because you can typically terminate one by shutting down the application or applet containing 

it. 
 

T2/LJLW/S18 You can think of the while loop as a more general for loop. 
Think of the while loop as a more general for loop. 

Dec/St/Co 

T2/LJLW/S19 To understand what I mean by this, check out the following code. 
To understand what I mean by this, you can check out the following code. 

Imp/Co/St 

T2/LJLW/S20 This is the NASA launch sequence implemented using a while loop instead of a for loop.  
T2/LJLW/S21 Because while loops don’t have initialization expressions, the initialization of the counter variable i had to be performed 

before the loop.  
 

T2/LJLW/S22 Likewise, the step expression i had to be performed within the Statement part of the loop.  
T2/LJLW/S23 Regardless of the structural differences, this while loop is functionally equivalent to the for loop you saw earlier in the 

chapter.  
 

T2/LJLW/S24 If a for loop can do everything a while loop can and in a more organized way, then why do we need while loops? 
Even when a for loop can do everything a while loop can and in a more organized way, we still need while loops. 

Int/Qu/St 

T2/LJLW/S25 Because there is a time and a place for everything, and in many situations you have no need for initialization and step 
expressions.  

 

T2/LJLW/S26 A for loop is overkill in situations like this.  
T2/LJLW/S27 Even more importantly, a while loop is much more readable than a for loop when you have no need for initialization and 

step expressions.  
 

T2/LJLW/S28 Consider the following example: 
You can consider the following example: 

Imp/Co/St 

T2/LJLW/S29 This code demonstrates how a while loop could be used to ask a question and patiently wait for the correct answer. 
See this code that demonstrates how a while loop could be used to ask a question and patiently wait for the correct 
answer. 

Dec/St/Co 

T2/LJLW/S30 The loop repeats itself as long as the Boolean variable correct is false.   
T2/LJLW/S31 This results in the code repeating the question as many times as necessary until the user guesses the correct answer.   



5 
 

T2/LJLW/S32 The details of the methods askQuestion() and isCorrect() aren’t important for this example.   
T2/LJLW/S33 Just assume that they somehow present the user with a question, retrieve an answer, and then judge the correctness of 

the answer.  
You can assume that they somehow present the user with a question, retrieve an answer, and then judge the correctness 
of the answer.  

Imp/Co/St 

T2/LJLW/S34 The main concern is that the isCorrect () method returns a Boolean value that indicates whether or not the answer is 
correct. 

 

T2/LJLW/S35 In this example, it is impossible to know how many times the user will miss the answer and need the question repeated.   
T2/LJLW/S36 For this reason, the structured step expression of a for loop wouldn’t be of much use.   
T2/LJLW/S37 While loops are perfect in situations where you don’t know ahead of time how many times a loop needs to be repeated.   
T2/LJLW/S38 If you aren’t completely satisfied with while loops, however, there is one other option.  

If you aren’t completely satisfied with while loops, however, consider one other option. 
Dec/St/Co 

TITLE TO DO , OR NOT TO DO (TDNTD)  
T2/TDNTD/S1 The while loop has a very close relative known as the do loop, or do-while loop, that is surprisingly similar to the while 

loop. 
 

T2/TDNTD/S2 Because you’re becoming pretty loop savvy, I’ll show you the syntax for the do-while loop first and see if you can figure 
out how it works. 
Because you’re becoming pretty loop savvy, take note on the syntax for the do-while loop first and see if you can figure 
out how it works. 

Dec/St/Co 

T2/TDNTD/S3 Give up? 
If you can’t figure it out, the answer is as follows: 
Give up now because the answer is as follows: 

 
Int/Qu/St 
Int/Qu/Co 

T2/TDNTD/S4 The do-while loop is basically a while loop with the LoopCondition moved to the end.  
T2/TDNTD/S5 Why is this necessary? 

This is necessary. 
Int/Qu/St 

T2/TDNTD/S6 Because there are some situations where you would like the Statement to execute before evaluating the LoopCondition, 
instead of afterward.  

 

T2/TDNTD/S7 This also guarantees that the Statement is executed at least once, regardless of the LoopCondition.  
T2/TDNTD/S8 Let’s take a look at the question and answer example implemented using a do-while loop: 

You can take a look at the question and answer example implemented using a do-while loop: 
Imp/Co/St 

T2/TDNTD/S9 The code really isn’t much different than before, except that you no longer need to initialise the correct variable.  
T2/TDNTD/S10 It is always initially set during the first pass through the loop.  
T2/TDNTD/S11 Although both types of loops accomplish the goal of this example, the do-while loop is a better fit because of its structure 

more closely mimics the function of the code. 
 

T2/TDNTD/S12 What do I mean by this? 
Read on to know what I mean by this. 
The following describes what I mean by this. 

 
Int/Qu/Co 
Int/Qu/St 

T2/TDNTD/S13 Well, if you “read” the code, it is saying “ask the question and if the answer is not correct, ask it again.”  



6 
 

T2/TDNTD/S14 This makes more sense than if it read “if the answer is not correct, ask the question and then check the answer again.”  
T2/TDNTD/S15 Admittedly, this is a subtle difference, but a large part of successful programming is keeping things logical and 

straightforward. 
 
 

T2/TDNTD/S16 You won’t always succeed because sometimes code gets complicated regardless of how you construct it, but using loops 
intelligently is a good start.  

 

TITLE APPLET COUNTDOWN (AC)  
T2/AC/S1 Have you ever visited a Web page that directed you to another page, but informed you that if you waited a few second sit 

would automatically take you there? 
There is probably a time when you visit a Web page that directed you to another page, but informed you that if you waited 
a few second sit would automatically take you there. 

Int/Qu/St 

T2/AC/S2 I used to run across these pages and wonder how you could make a page wait a few seconds and then automatically 
navigate to a new page. 

 

T2/AC/S3 After I started programming in Java, I realised what a trivial task this is.  
T2/AC/S4 In this section you use your knowledge of loops to build a “countdown” applet that counts down from ten to one and then 

navigates to a new Web page. 
In this section, use your knowledge of loops to build a “countdown” applet that counts down from ten to one and then 
navigates to a new Web page. 

Dec/St/Co 

T2/AC/S5 The following figure shows the Countdown applet in action. 
See the following figure that shows the Countdown applet in action. 

Dec/St/Co 

T2/AC/S6 When the applet finishes counting down, it navigates to the web page identified by the page applet parameter.  
T2/AC/S7 As an example, what web site could be better than NASA’s to demonstrate how this applet works? 

As an example, think of what web site that could be better than NASA’s to demonstrate how this applet works. 
Dec/St/Co 

T2/AC/S8 Following is NASA’s Web site, to which the Countdown applet will take you after it finishes its countdown. 
See the following for NASA’s Web site to which the Countdown applet will take you after it finishes its countdown. 

Dec/St/Co 

T2/AC/S9 To understand how the Countdown applet works, let’s first take a look at the Countdown. Html Web page that contains 
the embedded applet. 
To understand how the Countdown applet works, you can first take a look at the Countdown. Html Web page that 
contains the embedded applet. 

Imp/Co/St 

T2/AC/S10 All this stuff should look pretty familiar to you by now.   
T2/AC/S11 The main thing on which I want you to focus is the page parameter, which is defined as: 

Focus on the page parameter, which is defined as: 
Dec/St/Co 

T2/AC/S12 Notice that the value of the page parameter is set to http://www.nasa.gov, which is the URL of NASA’s Web site. 
You can notice that the value of the page parameter is set to http://www.nasa.gov, which is the URL of NASA’s Web site. 

Imp/Co/St 

T2/AC/S13 Changing this value enables you to change the page that is loaded after the applet finishes counting down.  
T2/AC/S14 This page could have easily been set as a variable within the applet code, but a recompile would be required to change 

the page. 
 

T2/AC/S15 That is the beauty of applet parameters.   
T2/AC/S16 They enable you to customize the function of applets without doing any real programming! Dec/St/Co 



7 
 

Customize the function of applets without doing any real programming! 
T2/AC/S17 Let’s move on to the actual code required of the countdown applet. 

You can move on to the actual code required of the countdown applet. 
Imp/Co/St 

T2/AC/S18 Unfortunately, the Countdown applet requires some code that is a little beyond the lesson, so I don’t expect all of this 
applet to make sense to you. 

 

T2/AC/S19 However, you can download the complete source code for the applet from the book’s companion Web site, which was 
mentioned a little earlier in this section. 

 

T2/AC/S20 Also, the core mechanics of the applet are very straightforward and should be familiar to you from your recent study of 
loops. 

 

T2/AC/S21 Following is the run() method in the Countdown applet class, which forms the heart of the applet: 
See the following for the run() method in the Countdown applet class, which forms the heart of the applet: 

Dec/St/Co 

T2/AC/S22 Ouch, that looks a little messy!  
T2/AC/S23 Try not to get intimidated by any code that doesn’t look familiar. 

You must try not to get intimidated by any code that doesn’t look familiar. 
Imp/Co/St 

T2/AC/S24 Just concentrate on the loop code. 
You can just concentrate on the loop code. 

Imp/Co/St 

T2/AC/S25 As you can see, the for loop counts down from 10 to 1 just like the Countdown code you saw earlier in the chapter.  
See that the for loop counts down from 10 to 1 just like the Countdown code you saw earlier in the chapter.  

Dec/St/Co 

T2/AC/S26 The Statement part of this for loop is completely new territory, however.   
T2/AC/S27 The call to the repaint () method is necessary to update the applet’s window with the new countdown number.  
T2/AC/S28 The call to the thread.sleep() method results in the applet waiting one second, which effectively pauses the countdown for 

one second between numbers.  
 

T2/AC/S29 When the for loop finishes, the code gets the page applet parameter and proceed to navigate to the Web page identified 
by it.  

 

T2/AC/S30 The code required to navigate to the Web page is probably pretty strange looking to you because it has to deal with 
exceptions. 

 

T2/AC/S31 Exceptions are errors caused by unforeseen problems such as your computer running out of memory, your modem 
coming unplugged, spilling coffee on your keyboard, hurling your monitor out the window, and so on. 

 

T2/AC/S32 I’ll explain exceptions as you encounter them throughout the book.  
Be ready for explanation of exceptions as you encounter them throughout the book. 

Dec/St/Co 

T2/AC/S33 The complete source code for the countdown applet is as follows. 
See the complete source code for the countdown applet as follows. 

Dec/St/Co 

T2/AC/S34 Although this is a longer program than you are accustomed to seeing, a lot of it should look familiar to you.  
T2/AC/S35 For example, the paint() method code is very similar to the code used in the DateTime applet from Chapter 4, 

“constructing Applets of Your Own.”  
 

T2/AC/S36 On the other hand, the start() method is entirely new and is related to the applet’s use of threads.   
T2/AC/S37 You don’t need to understand it fully at this point.   
TITLE  BREAKING AWAY (BA)  



8 
 

T2/BA/S1 If you recall from the previous chapter, each case section of a switch branch ends with a break statement. 
Recall from the previous chapter, each case section of a switch branch ends with a break statement. 

Dec/St/Co 

T2/BA/S2 Following is an example to recap: 
See the following for an example to recap: 

Dec/St/Co 

T2/BA/S3 The purpose of the break statement in this example is to bail out of the switch branch so that no other code is executed.   
T2/BA/S4 The break statement serves a similar purpose in loops.  
T2/BA/S5 It breaks out of a loop regardless of the loop condition.   
T2/BA/S6 Following is an example of circumventing an infinite loop with a break statement:  

See the following for an example of circumventing an infinite loop with a break statement:  
Dec/St/Co 

T2/BA/S7 Without the assistance of the break statement, this while loop would continue forever thanks to the permanent true loop 
condition. 

 

T2/BA/S8 The break statement sidesteps this problem by breaking out of the loop after one hundred iterations (0-99).   
T2/BA/S9 Of course, it is rare that you would purposely create an infinite loop and then use a break statement to bail out of it.  
T2/BA/S10 However, the break statement can be very useful in some tricky loops when you need to exit at an otherwise inconvenient 

time.  
 

T2/BA/S11 A close relative of the break statement is the continue statement, which is used to skip to the next iteration of a loop.   
T2/BA/S13 The following example shows how  a continue statement can be used to print only the even numbers between 1 and 100: 

See the following example that shows how  a continue statement can be used to print only the even numbers between 1 
and 100: 

Dec/St/Co 

T2/BA/S14 Having trouble seeing how this one works? 
You might have trouble seeing how this one works. 

Int/Qu/St 

T2/BA/S15 Think back to the modulus operator (%), which returns the remainder of a division.  
You can think back to the modulus operator (%), which returns the remainder of a division.  

Imp/Co/St 

T2/BA/S16 Now consider what the remainder of a division by 2 yields for even and odd numbers.  
Now, you can consider what the remainder of a division by 2 yields for even and odd numbers. 

Imp/Co/St 

T2/BA/S17 Aha!  
T2/BA/S18 Even numbers divided by 2 always yield a remainder of 0, and odd numbers always leave a remainder of 1!  
T2/BA/S19 The example code exploits this characteristic of even and odd numbers to skip to the next iteration bypasses the println() 

call, which prevents odd numbers from being printed. 
See that the example code exploits this characteristic of even and odd numbers to skip to the next iteration bypasses the 
println() call, which prevents odd numbers from being printed. 

Dec/St/Co 

T2/BA/S20 Pretty tricky!  
TITLE THE LEAST YOU NEED TO KNOW (LNK)  
T2/LNK/S1 Computers are often called upon to perform tasks we humans find to be utterly redundant.   
T2/LNK/S2 As dull as some humans can be, I guarantee you computers are much duller when it comes to repeating the same thing 

over and over.  
 

T2/LNK/S3 Java enables you to build programs that repeat themselves through the use of loops.  



9 
 

T2/LNK/S4 The different types of loops basically perform the same function.   
T2/LNK/S5 They repeat a section of code over and over.   
T2/LNK/S6 Let’s go over the main points you learned about loops in this chapter. 

You can go over the main points you learned about loops in this chapter. 
Imp/Co/St 

T2/LNK/S7 Loops can execute as many statements as you want them to, provided the statements are grouped together as a single 
compound statement enclosed by curly braces ({}). 

 

T2/LNK/S8 A for loop is used to repeat a section of code a given number of iterations.  
Use a for loop to repeat a section of code a given number of iterations. 

Dec/St/Co 

T2/LNK/S9 A while loop is a more general for loop.   
T2/LNK/S10 A do while is a while loop with the loop condition moved to the end.   
T2/LNK/S11 The break statement is used to break out of a loop regardless of the loop condition.  

Use the break statement to break out of a loop regardless of the loop condition. 
Dec/St/Co 

T2/LNK/S12 The continue statement is used to skip to the next iteration of a loop.  
Use the continue statement to skip to the next iteration of a loop. 

Dec/St/Co 

 

 



Appendix 4A 
 

Text 1 – Semantic Expansion of Declarative Clauses realizing Statement and Command 
 
 

 

 

 

 
 

 
Eg. Label R Declarative Mood Sentences 
1 T1/INT/S4 M 

C 
Using a loop statement, you simply tell the computer to print a string a hundred times without having to code the print statement a hundred times. 
Using a loop statement, tell the computer to print a string a hundred times without having to code the print statement a hundred times. 

2 T1/LCD/S2 M 
C 

If you want the user to decide whether to take another question, you can use a confirmation dialog to control the loop. 
If you want the user to decide whether to take another question, use a confirmation dialog to control the loop. 

3 T1/LCD/S3 M 
C 

A confirmation dialog can be created using the following statement. 
Create a confirmation dialog using the following statement. 

4 T1/LCD/S7 M 
C 

You can rewrite Listing 4.1 using a confirmation dialog to let the user decide whether to continue the next question. 
Rewrite Listing 4.1 using a confirmation dialog to let the user decide whether to continue the next question. 

5 T1/LSV/S9 M 
C 

A sample run of the program is shown in Figure 4.3. 
See Figure 4.3 for a sample run of the program 

6 T1/DWL/S2 M 
C 

Its syntax is given below: 
See below for its syntax: 

7 T1/DWL/S3 M 
C 

Its execution flow chart is shown in Figure 4.4. 
See Figure 4.4 for its execution flow chart. 

8 T1/DWL/S11 M 
C 

For example, you can rewrite the while loop in Listing 4.2 using a do-while loop, as shown in Listing 4.3. 
For example, rewrite the while loop in Listing 4.2 using a do-while loop, as shown in Listing 4.3. 

9 T1/FL/S2 M 
C 

A for loop can be used to simplify the preceding loop. 
Use a for loop to simplify the preceding loop. 

10 T1/FL/S3 M 
C 

In general, the syntax of a for loop is as shown below. 
In general, see below for the syntax of a for loop. 

11 T1/FL/S5 M 
 
C 

The for loop statement starts with the keyword for, followed by a pair of parentheses enclosing initial-action, loop-continuation-condition, and action-after-each-iteration, and 
followed by the loop body enclosed inside braces.  
Start the for loop statement with the keyword for, enclose initial-action, loop-continuation-condition with a pair of parenthesis, and enclose the loop body inside braces. 

12 T1/FL/S6 M 
C 

Initial-action, loop-continuation-condition, and action-after-each-iteration are separated by semicolons. 
Separate Initial-action, loop-continuation-condition, and action-after-each-iteration with semicolons.  

13 T1/FL/S7 M 
C 

A for loop generally uses a variable to control how many times the loop body is executed and when the loop terminates.  
Use a variable in a for loop to control how many times the loop body is executed and when the loop terminates. 

14 T1/FL/S8 M This variable is referred to as a control variable.  

Note: 
1. Semantic Expansion of Declarative Clauses in text is coded as “Dec/St/Co” 

which denotes Declarative clauses realizing Statement and Command.  
 

Key: 
1. R : Realization 
2. M : Metaphorical 
3. C : Congruent 
 



C Refer this variable as a control variable. 
15 T1/FL/S10 M 

C 
For example, the following for loop prints "Welcome to Java!" a hundred times. 
See the following to understand how for loop prints "Welcome to Java!" a hundred times. 

16 T1/FL/S11 M 
C 

The flow chart of the statement is shown in Figure 4.5(b).  
See Figure 4.5(b) for the flow chart of the statement. 

17 T1/FL/S23 M 
C 

If there is only one statement in the loop body, as in this example, the braces can be omitted. 
If there is only one statement in the loop body, as in this example, omit the braces. 

18 T1/FL/S24 M 
C 

The control variable must always be declared inside the control structure of the loop or before the loop. 
Declare the control variable inside the control structure of the loop or before the loop. 

19 T1/FL/S25 M 
C 

The loop control variable is used only in the loop, and not elsewhere. 
Use the loop control variable only in the loop, and not elsewhere. 

20 T1/FL/S28 M 
C 

For example, you cannot reference i outside the for loop in the preceding code, because it is declared inside the for loop. 
Do not reference i outside the for loop in the preceding code, because it is declared inside the for loop. 

21 T1/WLU/S1 M 
C 

The while loop and for loop are called pre-test loops because the continuation condition is checked before the loop body is executed. 
Refer the while loop and for loop as pre-test loops because the continuation condition is checked before the loop body is executed. 

22 T1/WLU/S2 M 
C 

The do-while loop is called a post-test loop because the condition is checked after the loop body is executed. 
Refer The do-while loop as a post-test loop because the condition is checked after the loop body is executed 

23 T1/WLU/S4 M 
C 

That is, you can write a loop in any of these three forms. 
Write a loop in any of these three forms. 

24 T1/WLU/S5 M 
C 

For example, a while loop in (a) in the following figure can always be converted into the for loop in (b): 
See the following figure on how , a while loop in (a) can always be converted into the for loop in (b): 

25 T1/WLU/S6 M 
C 

A for loop in (a) in the next figure can generally be converted into the while loop in (b) except in certain special cases (see Review Question 4.12 for such a case): 
See the next figure on how A for loop in (a) can generally be converted into the while loop in (b) except in certain special cases (see Review Question 4.12 for such a case): 

26 T1/WLU/S8 M 
C 

In general, a for loop may be used if the number of repetitions is known, as, for example, when you need to print a message a hundred times. 
In general, use a for loop used if the number of repetitions is known, as, for example, when you need to print a message a hundred times. 

27 T1/WLU/S9 M 
C 

A while loop may be used if the number of repetitions is not known, as in the case of reading the numbers until the input is 0. 
Use a while loop if the number of repetitions is not known, as in the case of reading the numbers until the input is 0. 

28 T1/WLU/S10 M
C 

A do-while loop can be used to replace a while loop if the loop body has to be executed before the continuation condition is tested. 
Use a do-while loop to replace a while loop if the loop body has to be executed before the continuation condition is tested. 

29 T1/NL/S3 M 
C 

Listing 4.4 presents a program that uses nested for loops to print a multiplication table, as shown in Figure 4.6. 
See Listing 4.4 that presents a program that uses nested for loops to print a multiplication table, as shown in Figure 4.6 

30 T1/MNE/S2 M 
C 

This section discusses how to minimize such errors through an example. 
Read this section that discusses how to minimize such errors through an example. 

31 T1/MNE/S3 M 
C 

Listing 4.5 presents an example that sums a series that starts with 0.01 and ends with 1.0. 
See Listing 4.5 that presents an example that sums a series that starts with 0.01 and ends with 1.0. 

32 T1/MNE/S10 M 
C 

From this example, you can see that a control variable can be a float type. 
From this example, see that a control variable can be a float type. 

33 T1/MNE/S14 M 
 
C 

If you change float in the program to double as follows, you should see a slight improvement in precision because a double variable takes sixty-four bits, whereas a float variable 
takes thirty-two bits. 
If you change float in the program to double as follows, notice a slight improvement in precision because a double variable takes sixty-four bits, whereas a float variable takes thirty-
two bits. 

34 T1/MNE/S15 M 
C 

However, you will be stunned to see that the result is actually 49.50000000000003. 
However, see that the result is actually 49.50000000000003. 

35 T1/MNE/S22 M 
C 

Minimizing errors by processing large numbers first. 
Minimize errors by processing large numbers first. 



36 T1/MNE/S23 M 
C 

Using an integer count to ensure that all the numbers are processed. 
Use an integer count to ensure that all the numbers are processed. 

37 T1/MNE/S26 M 
C 

Here is the new loop. 
See here for the new loop. 

38 T1/CS/S4 M 
C 

For this reason, this section presents three additional examples of how to solve problems using loops. 
For this reason, read this section that presents three additional examples of how to solve problems using loops. 

39 T1/FGCD/S1 M 
C 

This section presents a program that prompts the user to enter two positive integers and finds their greatest common divisor. 
Read this section that presents a program that prompts the user to enter two positive integers and finds their greatest common divisor. 

40 T1/FGCD/S4 M 
C 

How do you find the greatest common divisor? 
Find the greatest common divisor 

41 T1/FGCD/S7 M 
C 

So you can check whether k (for k = 2, 3, 4 and so on) is a common divisor for n1 and n2, until k is greater than n1 or n2. 
Check whether k (for k = 2, 3, 4 and so on) is a common divisor for n1 and n2, until k is greater than n1 or n2. 

42 T1/FGCD/S12 M 
C 

The idea can be translated into the following loop: 
Translate the idea into the following loop 

43 T1/FGCD/S15 M 
C 

How did you write this program? 
Describe how you wrote this program. 

44 T1/FGCD/S18 M 
C 

It is important to think before you type. 
Think before you type. 

45 T1/FGCD/S22 M 
C 

For example, you could use a for loop to rewrite the code as follows: 
For example, use a for loop to rewrite the code as follows: 

46 T1/FGCD/S26 M 
C 

A more efficient solution is to use the classic Euclidean algorithm. 
For a more efficient solution, use the classic Euclidean algorithm. 

47 T1/FSA/S6 M 
C 

This section writes a program that finds the minimum amount of sales you have to generate in order to make $30,000. 
Read this section that writes a program that finds the minimum amount of sales you have to generate in order to make $30,000. 

48 T1/FSA/S8 M 
C 

What is the sales amount for a $25,000 commission? 
Find the sales amount for a $25,000 commission. 

49 T1/FSA/S9 M 
C 

If you know the sales amount, the commission can be computed as follows. 
If you know the sales amount, compute the commission as follows. 

50 T1/FSA/S10 M 
C 

This suggests that you can try to find the salesAmount to match a given commission through incremental approximation. 
Try to find the salesAmount to match a given commission through incremental approximation. 

51 T1/FSA/S15 M 
C 

You can write a loop and let a computer execute it painlessly. 
Write a loop and let a computer execute it painlessly.  

52 T1/FSA/S16 M 
C 

The idea can be translated into the following loop: 
Translate the idea into the following loop: 

53 T1/FSA/S20 M 
C 

In Exercise 4.17, you will rewrite this program to let the user enter COMMISSION_SOUGHT dynamically from an input dialog. 
In Exercise 4.17, rewrite this program to let the user enter COMMISSION_SOUGHT dynamically from an input dialog. 

54 T1/FSA/S21 M 
C 

You can improve the performance of this program by estimating a higher INITIAL_SALES_AMOUNT (e.g., 25000). 
Improve the performance of this program by estimating a higher INITIAL_SALES_AMOUNT (e.g., 25000). 

55 T1/FSA/S22 M 
C 

What is wrong if salesAmount is incremented after the commission is computed, as follows? 
Find the mistake if salesAmount is incremented after the commission is computed, as follows? 

56 T1/DPN/S1 M 
C 

This section presents a program that prompts the user to enter an integer from 1 to 15 and displays a pyramid. 
Read this section that presents a program that prompts the user to enter an integer from 1 to 15 and displays a pyramid. 

57 T1/DPN/S12 M 
C 

You can use an outer loop to control the lines. 
Use an outer loop to control the lines. 

58 T1/DPN/S14 M You can use three separate inner loops to print each part. 



C Use three separate inner loops to print each part. 
59 T1/DPN/S15 M 

C 
Here is the algorithm for the problem. 
Read the algorithm for the problem. 

60 T1/DPN/S16 M 
C 

The complete program is given in Listing 4.8. 
See the complete program in Listing 4.8. 

61 T1/KBC/S1 M 
C 

Two statements, break and continue, can be used in loop statements to provide the loop with additional control. 
Use the two statements, break and continue in loop statements to provide the loop with additional control. 

62 T1/KBC/S3 M 
C 

It is generally used with an if statement. 
Use it with an if statement. 

63 T1/KBC/S6 M 
C 

This keyword is generally used with an if statement. 
Use this keyword with an if statement. 

64 T1/KBC/S8 M 
C 

You can also use break and continue in a loop. 
Use break and continue in a loop. 

65 T1/KBC/S20 M 
C 

The output of the program is shown in Figure 4.12(a). 
See the output of the program in Figure 4.12(a). 

 



Appendix 4B 
 

Text 2 – Semantic Expansion of Declarative Clauses realizing Statement and Command 
 

 

 

 

 

 

 
Eg. Label R Declarative Mood Sentences 
1 T2/LEO/S4 M 

C 
Congratulations, you just experienced a perfect example of a verbal loop! 
Congratulations, experience a perfect example of a verbal loop! 

2 T2/GRL/S1 M 
C 

Let’s pretend NASA used Java applets to control the launch of the space shuttle.  
Pretend NASA used Java applets to control the launch of the space shuttle. 

3 T2/GRL/S6 M 
C 

Following is code to perform the launch sequence without the use of a loop. 
See the following for the code to perform the launch sequence without the use of a loop. 

4 T2/GRL/S7 M 
C 

And now the loop version: 
And now see the loop version: 

5 T2/GRL/S9 M 
C 

You probably wonder exactly how the loop code works. 
Think of how does the loop code work. 

6 T2/GRL/S14 M 
C 

The InitializationExpression is used to initialize a loop control variable. 
Use the InitializationExpression to initialize a loop control variable. 

7 T2/GRL/S17 M 
C 

Let’s take a look at the NASA launch sequence code again to make some sense of this stuff. 
Take a look at the NASA launch sequence code again to make some sense of this stuff. 

8 T2/GRL/S19 M 
C 

This is the code you use to prime the loop and get it ready. 
Use this code to prime the loop and get it ready. 

9 T2/GRL/S30 M 
 
C 

You can feel safe and secure knowing that I’m not running for president or trying to help you visualize my answer to 
global trade. 
Be safe and secure knowing that I’m not running for president or trying to help you visualize my answer to global 
trade. 

10 T2/GRL/S37 M 
 

If you recall, this grouping of statements is known as a compound statement and was used in the previous chapter 
when dealing with if-else branches. 

Note: 
1. Semantic Expansion of Declarative Clauses in text is coded as “Dec/St/Co” 

which denotes Declarative clauses realizing Statement and Command.  
 

Key: 
1. R : Realization 
2. M : Metaphorical 
3. C : Congruent 
 



C Recall that this grouping of statements is known as a compound statement and was used in the previous chapter 
when dealing with if-else branches. 

11 T2/GRL/S38 M 
C 

Following is an example of a for loop with a compound statement: 
See the following for an example of a for loop with a compound statement: 

12 T2/GRL/S42 M 
 
C 

It is necessary to subtract 1 in this case because all Java array indexes start with 0, which means they are zero 
based. 
Subtract 1 in this case because all Java array indexes start with 0, which means they are zero based. 

13 T2/LJLW/S6 M 
C 

Following is the syntax for the while loop, which should make its usage a little more clear: 
See the following for the syntax for the while loop, which should make its usage a little more clear: 

14 T2/LJLW/S10 M 
 
C 

Because the while loop has no step expression, it is important to make sure that the Statement somehow impacts 
the LoopCondition. 
Because the while loop has no step expression, make sure that the Statement somehow impacts the LoopCondition. 

15 T2/LJLW/S12 M 
C 

Following is a simple example of an infinite while loop: 
See the following for a simple example of an infinite while loop: 

16 T2/LJLW/S18 M 
C 

You can think of the while loop as a more general for loop. 
Think of the while loop as a more general for loop. 

17 T2/LJLW/S29 M 
C 

This code demonstrates how a while loop could be used to ask a question and patiently wait for the correct answer. 
See this code that demonstrates how a while loop could be used to ask a question and patiently wait for the correct 
answer. 

18 T2/LJLW/S38 M 
C 

If you aren’t completely satisfied with while loops, however, there is one other option.  
If you aren’t completely satisfied with while loops, however, consider one other option. 

19 T2/TDNTD/S2 M 
 
C 

Because you’re becoming pretty loop savvy, I’ll show you the syntax for the do-while loop first and see if you can 
figure out how it works. 
Because you’re becoming pretty loop savvy, take note on the syntax for the do-while loop first and see if you can 
figure out how it works. 

20 T2/AC/S4 M 
 
C 

In this section you use your knowledge of loops to build a “countdown” applet that counts down from ten to one and 
then navigates to a new Web page. 
In this section, use your knowledge of loops to build a “countdown” applet that counts down from ten to one and then 
navigates to a new Web page. 

21 T2/AC/S5 M 
C 

The following figure shows the Countdown applet in action. 
See the following figure that shows the Countdown applet in action. 

22 T2/AC/S7 M 
C 

As an example, what web site could be better than NASA’s to demonstrate how this applet works? 
As an example, think of what web site that could be better than NASA’s to demonstrate how this applet works. 

23 T2/AC/S8 M 
C 

Following is NASA’s Web site, to which the Countdown applet will take you after it finishes its countdown. 
See the following for NASA’s Web site to which the Countdown applet will take you after it finishes its countdown. 

24 T2/AC/S11 M 
C 

The main thing on which I want you to focus is the page parameter, which is defined as: 
Focus on the page parameter, which is defined as: 

25 T2/AC/S16 M 
C 

They enable you to customize the function of applets without doing any real programming! 
Customize the function of applets without doing any real programming! 



26 T2/AC/S21 M 
C 

Following is the run() method in the Countdown applet class, which forms the heart of the applet: 
See the following for the run() method in the Countdown applet class, which forms the heart of the applet: 

27 T2/AC/S25 M 
C 

As you can see, the for loop counts down from 10 to 1 just like the Countdown code you saw earlier in the chapter.  
See that the for loop counts down from 10 to 1 just like the Countdown code you saw earlier in the chapter.  

28 T2/AC/S32 M 
C 

I’ll explain exceptions as you encounter them throughout the book.  
Be ready for explanation of exceptions as you encounter them throughout the book. 

29 T2/AC/S33 M 
C 

The complete source code for the countdown applet is as follows. 
See the complete source code for the countdown applet as follows. 

30 T2/BA/S1 M 
C 

If you recall from the previous chapter, each case section of a switch branch ends with a break statement. 
Recall from the previous chapter, each case section of a switch branch ends with a break statement. 

31 T2/BA/S2 M 
C 

Following is an example to recap: 
See the following for an example to recap: 

32 T2/BA/S6 M 
C 

Following is an example of circumventing an infinite loop with a break statement:  
See the following for an example of circumventing an infinite loop with a break statement:  

33 T2/BA/S13 M 
 
C 

The following example shows how  a continue statement can be used to print only the even numbers between 1 and 
100: 
See the following example that shows how  a continue statement can be used to print only the even numbers 
between 1 and 100: 

34 T2/BA/S19 M 
 
C 

The example code exploits this characteristic of even and odd numbers to skip to the next iteration bypasses the 
println() call, which prevents odd numbers from being printed. 
See that the example code exploits this characteristic of even and odd numbers to skip to the next iteration 
bypasses the println() call, which prevents odd numbers from being printed. 

35 T2/LNK/S8 M 
C 

A for loop is used to repeat a section of code a given number of iterations.  
Use a for loop to repeat a section of code a given number of iterations. 

36 T2/LNK/S11 M 
C 

The break statement is used to break out of a loop regardless of the loop condition.  
Use the break statement to break out of a loop regardless of the loop condition. 

37 T2/LNK/S12 M 
C 

The continue statement is used to skip to the next iteration of a loop.  
Use the continue statement to skip to the next iteration of a loop. 

 



Appendix 5A 
 

Text 1 – Semantic Expansion of Interrogative Clauses realizing Question and Statement 
 

 

 

 

 

 

Eg. Label R Sentence 
1 T1/LSV/S5 M Do you need to declare a new variable for each input value?  
 T1/LSV/S6 M 

C 
No. 
There is no need to declare a new variable for each input. 

2 T1/MNE/S16 M 
C 

What went wrong? 
There is a mistake. 

3 T1/FGCD/S16 M Did you immediately begin to write the code? 
 T1/FGCD/S17 M 

C 
No. 
You didn’t immediately begin to write the code. 

 

  

Note: 
1. Semantic Expansion of Interrogative Clauses in text is coded as “Int/Qu/St” 

which denotes Interrogative clauses realizing Question and Statement. 
 
Key: 
1. R : Realization 
2. M : Metaphorical 
3. C : Congruent 
 



Appendix 5B 
 

Text 2 – Semantic Expansion of Interrogative Clauses realizing Question and Statement 
 

 

 

 

 

 

Eg. Label R Sentence 
1 T2/LEO/S1 M 

C 
Have you ever been talking to someone and it seems like he or she is saying the same thing over and over? 
There is probably a time when you talk to someone and it seems like he or she is saying the same thing over and 
over. 

3 T2/GRL/S8 M 
C 

See what I mean about tightening up the code? 
This is what I mean about tightening up the code.  

4 T2/LJLW/S24 M 
C 

If a for loop can do everything a while loop can and in a more organized way, then why do we need while loops? 
Even when a for loop can do everything a while loop can and in a more organized way, we still need while loops. 

5 T2/TDNTD/S3 M 
C 

Give up? 
If you can’t figure it out, the answer is as follows: 

6 T2/TDNTD/S5 M 
C 

Why is this necessary? 
This is necessary. 

7 T2/TDNTD/S12 M 
C 

What do I mean by this? 
The following describes what I mean by this. 

8 T2/AC/S1 M 
 
C 

Have you ever visited a Web page that directed you to another page, but informed you that if you waited a few 
second sit would automatically take you there? 
There is probably a time when you visit a Web page that directed you to another page, but informed you that if you 
waited a few second sit would automatically take you there. 

9 T2/BA/S14 M 
C 

Having trouble seeing how this one works? 
You might have trouble seeing how this one works. 

 

  

Note: 
1. Semantic Expansion of Interrogative Clauses in text is coded as “Int/Qu/St” 

which denotes Interrogative clauses realizing Question and Statement. 
 
Key: 
1. R : Realization 
2. M : Metaphorical 
3. C : Congruent 
 



Appendix 5C 
 

Text 1 – Semantic Expansion of Interrogative Clauses realizing Question and Command 
 

 

 

 

 

 

Eg. Label R Sentence 
1 T1/FGCD/S31 M 

C 
Can you find the reason? 
Find the reason. 

 

  

Note: 
1. Semantic Expansion of Interrogative Clauses in text is coded as 

“Int/Qu/Co” which denotes Interrogative clauses realizing Question and 
Command 

 
Key: 
1. R : Realization 
2. M : Metaphorical 
3. C : Congruent 
 



Appendix 5D 
 

Text 2 – Semantic Expansion of Interrogative Clauses realizing Question and Command 
 

 

 

 

 

 

Eg. Label R Sentence 
1 T2/GRL/S2 M 

C 
Any ideas on how controllers would initiate the launch sequence? 
Think of how controllers would initiate the launch sequence. 

 

Note: 
1. Semantic Expansion of Interrogative Clauses in text is coded as 

“Int/Qu/Co” which denotes Interrogative clauses realizing Question and 
Command 

 
Key: 
1. R : Realization 
2. M : Metaphorical 
3. C : Congruent 
 



Appendix 6A 
 

Text 1 – Semantic Expansion of Imperative Clauses realizing Command and Statement 
 

 

 

 

 

 

Eg. Label R Sentence 
1 T1/LSV/S7 M 

 
C 

Just use one variable named data (line 9) to store the input value and use a variable named sum (line 12) to store 
the total. 
One variable named data (line 9) is used to store the input value and a variable named sum (line 12) is used to 
store the total 

2 T1/LSV/S13 M 
C 

Note that if the first input read is 0, the loop body never executes, and the resulting sum is 0. 
If the first input read is 0, the loop body never executes, and the resulting sum is 0. 

3 T1/WLU/S7 M 
C 

Use the loop statement that is most intuitive and comfortable for you. 
You can use the loop statement that is most intuitive and comfortable for you. 

4 T1/MNE/S24 M 
C 

To minimize errors, add numbers from 1.0, 0.99, down to 0.1, as follows: 
To minimize errors, you can add numbers from 1.0, 0.99, down to 0.1, as follows: 

5 T1/MNE/S25 M 
C 

To ensure that all the items are added to sum, use an integer variable to count the items.  
To minimize errors, you can use an integer variable to count the items. 

6 T1/FGCD/S5 M 
C 

Let the two input integers be n1 and n2. 
You can let the two input integers be n1 and n2. 

7 T1/FGCD/S8 M 
C 

Store the common divisor in a variable named gcd. 
You can store the common divisor in a variable named gcd. 

8 T1/FGCD/S20 M 
C 

Once you have a logical solution, type the code to translate the solution into a Java program. 
Once you have a logical solution, you can type the code to translate the solution into a Java program. 

9 T1/FGCD/S27 M 
C 

See http://www.cut-the-knot.org/blue/Euclid.shtml for more information. 
You can see http://www.cut-the-knot.org/blue/Euclid.shtml for more information. 

10 T1/FGCD/S32 M 
C 

See Review Question 4.9 for the answer. 
You can see Review Question 4.9 for the answer. 

 

Note: 
1. Semantic Expansion of Imperative Clauses in text is coded as “Imp/Co/St” 

which denotes Imperative clauses realizing Command and Statement. 
 
Key: 
1. R : Realization 
2. M : Metaphorical 
3. C : Congruent 
 



Appendix 6B 
 

Text 2 – Semantic Expansion of Imperative Clauses realizing Command and Statement 
 

 

 

 

 

 

Eg. Label R Imperative Mood Sentences 
1 T2/GRL/S29 M 

 
C 

Just ask Ross Perot, who isn’t a Java programmer but who nonetheless relied on diagrams and illustrations to help 
us grasp his big plans for the presidency. 
You can ask Ross Perot, who isn’t a Java programmer but who nonetheless relied on diagrams and illustrations to 
help us grasp his big plans for the presidency. 

2 T2/GRL/S32 M 
C 

To help you visualize the looping process, take a look at the following figure. 
To help you visualize the looping process, you can take a look at the following figure. 

3 T2/GRL/S33 M 
 
C 

Notice in the figure that Statement 1 and Statement 2 will be repeatedly executed as long as the loop condition is 
true.  
You can notice in the figure that Statement 1 and Statement 2 will be repeatedly executed as long as the loop 
condition is true.  

4 T2/GRL/S40 M 
C 

Notice that the loop counter (i) is used as the index (i-1) into the squares array.  
You can notice that the loop counter (i) is used as the index (i-1) into the squares array. 

5 T2/GRL/S44 M 
C 

Rest assured I would be the first to tell you if they did! 
You can be rest assured I would be the first to tell you if they did! 

6 T2/LJLW/S19 M 
C 

To understand what I mean by this, check out the following code. 
To understand what I mean by this, you can check out the following code. 

7 T2/LJLW/S28 M 
C 

Consider the following example: 
You can consider the following example: 

8 T2/LJLW/S33 M 
 
C 

Just assume that they somehow present the user with a question, retrieve an answer, and then judge the 
correctness of the answer.  
You can assume that they somehow present the user with a question, retrieve an answer, and then judge the 
correctness of the answer.  

9 T2/TDNTD/S8 M Let’s take a look at the question and answer example implemented using a do-while loop: 

Note: 
1. Semantic Expansion of Imperative Clauses in text is coded as “Imp/Co/St” 

which denotes Imperative clauses realizing Command and Statement.  
 
Key: 
1. R : Realization 
2. M : Metaphorical 
3. C : Congruent 
 



C You can take a look at the question and answer example implemented using a do-while loop: 
10 T2/AC/S9 M 

 
C 

To understand how the Countdown applet works, let’s first take a look at the Countdown. Html Web page that 
contains the embedded applet. 
To understand how the Countdown applet works, you can first take a look at the Countdown. Html Web page that 
contains the embedded applet. 

11 T2/AC/S12 M 
C 

Notice that the value of the page parameter is set to http://www.nasa.gov, which is the URL of NASA’s Web site. 
You can notice that the value of the page parameter is set to http://www.nasa.gov, which is the URL of NASA’s 
Web site. 

12 T2/AC/S17 M 
C 

Let’s move on to the actual code required of the countdown applet. 
You can move on to the actual code required of the countdown applet. 

13 T2/AC/S23 M 
C 

Try not to get intimidated by any code that doesn’t look familiar. 
You must try not to get intimidated by any code that doesn’t look familiar. 

14 T2/AC/S24 M 
C 

Just concentrate on the loop code. 
You can just concentrate on the loop code. 

15 T2/BA/S15 M 
C 

Think back to the modulus operator (%), which returns the remainder of a division.  
You can think back to the modulus operator (%), which returns the remainder of a division.  

16 T2/BA/S16 M 
C 

Now consider what the remainder of a division by 2 yields for even and odd numbers.  
Now, you can consider what the remainder of a division by 2 yields for even and odd numbers. 

17 T2/LNK/S6 M 
C 

Let’s go over the main points you learned about loops in this chapter. 
You can go over the main points you learned about loops in this chapter. 

 



Appendix 7A 
 

Text 1 – Features of Metaphor of Modality  
 
 
 
 
 

 
 
 

 
4.1 INTRODUCTION Code 
T1/INT/S1 Suppose that you need to print a string (e.g., "Welcome to Java!") a hundred times.  
T1/INT/S2 It would be tedious || to have to write the following statement a hundred times. Rel/Prob 
T1/INT/S3 Java provides a powerful control structure called a loop that controls how many times an operation or a sequence of 

operations is performed in succession. 
 

T1/INT/S4 Using a loop statement, you simply tell the computer to print a string a hundred times without having to code the print 
statement a hundred times. 

 

T1/INT/S5 Loops are structures that control repeated executions of a block of statements.  
T1/INT/S6 The concept of looping is fundamental to programming.  
T1/INT/S7 Java provides three types of loop statements: while loops, do-while loops, and for loops.  
4.2 THE WHILE LOOP  
T1/WL/S1 The syntax for the while loop is as follows.  
T1/WL/S2 The while loop flow chart is shown in Figure 4.1(a).  
T1/WL/S3 The part of the loop that contains the statements to be repeated is called the loop body.  
T1/WL/S4 A one-time execution of a loop body is referred to as an iteration of the loop.  
T1/WL/S5 Each loop contains a loop-continuation condition, a Boolean expression that controls the execution of the body.  
T1/WL/S6 It is always evaluated before the loop body is executed. Rel/Ob 
T1/WL/S7 If its evaluation is true, the loop body is executed.   
T1/WL/S8 If its evaluation is false, the entire loop terminates and the program control turns to the statement that follows the while 

loop. 
 

T1/WL/S9 For example, the following while loop prints “Welcome to Java!” a hundred times.  
T1/WL/S10 The flow chart of the preceding statement is shown in Figure 4.1(b).  
T1/WL/S11 The variable count is initially 0.  

Keys: 
1. Men/Prob denotes Mental Projection clause with Probability 
2. Men/Ob denotes Mental Projection clause with Obligation 
3. Rel/Prob denotes Relational Projection clause with Probability 
4. Rel/Ob denotes Relational Projection clause with Obligation 
Note: 
1. Projection clauses are in bold and separated with oblique lines (||).  

 



T1/WL/S12 The loop checks whether (count < 100) is true.  
T1/WL/S13 If so, it executes the loop body to print the message “Welcome to Java!” and increments count by 1.  
T1/WL/S14 It repeatedly executes the loop body until (count < 100) becomes false.  
T1/WL/S15 When (count < 100) is false (i.e., when count reaches 100), the loop terminates and the next statement after the loop 

statement is executed. 
 

4.2.1 AN ADVANCED MATH LEARNING TOOL  
T1/AMLT/S1 The Math subtraction learning tool program in Listing 3.5, SubtractionTutor.Java, generates just one question for each run.  
T1/AMLT/S2 You can use a loop to generate questions repeatedly.  
T1/AMLT/S3 Listing 4.1 gives a program that generates ten questions and reports the number of correct answers after a student 

answers all ten questions. 
 

T1/AMLT/S4 The program also displays the time spent on the test and lists all the questions, as shown in Figure 4.2.  
T1/AMLT/S5 The program uses the control variable count to control the execution of the loop.   
T1/AMLT/S6 Count is initially 0 (line 6) and is increased by 1 in each iteration (line 39).  
T1/AMLT/S7 A subtraction question is displayed and processed in each iteration.  
T1/AMLT/S8 The program obtains the time before the test starts in line 7 and the time after the test ends in line 45, and computes the 

test time in line 46. 
 

T1/AMLT/S9 The test time is in milliseconds and is converted to seconds in line 50.  
4.2.2 CONTROLLING A LOOP WITH A CONFIRMATION DIALOG  
T1/LCD/S1 The preceding example executes the loop ten times.  
T1/LCD/S2 If you want the user to decide whether to take another question, you can use a confirmation dialog to control the loop.  
T1/LCD/S3 A confirmation dialog can be created using the following statement:  
T1/LCD/S4 When a button is clicked, the method returns an option value.  
T1/LCD/S5 The value is JoptionPane.YES_OPTION (0) for the Yes button, JoptionPane.NO_OPTION (1) for the No button, and 

JoptionPane.CANCEL_OPTION (2) for the Cancel button. 
 
 

T1/LCD/S6 For example, the following loop continues to execute until the user clicks the No or Cancel button.  
T1/LCD/S7 You can rewrite Listing 4.1 using a confirmation dialog to let the user decide whether to continue the next question.  
4.2.3 CONTROLLING A LOOP WITH A SENTINEL VALUE  
T1/LSV/S1 Another common technique for controlling a loop is to designate a special value when reading and processing a set of 

values. 
 

T1/LSV/S2 This special input value, known as a sentinel value, signifies the end of the loop.  
T1/LSV/S3 Listing 4.2 writes a program that reads and calculates the sum of an unspecified number of integers.  
T1/LSV/S4 The input 0 signifies the end of the input.  
T1/LSV/S5 Do you need to declare a new variable for each input value?   
T1/LSV/S6 No.  
T1/LSV/S7 Just use one variable named data (line 9) to store the input value and use a variable named sum (line 12) to store the 

total. 
 

T1/LSV/S8 Whenever a value is read, assign it to data and added to sum (line 14) if it is not zero.  



T1/LSV/S9 A sample run of the program is shown in Figure 4.3.  
T1/LSV/S10 If data is not 0, it is added to the sum (line 14) and the next items of input data are read (lines 12–19).  
T1/LSV/S11 If data is 0, the loop body is no longer executed and the while loop terminates.  
T1/LSV/S12 The input value 0 is the sentinel value for this loop.  
T1/LSV/S13 Note that if the first input read is 0, the loop body never executes, and the resulting sum is 0.  
T1/LSV/S14 The program uses a while loop to add an unspecified number of integers.  
4.3 THE DO-WHILE LOOP  
T1/DWL/S1 The do-while loop is a variation of the while loop.  
T1/DWL/S2 Its syntax is given below:  
T1/DWL/S3 Its execution flow chart is shown in Figure 4.4.  
T1/DWL/S4 The loop body is executed first. Then the loop-continuation-condition is evaluated.  
T1/DWL/S5 If the evaluation is true, the loop body is executed again.   
T1/DWL/S6 If it is false, the do-while loop terminates.  
T1/DWL/S7 The major difference between a while loop and a do-while loop is the order in which the loop-continuation-condition is 

evaluated and the loop body executed. 
 

T1/DWL/S8 The while loop and the do-while loop have equal expressive power.  
T1/DWL/S9 Sometimes one is a more convenient choice than the other.  
T1/DWL/S10 For example, you can rewrite the while loop in Listing 4.2 using a do-while loop, as shown in Listing 4.3.  
4.4 THE FOR LOOP  
T1/FL/S1 Often you write a loop in the following common form.  
T1/FL/S2 A for loop can be used to simplify the preceding loop.  
T1/FL/S3 In general, the syntax of a for loop is as shown below.  
T1/FL/S4 The flow chart of the for loop is shown in Figure 4.5(a).  
T1/FL/S5 The for loop statement starts with the keyword for, followed by a pair of parentheses enclosing initial-action, loop-

continuation-condition, and action-after-each-iteration, and followed by the loop body enclosed inside braces.  
 

T1/FL/S6 Initial-action, loop-continuation-condition, and action-after-each-iteration are separated by semicolons.  
T1/FL/S7 A for loop generally uses a variable to control how many times the loop body is executed and when the loop terminates.   
T1/FL/S8 This variable is referred to as a control variable.   
T1/FL/S9 The initial-action often initializes a control variable, the action-after-each-iteration usually increments or decrements the 

control variable, and the loop-continuation-condition tests whether the control variable has reached a termination value.  
 

T1/FL/S10 For example, the following for loop prints “Welcome to Java!” a hundred times.  
T1/FL/S11 The flow chart of the statement is shown in Figure 4.5(b).   
T1/FL/S12 The for loop initializes I to 0, then repeatedly executes the println statement and evaluates i++ while I is less than 100.  
T1/FL/S13 The initial-action, i=0, initializes the control variable, i.   
T1/FL/S14 The loop-continuation-condition, i< 100 is a Boolean expression.  
T1/FL/S15 The expression is evaluated at the beginning of each iteration.  
T1/FL/S16 If this condition is true, execute the loop body.   



T1/FL/S17 If it is false, the loop terminates and the program control turns to the line following the loop.  
T1/FL/S18 The action-after-each-iteration, i++, is a statement that adjusts the control variable.   
T1/FL/S19 This statement is executed after each iteration.  
T1/FL/S20  It increments the control variable.   
T1/FL/S21 Eventually, the value of the control variable should force the loop-continuation-condition to become false.   
T1/FL/S22 Otherwise the loop is infinite.  
T1/FL/S23 If there is only one statement in the loop body, as in this example, the braces can be omitted.  
T1/FL/S24 The control variable must always be declared inside the control structure of the loop or before the loop.  
T1/FL/S25 If the loop control variable is used only in the loop, and not elsewhere.  
T1/FL/S26 It is good programming practice || to declare it in the initial-action of the for loop. Rel/Prob 
T1/FL/S27 If the variable is declared inside the loop control structure, it cannot be referenced outside the loop.  
T1/FL/S28 For example, you cannot reference I outside the for loop in the preceding code, because it is declared inside the for loop.  
4.5. WHICH LOOP TO USE?  
T1/WLU/S1 The while loop and for loop are called pre-test loops because the continuation condition is checked before the loop body is 

executed. 
 

T1/WLU/S2 The do-while loop is called a post-test loop because the condition is checked after the loop body is executed.  
T1/WLU/S3 The three forms of loop statements, while, do-while, and for, are expressively equivalent.   
T1/WLU/S4 That is, you can write a loop in any of these three forms.  
T1/WLU/S5 For example, a while loop in (a) in the following figure can always be converted into the for loop in (b):  
T1/WLU/S6 A for loop in (a) in the next Figure can generally be converted into the while loop in (b) except in certain special cases (see 

Review Question 4.12 for such a case): 
 

T1/WLU/S7 Use the loop statement that is most intuitive and comfortable for you.  
T1/WLU/S8 In general, a for loop may be used if the number of repetitions is known, as, for example, when you need to print a 

message a hundred times. 
 

T1/WLU/S9 A while loop may be used if the number of repetitions is not known, as in the case of reading the numbers until the input is 
0. 

 

T1/WLU/S10 A do-while loop can be used to replace a while loop if the loop body has to be executed before the continuation condition 
is tested. 

 

4.6. NESTED LOOPS  
T1/NL/S1 Nested loops consist of an outer loop and one or more inner loops.  
T1/NL/S2 Each time the outer loop is repeated, the inner loops are reentered, and started anew.  
T1/NL/S3 Listing 4.4 presents a program that uses nested for loops to print a multiplication table, as shown in Figure 4.6.  
T1/NL/S4 The program displays a title (line 7) on the first line and dashes (-) (line 8) on the second line.  
T1/NL/S5 The first for loop (lines 12–13) displays the numbers 1 through 9 on the third line.  
T1/NL/S6 The next loop (lines 18–28) is a nested for loop with the control variable I in the outer loop and j in the inner loop.  
T1/NL/S7 For each I, the product I * j is displayed on a line in the inner loop, with j being 1, 2, 3, …, 9.  
T1/NL/S8 The if statement in the inner loop (lines 22–25) is used so that the product will be aligned properly.  



T1/NL/S9 If the product is a single digit, it is displayed with an extra space before it.  
4.7  MINIMIZING NUMERICAL ERRORS  
T1/MNE/S1 Numeric errors involving floating-point numbers are inevitable.  
T1/MNE/S2 This section discusses how to minimize such errors through an example.  
T1/MNE/S3 Listing 4.5 presents an example that sums a series that starts with 0.01 and ends with 1.0.  
T1/MNE/S4 The numbers in the series will increment by 0.01, as follows: 0.01 + 0.02 + 0.03 and so on.  
T1/MNE/S5 The output of the program appears in Figure 4.7.  
T1/MNE/S6 The for loop (lines 9–10) repeatedly adds the control variable I to the sum.  
T1/MNE/S7 This variable, which begins with 0.01, is incremented by 0.01 after each iteration.  
T1/MNE/S8 The loop terminates when I exceeds 1.0.  
T1/MNE/S9 The for loop initial action can be any statement, but it is often used to initialize a control variable.  
T1/MNE/S10 From this example, you can see that || a control variable can be a float type. Men/Prob 
T1/MNE/S11 In fact, it can be any data type.  
T1/MNE/S12 The exact sum should be 50.50, but the answer is 50.499985.  
T1/MNE/S13 The result is not precise because computers use a fixed number of bits to represent floating-point numbers, and thus 

cannot represent some floating-point numbers exactly. 
 

T1/MNE/S14 If you change float in the program to double as follows, you should see a slight improvement in precision because a double 
variable takes sixty-four bits, whereas a float variable takes thirty-two bits. 

 

T1/MNE/S15 However, you will be stunned to see that || the result is actually 49.50000000000003. Men/Prob 
T1/MNE/S16 What went wrong?  
T1/MNE/S17 If you print out i for each iteration in the loop, you will see that the last i is slightly larger than 1 (not exactly 1).  
T1/MNE/S18 This causes the last i not to be added into sum.  
T1/MNE/S19 The fundamental problem is that || the floating-point numbers are represented by approximation. Rel/Prob 
T1/MNE/S20 Errors commonly occur.  
T1/MNE/S21 There are two ways to fix the problem.  
T1/MNE/S22 Minimizing errors by processing large numbers first.  
T1/MNE/S23 Using an integer count to ensure that all the numbers are processed.  
T1/MNE/S24 To minimize errors, add numbers from 1.0, 0.99, down to 0.1, as follows:  
T1/MNE/S25 To ensure that all the items are added to sum, use an integer variable to count the items.   
T1/MNE/S26 Here is the new loop.  
T1/MNE/S27 After this loop, sum is 50.50000000000003.  
4.8  CASE STUDIES  
T1/CS/S1 Control statements are fundamental in programming.  
T1/CS/S2 The ability to write control statements is essential in learning Java programming.  
T1/CS/S3 If you can write programs using loops, you know || how to program! Men/Prob 
T1/CS/S4 For this reason, this section presents three additional examples of how to solve problems using loops.  
4.8.1 EXAMPLE: FINDING THE GREATEST COMMON DIVISOR  



T1/FGCD/S1 This section presents a program that prompts the user to enter two positive integers and finds their greatest common 
divisor. 

 

T1/FGCD/S2 The greatest common divisor of two integers 4 and 2 is 2.  
T1/FGCD/S3 The greatest common divisor of two integers 16 and 24 is 8.  
T1/FGCD/S4 How do you find the greatest common divisor?  
T1/FGCD/S5 Let the two input integers be n1 and n2.  
T1/FGCD/S6 You know that || number 1 is a common divisor, but it may not be the greatest common divisor. Men/Prob 
T1/FGCD/S7 So you can check whether k (for k = 2, 3, 4 and so on) is a common divisor for n1 and n2, until k is greater than n1 or n2.  
T1/FGCD/S8 Store the common divisor in a variable named gcd.  
T1/FGCD/S9 Initially, gcd is 1.  
T1/FGCD/S10 Whenever a new common divisor is found, it becomes the new gcd.  
T1/FGCD/S11 When you have checked all the possible common divisors from 2 up to n1 or n2, the value in variable gcd is the greatest 

common divisor. 
 

T1/FGCD/S12 The idea can be translated into the following loop:  
T1/FGCD/S13 The complete program is given in Listing 4.6, and a sample run of the program is shown in Figure 4.8.  
T1/FGCD/S14 The program finds the greatest common divisor for two integers.  
T1/FGCD/S15 How did you write this program?  
T1/FGCD/S16 Did you immediately begin to write the code?  
T1/FGCD/S17 No.  
T1/FGCD/S18 It is important || to think before you type. Rel/Prob 
T1/FGCD/S19 Thinking enables you to generate a logical solution for the problem without concern about how to write the code.  
T1/FGCD/S20 Once you have a logical solution, type the code to translate the solution into a Java program.  
T1/FGCD/S21 The translation is not unique.   
T1/FGCD/S22 For example, you could use a for loop to rewrite the code as follows:  
T1/FGCD/S23 A problem often has multiple solutions.  
T1/FGCD/S24 The GCD problem can be solved in many ways.  
T1/FGCD/S25 Exercise 4.15 suggests another solution.  
T1/FGCD/S26 A more efficient solution is to use the classic Euclidean algorithm.  
T1/FGCD/S27 See http://www.cut-the-knot.org/blue/Euclid.shtml for more information.  
T1/FGCD/S28 You might think that || a divisor for a number n1 cannot be greater than n1 / 2. Men/Prob 
T1/FGCD/S29 So you would attempt to improve the program using the following loop:  
T1/FGCD/S30 This revision is wrong.  
T1/FGCD/S31 Can you find the reason?  
T1/FGCD/S32 See Review Question 4.9 for the answer.  
4.8.2 EXAMPLE: FINDING THE SALES AMOUNT  
T1/FSA/S1 You have just started a sales job in a department store.  
T1/FSA/S2 Your pay consists of a base salary and a commission.  



T1/FSA/S3 The base salary is $5,000.  
T1/FSA/S4 The scheme shown below is used to determine the commission rate.  
T1/FSA/S5 Your goal is to earn $30,000 a year.  
T1/FSA/S6 This section writes a program that finds the minimum amount of sales you have to generate in order to make $30,000.  
T1/FSA/S7 Since your base salary is $5,000, you have to make $25,000 in commissions to earn $30,000 a year.  
T1/FSA/S8 What is the sales amount for a $25,000 commission?  
T1/FSA/S9 If you know the sales amount, the commission can be computed as follows:  
T1/FSA/S10 This suggests that || you can try to find the salesAmount to match a given commission through incremental 

approximation. 
Rel/Prob 

T1/FSA/S11 For a salesAmount of $0.01 (1 cent), find commission.  
T1/FSA/S12 If commission is less than $25,000, increment salesAmount by 0.01 and find commission again.  
T1/FSA/S13 If commission is still less than $25,000, repeat the process until it is greater than or equal to $25,000.  
T1/FSA/S14 This is a tedious job for humans, but it is exactly what || a computer is good for. Rel/Prob 
T1/FSA/S15 You can write a loop and let a computer execute it painlessly.  
T1/FSA/S16 The idea can be translated into the following loop:  
T1/FSA/S17 The complete program is given in Listing 4.7, and a sample run of the program is shown in Figure 4.9.  
T1/FSA/S18 The do-while loop (lines 12–24) is used to repeatedly compute commission for an incremental salesAmount.  
T1/FSA/S19 The loop terminates when commission is greater than or equal to a constant COMMISSION_SOUGHT.  
T1/FSA/S20 In Exercise 4.17, you will rewrite this program to let the user enter COMMISSION_SOUGHT dynamically from an input 

dialog. 
 

T1/FSA/S21 You can improve the performance of this program by estimating a higher INITIAL_SALES_AMOUNT (e.g., 25000).  
T1/FSA/S22 What is wrong if salesAmount is incremented after the commission is computed, as follows?  
T1/FSA/S23 The change is erroneous because salesAmount is 1 cent more than is needed for the commission when the loop ends.  
T1/FSA/S24 This is a common error in loops, known as the off-by-one error.  
4.8.3 EXAMPLE: DISPLAYING A PYRAMID OF NUMBERS  
T1/DPN/S1 This section presents a program that prompts the user to enter an integer from 1 to 15 and displays a pyramid.  
T1/DPN/S2 If the input integer is 12, for example, the output is shown in Figure 4.10.  
T1/DPN/S3 The program uses nested loops to print numbers in a triangular pattern.  
T1/DPN/S4 Your program receives the input for an integer (numberOfLines) that represents the total number of lines.  
T1/DPN/S5 It displays all the lines one by one.  
T1/DPN/S6 Each line has three parts.  
T1/DPN/S7 The first part comprises the spaces before the numbers;   
T1/DPN/S8 The second part, the leading numbers, such as 3 2 1 in line 3.   
T1/DPN/S9 And the last part, the ending numbers, such as 2 3 in line 3.  
T1/DPN/S10 Each number occupies three spaces.  
T1/DPN/S11 Display an empty space before a double-digit number, and display two empty spaces before a single-digit number.  
T1/DPN/S12 You can use an outer loop to control the lines.  



T1/DPN/S13 At the nth row, there are (numberOfLines – n)*3 leading spaces, the leading numbers are n, n-1, … 1, and the ending 
numbers are 2, …, n. 

 

T1/DPN/S14 You can use three separate inner loops to print each part.  
T1/DPN/S15 Here is the algorithm for the problem  
T1/DPN/S16 The complete program is given in Listing 4.8.  
T1/DPN/S17 The program uses the print method (lines 20, 24, and 28) to display a string to the console.  
T1/DPN/S18 The conditional expression (num >= 10) ? “ “ + num : “ “ + num in lines 24 and 28 returns a string with a single empty 

space before the number if the number is greater than or equal to 10, and otherwise returns a string with two empty 
spaces before the number. 

 

T1/DPN/S19 Printing patterns like this one and the ones in Exercises 4.18 and 4.19 is a good exercise for practicing loop control 
statements. 

 

T1/DPN/S20 The key is to understand the pattern and to describe it using loop control variables.  
T1/DPN/S21 The last line in the outer loop (line 31), System.out.println(), does not have any argument in the method.  
T1/DPN/S22 This call moves the cursor to the next line.  
4.9 KEYWORDS BREAK AND CONTINUE  
T1/KBC/S1 Two statements, break and continue, can be used in loop statements to provide the loop with additional control.  
T1/KBC/S2 break immediately ends the innermost loop that contains it.   
T1/KBC/S3 It is generally used || with an if statement. Rel/Ob 
T1/KBC/S4 continue only ends the current iteration.   
T1/KBC/S5 Program control goes to the end of the loop body.   
T1/KBC/S6 This keyword is generally used || with an if statement. Rel/Ob 
T1/KBC/S7 You have already used the keyword break in a switch statement.  
T1/KBC/S8 You can also use break and continue in a loop.  
T1/KBC/S9 Listings 4.9 and 4.10 present two programs to demonstrate the effect of the break and continue keywords in a loop.  
T1/KBC/S10 The program in Listing 4.9 adds the integers from 1 to 20 in this order to sum until sum is greater than or equal to 100.  
T1/KBC/S11 Without the if statement (line 10), the program calculates the sum of the numbers from 1 to 20.  
T1/KBC/S12 But with the if statement, the loop terminates when the sum becomes greater than or equal to 100.  
T1/KBC/S13 The output of the program is shown in Figure 4.11(a).  
T1/KBC/S14 If you changed the if statement as shown below, the output would resemble that in Figure 4.11(b).  
T1/KBC/S15 In this case, the if condition will never be true.  
T1/KBC/S16 Therefore, the break statement will never be executed.  
T1/KBC/S17 The program in Listing 4.10 adds all the integers from 1 to 20 except 10 and 11 to sum.  
T1/KBC/S18 With the if statement in the program (line 9), the continue statement is executed when number becomes 10 or 11.  
T1/KBC/S19 The continue statement ends the current iteration so that the rest of the statement in the loop body is not executed; 

therefore, number is not added to sum when it is 10 or 11. 
 

T1/KBC/S20 The output of the program is shown in Figure 4.12(a).  
T1/KBC/S21 Without the if statement in the program, the output would look like Figure 4.12(b).  



T1/KBC/S22 In this case, all of the numbers are added to sum, even when number is 10 or 11.  
T1/KBC/S23 Therefore, the result is 210, which is 21 more than it was with the if statement.  

 
  



Appendix 7B 
 

Text 2 – Features of Metaphor of Modality  
 
 
 
 
 

 
 
 

 
Chapter 9 Feeling a Little Loopy Code 
Title A loop for Every Occasion (LEO)  
T2/LEO/S1 Have you ever been talking to someone and it seems like || he or she is saying the same thing over and over? Rel/Prob 
T2/LEO/S2 I mean ||, you keep listening, and they keep talking, and it all sounds the same. Men/Ob 
T2/LEO/S3 And they talk somemore and you listen somemore and you wonder || if it will ever end! Men/Prob 
T2/LEO/S4 Congratulations, you just experienced || a perfect example of a verbal loop! Men/Prob 
T2/LEO/S5 In Java, a loop is a programming construct that enables you to repeat a section of code over and over, much like my 

conversation example. 
 

T2/LEO/S6 Loops are very valuable in Java because they enable you to tightly control repetitive functions.   

T2/LEO/S7 Three type of loops are used in Java: for loops, while loops and do loops.  
Title Getting redundant with the for loop (GRL)  
T2/GRL/S1 Let’s pretend NASA used Java applets to control the launch of the space shuttle.   

T2/GRL/S2 Any ideas on how controllers would initiate the launch sequence?  
T2/GRL/S3 With loops!   
T2/GRL/S4 Counting down from ten to one is a piece of cake with a loop.  
T2/GRL/S5 Granted, without a loop it wouldn’t be too tough either, but it would require some unnecessary code.   
T2/GRL/S6 Following is code to perform the launch sequence without the use of a loop.  
T2/GRL/S7 And now the loop version:  
T2/GRL/S8 See what I mean about tightening up the code?  
T2/GRL/S9 You probably wonder || exactly how the loop code works. Men/Prob 

Keys: 
1. Men/Prob denotes Mental Projection clause with Probability 
2. Men/Ob denotes Mental Projection clause with Obligation 
3. Rel/Prob denotes Relational Projection clause with Probability 
4. Rel/Ob denotes Relational Projection clause with Obligation 
Note: 
1. Projection clauses are in bold and separated with oblique lines (||).  

 



T2/GRL/S10 This code relies on a for loop, which is the most structured type of loop supported by Java.  
T2/GRL/S11 For loops repeat a section of code a fixed number of times.   
T2/GRL/S12 Following is the syntax for the for loop:  
T2/GRL/S13 The for loop repeats the Statement the number of time determined by the initializationexpression, LoopCondition and 

StepExpression: 
 

T2/GRL/S14 The InitializationExpression is used to initialize a loop control variable.  
T2/GRL/S15 The Loopcondition compares the loop control variable to some limit or value.  
T2/GRL/S16 The StepExpression specifies how the loop control variable should be modified before the next iteration of the loop.  
T2/GRL/S17 Let’s take a look at the NASA launch sequence code again to make some sense of this stuff:  
T2/GRL/S18 In this code the Initializationexpression is int i310, which is evaluated initially before the loop begins.  
T2/GRL/S19 This is the code you use to prime the loop and get it ready.  
T2/GRL/S20 The LoopCondition is i>0, which is a Boolean test that is performed before each iteration of the loop.   
T2/GRL/S21 If the Boolean test result is true, the Statement is executed, which in this case prints the current value of i.  
T2/GRL/S22 After each iteration the StepExpression is evaluated, which is i--.   
T2/GRL/S23 This serves to decrement I after each iteration, and ultimately proves the countdown.  
T2/GRL/S24 The loop continues to iterate and print numbers as i counts down to 0.  
T2/GRL/S25 After i reaches 0, the LoopCondition test fails (i>0), so the loop bails out without printing any more numbers.  
T2/GRL/S26 Whew, that explanation seemed || a little long-winded, and that’s coming from the person that wrote it! Men/Prob 
T2/GRL/S27 Unfortunately, it isn’t always easy || to verbalize the flow of program code. Rel/Prob 
T2/GRL/S28 This is why it’s easy || to fall back on figures. Rel/Prob 
T2/GRL/S29 Just ask Ross Perot, who isn’t a Java programmer but who nonetheless relied on diagrams and illustrations to help us 

grasp his big plans for the presidency. 
 

T2/GRL/S30 You can feel safe and secure knowing that || I’m not running for president or trying to help you visualize my answer to 
global trade. 

Men/Prob 

T2/GRL/S31 I just want || to help you learn how loops work! Men/Ob 
T2/GRL/S32 To help you visualize the looping process, take a look at the following figure.  
T2/GRL/S33 Notice in the figure that Statement 1 and Statement 2 will be repeatedly executed as long as the loop condition is true.   
T2/GRL/S34 When the loop condition goes false, the program falls out of the loop and executes statement 3.   
T2/GRL/S35 The previous figure alludes to the fact that a loop can execute multiple statements.   
T2/GRL/S36 Loops can execute as many statements as they want, provided curly braces ({}) enclose the statements.  
T2/GRL/S37 If you recall, this grouping of statements is known as a compound statement and was used in the previous chapter when 

dealing with if-else branches. 
 

T2/GRL/S38 Following is an example of a for loop with a compound statement:  
T2/GRL/S39 This code calculates the squares of the numbers 1 through 10, stores them in an array, and prints each one.  
T2/GRL/S40 Notice that the loop counter (i) is used as the index (i-1) into the squares array.   
T2/GRL/S41 This is a very popular way || to handle arrays. Rel/Prob 
T2/GRL/S42 It is necessary || to subtract 1 in this case because all Java array indexes start with 0, which means they are zero based. Rel/Prob 



T2/GRL/S43 It might be worth nothing that || although zero-based arrays were used in other programming languages in the 1980s 
and before, they have nothing to do with the 80s movie Less than Zero or the 80s hit song saved by Zero. 

Rel/Ob 

T2/GRL/S44 Rest assured I would be the first to tell you if they did!  
Title Looping for Just a Little While (LJLW)  
T2/LJLW/S1 Like the for loop, the while loop has a loop condition that controls the number of times a loop is repeated.  
T2/LJLW/S2 However, the while loop has no initialization or step expression.  
T2/LJLW/S3 A for loop is like one of those friends who tells you a story three or four times and then waits for a response, whereas a 

while loop is like one of those friends who continues to repeat himself as long as you continue to listen. 
 

T2/LJLW/S4 They’re both annoying, but in different ways.   
T2/LJLW/S5 Not the loops, the people!  
T2/LJLW/S6 Following is the syntax for the while loop, which should make its usage a little more clear:  
T2/LJLW/S7 If the Boolean LoopCondition evaluates to true, the Statement is executed.  
T2/LJLW/S8 When the Statement finishes executing, the LoopCondition is tested again and the process repeats itself.  
T2/LJLW/S9 This continues until the LoopCondition evaluates to false, in which case the loop immediately bails out.  
T2/LJLW/S10 Because the while loop has no step expression, it is important to make sure that || the Statement somehow impacts the 

LoopCondition. 
Rel/Ob 
 

T2/LJLW/S11 Otherwise, it is possible || for the loop to repeat infinitely, which is usually a bad thing. Rel/Ob 
T2/LJLW/S12 Following is a simple example of an infinite while loop:  
T2/LJLW/S13 Because the loop condition in this example is permanently set to true, the loop will repeat infinitely, or at least until you 

manually terminate the programme. 
 

T2/LJLW/S14 Infinite loops are extremely dangerous because they can result in your computer overheating.   
T2/LJLW/S15 Just kidding!  
T2/LJLW/S16 Actually, infinite loops are useful in some situations.  
T2/LJLW/S17 They are never truly infinite because you can typically terminate one by shutting down the application or applet containing 

it. 
 

T2/LJLW/S18 You can think of || the while loop as a more general for loop. Men/Ob 
T2/LJLW/S19 To understand what I mean by this, check out the following code;  
T2/LJLW/S20 This is the NASA launch sequence implemented using a while loop instead of a for loop.  
T2/LJLW/S21 Because while loops don’t have initialization expressions, the initialization of the counter variable I had to be performed 

before the loop.  
 

T2/LJLW/S22 Likewise, the step expression i.. had to be performed within the Statement part of the loop.  
T2/LJLW/S23 Regardless of the structural differences, this while loop is functionally equivalent to the for loop you saw earlier in the 

chapter.  
 

T2/LJLW/S24 If a for loop can do everything a while loop can and in a more organized way, then why do we need while loops?  
T2/LJLW/S25 Because there is a time and a place for everything, and in many situations you have no need for initialization and step 

expressions.  
 

T2/LJLW/S26 A for loop is overkill in situations like this.  



T2/LJLW/S27 Even more importantly, a while loop is much more readable than a for loop when you have no need for initialization and 
step 
expressions.  

 

T2/LJLW/S28 Consider the following example:  
T2/LJLW/S29 This code demonstrates how a while loop could be used to ask a question and patiently wait for the correct answer.  
T2/LJLW/S30 The loop repeats itself as long as the Boolean variable correct is false.   
T2/LJLW/S31 This results in the code repeating the question as many times as necessary until the user guesses the correct answer.   
T2/LJLW/S32 The details of the methods askQuestion() and isCorrect() aren’t important for this example.   

T2/LJLW/S33 Just assume that they somehow present the user with a question, retrieve an answer, and then judge the correctness of 
the answer.  

 

T2/LJLW/S34 The main concern is that || the isCorrect () method returns a Boolean value that indicates whether or not the answer is 
correct. 

Rel/Prob 

T2/LJLW/S35 In this example, it is impossible || to know how many times the user will miss the answer and need the question repeated.  Rel/Prob 
T2/LJLW/S36 For this reason, the structured step expression of a for loop wouldn’t be of much use.   
T2/LJLW/S37 While loops are perfect in situations where you don’t know ahead of time how many times a loop needs to be repeated.   
T2/LJLW/S38 If you aren’t completely satisfied with while loops, however, there is one other option.   
Title To do , Or not to do (TDNTD)  
T2/TDNTD/S1 The while loop has a very close relative known as the do loop, or do-while loop, that is surprisingly similar to the while loop.  
T2/TDNTD/S2 Because you’re becoming pretty loop savvy, I’ll show you the syntax for the do-while loop first and see if you can figure out 

how it works: 
 

T2/TDNTD/S3 Give up?  
T2/TDNTD/S4 The do-while loop is basically a while loop with the LoopCondition moved to the end.  
T2/TDNTD/S5 Why is this necessary?  
T2/TDNTD/S6 Because there are some situations where you would like the Statement to execute before evaluating the LoopCondition, 

instead of afterward.  
 

T2/TDNTD/S7 This also guarantees that the Statement is executed at least once, regardless of the LoopCondition.  
T2/TDNTD/S8 Let’s take a look at the question and answer example implemented using a do-while loop:  
T2/TDNTD/S9 The code really isn’t much different than before, except that you no longer need to initialise the correct variable.  
T2/TDNTD/S10  It is always initially set || during the first pass through the loop. Rel/Prob 
T2/TDNTD/S11 Although both types of loops accomplish the goal of this example, the do-while loop is a better fit because of its structure 

more closely mimics the function of the code. 
 

T2/TDNTD/S12 What do I mean by this?  
T2/TDNTD/S13 Well, if you “read” the code, it is saying “ask the question and if the answer is not correct, ask it again.”  
T2/TDNTD/S14 This makes more sense || than if it read “if the answer is not correct, ask the question and then check the answer again.” Rel/Ob 
T2/TDNTD/S15 Admittedly, this is a subtle difference, but a large part of successful programming is keeping things logical and 

straightforward. 
 



T2/TDNTD/S16 You won’t always succeed because sometimes code gets complicated regardless of how you construct it, but using loops 
intelligently is a good start.  

 

Title Applet Countdown (AC)  
T2/AC/S1 Have you ever visited a Web page that directed you to another page, but informed you that if you waited a few second sit 

would automatically take you there? 
 

T2/AC/S2 I used to run across these pages and wonder how you could make a page wait a few seconds and then automatically 
navigate to a new page. 

 

T2/AC/S3 After I started programming in Java, I realised what a trivial task this is.  
T2/AC/S4 In this section you use your knowledge of loops to build a “countdown” applet that counts down from ten to one and then 

navigates to a new Web page. 
 

T2/AC/S5 The following figure shows the Countdown applet in action.  
T2/AC/S6 When the applet finishes counting down, it navigates to the web page identified by the page applet parameter.  
T2/AC/S7 As an example, what web site could be better than NASA’s to demonstrate how this applet works?  
T2/AC/S8 Following is NASA’s Web site, to which the Countdown applet will take you after it finishes its countdown.  
T2/AC/S9 To understand how the Countdown applet works, let’s first take a look at the Countdown. Html Web page that contains the 

embedded applet: 
 

T2/AC/S10 All this stuff should look pretty familiar to you by now.   
T2/AC/S11 The main thing on which I want you || to focus is the page parameter, which is defined as: Men/Ob 
T2/AC/S12 Notice that the value of the page parameter is set to http://www.nasa.gov, which is the URL of NASA’s Web site.  
T2/AC/S13 Changing this value enables you to change the page that is loaded after the applet finishes counting down.  
T2/AC/S14 This page could have easily been set as a variable within the applet code, but a recompile would be required to change 

the page. 
 

T2/AC/S15 That is the beauty of applet parameters.  
T2/AC/S16 They enable you to customize the function of applets without doing any real programming!  
T2/AC/S17 Let’s move on to the actual code required of the countdown applet.  
T2/AC/S18 Unfortunately, the Countdown applet requires some code that is a little beyond the lesson, so I don’t expect all of this 

applet to make sense to you. 
 

T2/AC/S19 However, you can download the complete source code for the applet from the book’s companion Web site, which was 
mentioned a little earlier in this section. 

 

T2/AC/S20 Also, the core mechanics of the applet are very straightforward and should be familiar to you from your recent study of 
loops. 

 

T2/AC/S21 Following is the run() method in the Countdown applet class, which forms the heart of the applet:  
T2/AC/S22 Ouch, that looks a little messy!  
T2/AC/S23 Try not to get intimidated by any code that doesn’t look familiar  
T2/AC/S24 Just concentrate on the loop code.  
T2/AC/S25 As you can see, the for loop counts down from 10 to 1 just like the countdown code you saw earlier in the chapter.   
T2/AC/S26 The Statement part of this for loop is completely new territory, however.   



T2/AC/S27 The call to the repaint () method is necessary to update the applet’s window with the new countdown number.  
T2/AC/S28 The call to the thread.sleep() method results in the applet waiting one second, which effectively pauses the countdown for 

one second between numbers.  
 

T2/AC/S29 When the for loop finishes, the code gets the page applet parameter and proceed to navigate to the Web page identified 
by it.  

 

T2/AC/S30 The code required to navigate to the Web page is probably pretty strange looking to you because it has to deal with 
exceptions. 

 

T2/AC/S31 Exceptions are errors caused by unforeseen problems such as your computer running out of memory, your modem 
coming unplugged, spilling coffee on your keyboard, hurling your monitor out the window, and so on. 

 

T2/AC/S32 I’ll explain exceptions as you encounter them throughout the book.   
T2/AC/S33 The complete source code for the countdown applet follows.  
T2/AC/S34 Although this is a longer program than you are accustomed to seeing, a lot of it should look familiar to you.  
T2/AC/S35 For example, the paint() method code is very similar to the code used in the DateTime applet from Chapter 4, 

“constructing Applets of Your Own.”  
 

T2/AC/S36 On the other hand, the start() method is entirely new and is related to the applet’s use of threads.   
T2/AC/S37 You don’t need to understand it fully at this point.   
Title  Breaking Away (BA)  
T2/BA/S1 If you recall from the previous chapter, each case section of a switch branch ends with a break statement.  
T2/BA/S2 Following is an example to recap:  
T2/BA/S3 The purpose of the break statement in this example is to bail out of the switch branch so that no other code is executed.   
T2/BA/S4 The break statement serves a similar purpose in loops.  
T2/BA/S5 It breaks out of a loop regardless of the loop condition.   
T2/BA/S6 Following is an example of circumventing an infinite loop with a break statement:   
T2/BA/S7 Without the assistance of the break statement, this while loop would continue forever thanks to the permanent true loop 

condition. 
 

T2/BA/S8 The break statement sidesteps this problem by breaking out of the loop after one hundred iterations (0-99).   
T2/BA/S9 Of course, it is rare that || you would purposely create an infinite loop and then use a break statement to bail out of it. Rel/Prob 
T2/BA/S10 However, the break statement can be very useful in some tricky loops when you need to exit at an otherwise inconvenient 

time.  
 

T2/BA/S11 A close relative of the break statement is the continue statement, which is used to skip to the next iteration of a loop.   
T2/BA/S13 The following example shows how  a continue statement can be used to print only the even numbers between 1 and 100:  
T2/BA/S14 Having trouble seeing how this one works?  
T2/BA/S15 Think back to the modulus operator (%), which returns the reminder of a division.   
T2/BA/S16 Now consider what the remainder of a division by 2 yields for even and odd numbers.   
T2/BA/S17 Aha!  
T2/BA/S18 Even numbers divided by 2 always yield a remainder of 0, and odd numbers always leave a remainder of 1!  
T2/BA/S19 The example code exploits this characteristic of even and odd numbers to skip to the next iteration bypasses the println()  



call, which prevents odd numbers from being printed. 
T2/BA/S20 Pretty tricky!  
Title The Least you need to know (LNK)  
T2/LNK/S1 Computers are often called upon to perform tasks we humans find to be utterly redundant.   
T2/LNK/S2 As dull as some humans can be, I guarantee you || computers are much duller when it comes to repeating the same thing 

over and over.  
Men/Ob 

T2/LNK/S3 Java enables you to build programs that repeat themselves through the use of loops.  
T2/LNK/S4 The different types of loops basically perform the same function.  
T2/LNK/S5 They repeat a section of code over and over.   
T2/LNK/S6 Let’s go over the main points you learned about loops in this chapter:  
T2/LNK/S7 Loops can execute as many statements as you want them to, provided the statements are grouped together as a single 

compound statement enclosed by curly braces ({}). 
 

T2/LNK/S8 A for loop is used to repeat a section of code a given number of iterations.   
T2/LNK/S9 A while loop is a more general for loop.   
T2/LNK/S10 A do while is a while loop with the loop condition moved to the end.   
T2/LNK/S11 The break statement is used to break out of a loop regardless of the loop condition.   
T2/LNK/S12 The continue statement is used to skip to the next iteration of a loop.   
 

 



Appendix 8A 
 

Text 1 – Mental Projection Clauses with ‘Probability’ or ‘Obligation’ Type 
 
 
 
 
 
 

 

Eg. Label Sentence Code 
1 T1/MNE/S10 From this example, you can see that || a control variable can be a float type. Men/Prob 
2 T1/MNE/S15 However, you will be stunned to see that || the result is actually 49.50000000000003. Men/Prob 
3 T1/CS/S3 If you can write programs using loops, you know || how to program! Men/Prob 
4 T1/FGCD/S6 You know that || number 1 is a common divisor, but it may not be the greatest common divisor. Men/Prob 
5 T1/FGCD/S28 You might think that || a divisor for a number n1 cannot be greater than n1 / 2. Men/Prob 

 

  

Keys: 
1. Men/Prob denotes Mental Projection clause with Probability 
2. Men/Ob denotes Mental Projection clause with Obligation 

 
Note: 
1. Mental projection clauses are in bold and separated with oblique lines (||).  
 



Appendix 8B 
 

Text 2 – Mental Projection Clauses with ‘Probability’ or ‘Obligation’ Type 
 
 
 
 
 
 

 

Eg. Label Mental Projection Clauses Code 
1 T2/LEO/S2 I mean ||, you keep listening, and they keep talking, and it all sounds the same. Men/Ob 
2 T2/LEO/S3 And they talk somemore and you listen somemore and you wonder || if it will ever end! Men/Prob 
3 T2/LEO/S4 Congratulations, you just experienced || a perfect example of a verbal loop! Men/Prob  
4 T2/GRL/S9 You probably wonder exactly || how the loop code works. Men/Prob  
5 T2/GRL/S26 Whew, that explanation seemed || a little long-winded, and that’s coming from the person that wrote it! Men/Prob  
6 T2/GRL/S30 You can feel safe and secure knowing that || I’m not running for president or trying to help you 

visualize my answer to global trade. 
Men/Prob 

7 T2/GRL/S31 I just want || to help you learn how loops work! Men/Ob 
8 T2/LJLW/S18 You can think || of the while loop as a more general for loop. Men/Ob 
9 T2/AC/S2 I used to run across these pages and wonder how || you could make a page wait a few seconds and 

then automatically navigate to a new page. 
Men/Prob 
 

10 T2/AC/S3 After I started programming in Java, I realised || what a trivial task this is. Men/Ob  
11 T2/AC/S11 The main thing on which I want you || to focus is the page parameter, which is defined as: Men/Ob  
12 T2/LNK/S2 As dull as some humans can be, I guarantee you || computers are much duller when it comes to 

repeating the same thing over and over.  
Men/Ob  

 

 

Keys: 
1. Men/Prob denotes Mental Projection clause with Probability 
2. Men/Ob denotes Mental Projection clause with Obligation 

 
Note: 
1. Mental projection clauses are in bold and separated with oblique lines (||).  
 



Appendix 9A 
 

Text 1 – Relational Projection Clauses with ‘Probability’ or ‘Obligation’ Type 
 
 
 
 
 
 

 

Eg. Label Relational Projection Clauses Code 
1 T1/INT/S2 It would be tedious || to have to write the following statement a hundred times. Rel/Prob 
2 T1/WL/S6 It is always evaluated || before the loop body is executed. Rel/Ob 
3 T1/FL/S26 It is good programming practice || to declare it in the initial-action of the for loop. Rel/Prob  
4 T1/MNE/S19 The fundamental problem is that || the floating-point numbers are represented by approximation. Rel/Prob  
5 T1/FGCD/S18 It is important || to think before you type. Rel/Prob  
6 T1/FSA/S10 This suggests that || you can try to find the salesAmount to match a given commission through 

incremental approximation. 
Rel/Prob  

7 T1/FSA/S14 This is a tedious job for humans, but it is exactly || what a computer is good for. Rel/Prob  
8 T1/KBC/S3 It is generally used || with an if statement. Rel/Ob 
9 T1/KBC/S6 This keyword is generally used || with an if statement. Rel/Ob 

 
  

Keys: 
1. Rel/Prob denotes Relational projection clause with Probability 
2. Rel/Ob denotes Relational projection clause with Obligation 

 
Note: 
1. Relational projection clauses are in bold and separated with oblique lines (||).  
 



Appendix 9B 
 

Text 2 – Relational Projection Clauses with ‘Probability’ or ‘Obligation’ Type 
 
 
 
 
 
 

 

Eg Label Relational Projection Clauses Code 
1 T2/LEO/S1 Have you ever been talking to someone and it seems like || he or she is saying the same thing over and 

over? 
Rel/Prob 

2 T2/GRL/S27 Unfortunately, it isn’t always easy || to verbalize the flow of program code. Rel/Prob  
3 T2/GRL/S28 This is why it’s easy || to fall back on figures. Rel/Prob  
4 T2/GRL/S41 This is a very popular way || to handle arrays. Rel/Prob  
5 T2/GRL/S42 It is necessary || to subtract 1 in this case because all Java array indexes start with 0, which means they 

are zero based. 
Rel/Prob  

6 T2/GRL/S43 It might be worth noting that || although zero-based arrays were used in other programming languages in 
the 1980s and before, they have nothing to do with the 80s movie Less than Zero or the 80s hit song saved 
by Zero. 

Rel/Ob 

7 T2/LJLW/S10 Because the while loop has no step expression, it is important to make sure that || the Statement 
somehow impacts the LoopCondition. 

Rel/Ob 

8 T2/LJLW/S11 Otherwise, it is possible || for the loop to repeat infinitely, which is usually a bad thing. Rel/Ob 
9 T2/LJLW/S34 The main concern is that || the isCorrect () method returns a Boolean value that indicates whether or not 

the answer is correct. 
Rel/Prob  

10 T2/LJLW/S35 In this example, it is impossible || to know how many times the user will miss the answer and need the 
question repeated.  

Rel/Prob  

11 T2/TDNTD/S10  It is always initially set || during the first pass through the loop. Rel/Prob  
12 T2/TDNTD/S14 This makes more sense || than if it read “if the answer is not correct, ask the question and then check the 

answer again.” 
Rel/Ob 

13 T2/BA/S9 Of course, it is rare that || you would purposely create an infinite loop and then use a break statement to 
bail out of it. 

Rel/Prob 

 

Keys: 
1. Rel/Prob denotes Relational projection clause with Probability 
2. Rel/Ob denotes Relational projection clause with Obligation 

 
Note: 
1. Relational projection clauses are in bold and separated with oblique lines (||).  
 



Appendix 10A 
 

Text 1 – Features of Metaphor of Mood and Metaphor Modality 
 
 
 
 
 
 

 

 

 

 

 

4.1 INTRODUCTION Code 
T1/INT/S1 Suppose that you need to print a string (e.g., "Welcome to Java!") a hundred times. 

What if you need to print a string (e.g., "Welcome to Java!") a hundred times? 
Dec/St/Qu 

T1/INT/S2 It would be tedious || to have to write the following statement a hundred times. Rel/Prob 
T1/INT/S3 Java provides a powerful control structure called a loop that controls how many times an operation or a 

sequence of operations is performed in succession. 
 
 

T1/INT/S4 Using a loop statement, you simply tell the computer to print a string a hundred times without having to code 
the print statement a hundred times. 
Using a loop statement, tell the computer to print a string a hundred times without having to code the print 
statement a hundred times. 

Dec/St/Co 
 

T1/INT/S5 Loops are structures that control repeated executions of a block of statements.  
T1/INT/S6 The concept of looping is fundamental to programming.  
T1/INT/S7 Java provides three types of loop statements: while loops, do-while loops, and for loops.  
4.2 THE WHILE LOOP  
T1/WL/S1 The syntax for the while loop is as follows.  
T1/WL/S2 The while loop flow chart is shown in Figure 4.1(a).  
T1/WL/S3 The part of the loop that contains the statements to be repeated is called the loop body.  
T1/WL/S4 A one-time execution of a loop body is referred to as an iteration of the loop.  

Notes: 
1. For every table entry with metaphorical clauses with Metaphor of Mood, the 

metaphorical sentence precedes the congruent sentence.  
2. Mental projection clauses are in bold and separated with oblique lines (||).  
3. Relational projection clauses are in bold and separated with oblique lines (||).  
 
Keys: 
1. Dec/St/Co denotes Declarative clauses realizing Statement and Command  
2. Int/Qu/St denotes Interrogative clauses realizing Question and Statement 
3. Int/Qu/Co denotes Interrogative clauses realizing Question and Command 
4. Imp/Co/St denotes Imperative clauses realizing Command and Statement 
5. Men/Prob denotes Mental Projection clause with Probability 
6. Men/Ob denotes Mental Projection clause with Obligation 
7. Rel/Prob denotes Relational projection clause with Probability 
8. Rel/Ob denotes Relational projection clause with Obligation 



T1/WL/S5 Each loop contains a loop-continuation condition, a Boolean expression that controls the execution of the body.  
T1/WL/S6 It is always evaluated || before the loop body is executed. Rel/Ob 
T1/WL/S7 If its evaluation is true, the loop body is executed.   
T1/WL/S8 If its evaluation is false, the entire loop terminates and the program control turns to the statement that follows 

the while loop. 
 

T1/WL/S9 For example, the following while loop prints "Welcome to Java!" a hundred times.  
T1/WL/S10 The flow chart of the preceding statement is shown in Figure 4.1(b).  
T1/WL/S11 The variable count is initially 0.  
T1/WL/S12 The loop checks whether (count < 100) is true.  
T1/WL/S13 If so, it executes the loop body to print the message "Welcome to Java!" and increments count by 1.  
T1/WL/S14 It repeatedly executes the loop body until (count < 100) becomes false.  
T1/WL/S15 When (count < 100) is false (i.e., when count reaches 100), the loop terminates and the next statement after 

the loop statement is executed. 
 
 

4.2.1 AN ADVANCED MATH LEARNING TOOL  
T1/AMLT/S1 The Math subtraction learning tool program in Listing 3.5, SubtractionTutor.Java, generates just one question 

for each run. 
 

T1/AMLT/S2 You can use a loop to generate questions repeatedly. 
Use a loop to generate questions repeatedly. 

 

T1/AMLT/S3 Listing 4.1 gives a program that generates ten questions and reports the number of correct answers after a 
student answers all ten questions. 

 
 

T1/AMLT/S4 The program also displays the time spent on the test and lists all the questions, as shown in Figure 4.2.  
T1/AMLT/S5 The program uses the control variable count to control the execution of the loop.   
T1/AMLT/S6 Count is initially 0 (line 6) and is increased by 1 in each iteration (line 39).  
T1/AMLT/S7 A subtraction question is displayed and processed in each iteration.  
T1/AMLT/S8 The program obtains the time before the test starts in line 7 and the time after the test ends in line 45, and 

computes the test time in line 46. 
 

T1/AMLT/S9 The test time is in milliseconds and is converted to seconds in line 50.  
4.2.2 CONTROLLING A LOOP WITH A CONFIRMATION DIALOG  
T1/LCD/S1 The preceding example executes the loop ten times.  
T1/LCD/S2 If you want the user to decide whether to take another question, you can use a confirmation dialog to control 

the loop. 
If you want the user to decide whether to take another question, use a confirmation dialog to control the loop. 

Dec/St/Co 

T1/LCD/S3 A confirmation dialog can be created using the following statement. 
Create a confirmation dialog using the following statement. 

Dec/St/Co 

T1/LCD/S4 When a button is clicked, the method returns an option value.  
T1/LCD/S5 The value is JOptionPane.YES_OPTION (0) for the Yes button, JOptionPane.NO_OPTION (1) for the No 

button, and JOptionPane.CANCEL_OPTION (2) for the Cancel button. 
 
 

T1/LCD/S6 For example, the following loop continues to execute until the user clicks the No or Cancel button.  
T1/LCD/S7 You can rewrite Listing 4.1 using a confirmation dialog to let the user decide whether to continue the next Dec/St/Co 



question. 
Rewrite Listing 4.1 using a confirmation dialog to let the user decide whether to continue the next question. 

4.2.3 CONTROLLING A LOOP WITH A SENTINEL VALUE  
T1/LSV/S1 Another common technique for controlling a loop is to designate a special value when reading and processing a 

set of values. 
 

T1/LSV/S2 This special input value, known as a sentinel value, signifies the end of the loop.  
T1/LSV/S3 Listing 4.2 writes a program that reads and calculates the sum of an unspecified number of integers.  
T1/LSV/S4 The input 0 signifies the end of the input.  
T1/LSV/S5 Do you need to declare a new variable for each input value?  Int/Qu/St 
T1/LSV/S6 No. 

There is no need to declare a new variable for each input. 
 

T1/LSV/S7 Just use one variable named data (line 9) to store the input value and use a variable named sum (line 12) to 
store the total. 
One variable named data (line 9) is used to store the input value and a variable named sum (line 12) is used to 
store the total 

Imp/Co/St 

T1/LSV/S8 Whenever a value is read, assign it to data and added to sum (line 14) if it is not zero.  
T1/LSV/S9 A sample run of the program is shown in Figure 4.3. 

See Figure 4.3 for a sample run of the program 
Dec/St/Co 

T1/LSV/S10 If data is not 0, it is added to the sum (line 14) and the next items of input data are read (lines 12–19).  
T1/LSV/S11 If data is 0, the loop body is no longer executed and the while loop terminates.  
T1/LSV/S12 The input value 0 is the sentinel value for this loop.  
T1/LSV/S13 Note that if the first input read is 0, the loop body never executes, and the resulting sum is 0. 

If the first input read is 0, the loop body never executes, and the resulting sum is 0. 
Imp/Co/St 

T1/LSV/S14 The program uses a while loop to add an unspecified number of integers.  
4.3 THE DO-WHILE LOOP  
T1/DWL/S1 The do-while loop is a variation of the while loop.  
T1/DWL/S2 Its syntax is given below: 

See below for its syntax: 
Dec/St/Co 

T1/DWL/S3 Its execution flow chart is shown in Figure 4.4. 
See Figure 4.4 for its execution flow chart. 

Dec/St/Co 

T1/DWL/S4 The loop body is executed first.   
T1/DWL/S5 Then the loop-continuation-condition is evaluated.  
T1/DWL/S6 If the evaluation is true, the loop body is executed again.   
T1/DWL/S7 If it is false, the do-while loop terminates.  
T1/DWL/S8 The major difference between a while loop and a do-while loop is the order in which the loop-continuation-

condition is evaluated and the loop body executed. 
 

T1/DWL/S9 The while loop and the do-while loop have equal expressive power.  
T1/DWL/S10 Sometimes one is a more convenient choice than the other.  
T1/DWL/S11 For example, you can rewrite the while loop in Listing 4.2 using a do-while loop, as shown in Listing 4.3. Dec/St/Co 



For example, rewrite the while loop in Listing 4.2 using a do-while loop, as shown in Listing 4.3. 
4.4 THE FOR LOOP  
T1/FL/S1 Often you write a loop in the following common form.  
T1/FL/S2 A for loop can be used to simplify the preceding loop. 

Use a for loop to simplify the preceding loop. 
Dec/St/Co 

T1/FL/S3 In general, the syntax of a for loop is as shown below. 
In general, see below for the syntax of a for loop. 

Dec/St/Co 

T1/FL/S4 The flow chart of the for loop is shown in Figure 4.5(a). 
See Figure 4.5(a) for the flow chart of the for loop. 

 

T1/FL/S5 The for loop statement starts with the keyword for, followed by a pair of parentheses enclosing initial-action, 
loop-continuation-condition, and action-after-each-iteration, and followed by the loop body enclosed inside 
braces.  
Start the for loop statement with the keyword for, enclose initial-action, loop-continuation-condition with a pair of 
parenthesis, and enclose the loop body inside braces. 

Dec/St/Co 

T1/FL/S6 Initial-action, loop-continuation-condition, and action-after-each-iteration are separated by semicolons. 
Separate Initial-action, loop-continuation-condition, and action-after-each-iteration with semicolons.  

Dec/St/Co 

T1/FL/S7 A for loop generally uses a variable to control how many times the loop body is executed and when the loop 
terminates.  
Use a variable in a for loop to control how many times the loop body is executed and when the loop terminates. 

Dec/St/Co 

T1/FL/S8 This variable is referred to as a control variable.  
Refer this variable as a control variable. 

Dec/St/Co 

T1/FL/S9 The initial-action often initializes a control variable, the action-after-each-iteration usually increments or 
decrements the control variable, and the loop-continuation-condition tests whether the control variable has 
reached a termination value.  

 

T1/FL/S10 For example, the following for loop prints "Welcome to Java!" a hundred times. 
See the following to understand how for loop prints "Welcome to Java!" a hundred times. 

Dec/St/Co 

T1/FL/S11 The flow chart of the statement is shown in Figure 4.5(b).  
See Figure 4.5(b) for the flow chart of the statement. 

Dec/St/Co 

T1/FL/S12 The for loop initializes i to 0, then repeatedly executes the println statement and evaluates i++ while i is less 
than 100. 

 

T1/FL/S13 The initial-action, i=0, initializes the control variable, i.   
T1/FL/S14 The loop-continuation-condition, i< 100 is a Boolean expression.  
T1/FL/S15 The expression is evaluated at the beginning of each iteration.  
T1/FL/S16 If this condition is true, execute the loop body.   
T1/FL/S17 If it is false, the loop terminates and the program control turns to the line following the loop.  
T1/FL/S18 The action-after-each-iteration, i++, is a statement that adjusts the control variable.   
T1/FL/S19 This statement is executed after each iteration.  
T1/FL/S20  It increments the control variable.   
T1/FL/S21 Eventually, the value of the control variable should force the loop-continuation-condition to become false.   



T1/FL/S22 Otherwise the loop is infinite.  
T1/FL/S23 If there is only one statement in the loop body, as in this example, the braces can be omitted. 

If there is only one statement in the loop body, as in this example, omit the braces. 
Dec/St/Co 

T1/FL/S24 The control variable must always be declared inside the control structure of the loop or before the loop. 
Declare the control variable inside the control structure of the loop or before the loop. 

Dec/St/Co 

T1/FL/S25 The loop control variable is used only in the loop, and not elsewhere. 
Use the loop control variable only in the loop, and not elsewhere. 

Dec/St/Co 

T1/FL/S26 It is good programming practice || to declare it in the initial-action of the for loop. Rel/Prob 
T1/FL/S27 If the variable is declared inside the loop control structure, it cannot be referenced outside the loop.  
T1/FL/S28 For example, you cannot reference i outside the for loop in the preceding code, because it is declared inside 

the for loop. 
Do not reference i outside the for loop in the preceding code, because it is declared inside the for loop. 

Dec/St/Co 

4.5. WHICH LOOP TO USE?  
T1/WLU/S1 The while loop and for loop are called pre-test loops because the continuation condition is checked before the 

loop body is executed. 
Refer the while loop and for loop as pre-test loops because the continuation condition is checked before the 
loop body is executed. 

Dec/St/Co 

T1/WLU/S2 The do-while loop is called a post-test loop because the condition is checked after the loop body is executed. 
Refer The do-while loop as a post-test loop because the condition is checked after the loop body is executed 

Dec/St/Co 

T1/WLU/S3 The three forms of loop statements, while, do-while, and for, are expressively equivalent.   
T1/WLU/S4 That is, you can write a loop in any of these three forms. 

Write a loop in any of these three forms. 
Dec/St/Co 

T1/WLU/S5 For example, a while loop in (a) in the following figure can always be converted into the for loop in (b): 
See the following figure on how , a while loop in (a) can always be converted into the for loop in (b): 

Dec/St/Co 

T1/WLU/S6 A for loop in (a) in the next figure can generally be converted into the while loop in (b) except in certain special 
cases (see Review Question 4.12 for such a case): 
See the next figure on how A for loop in (a) can generally be converted into the while loop in (b) except in 
certain special cases (see Review Question 4.12 for such a case): 

Dec/St/Co 

T1/WLU/S7 Use the loop statement that is most intuitive and comfortable for you. 
You can use the loop statement that is most intuitive and comfortable for you. 

Imp/Co/St 

T1/WLU/S8 In general, a for loop may be used if the number of repetitions is known, as, for example, when you need to 
print a message a hundred times. 
In general, use a for loop used if the number of repetitions is known, as, for example, when you need to print a 
message a hundred times. 

Dec/St/Co 

T1/WLU/S9 A while loop may be used if the number of repetitions is not known, as in the case of reading the numbers until 
the input is 0. 
Use a while loop if the number of repetitions is not known, as in the case of reading the numbers until the input 
is 0. 

Dec/St/Co 

T1/WLU/S10 A do-while loop can be used to replace a while loop if the loop body has to be executed before the continuation Dec/St/Co 



condition is tested. 
Use a do-while loop to replace a while loop if the loop body has to be executed before the continuation 
condition is tested. 

4.6. NESTED LOOPS  
T1/NL/S1 Nested loops consist of an outer loop and one or more inner loops.  
T1/NL/S2 Each time the outer loop is repeated, the inner loops are reentered, and started anew.  
T1/NL/S3 Listing 4.4 presents a program that uses nested for loops to print a multiplication table, as shown in Figure 4.6. 

See Listing 4.4 that presents a program that uses nested for loops to print a multiplication table, as shown in 
Figure 4.6 

Dec/St/Co 

T1/NL/S4 The program displays a title (line 7) on the first line and dashes (-) (line 8) on the second line.  
T1/NL/S5 The first for loop (lines 12–13) displays the numbers 1 through 9 on the third line.  
T1/NL/S6 The next loop (lines 18–28) is a nested for loop with the control variable i in the outer loop and j in the inner 

loop. 
 

T1/NL/S7 For each i, the product i * j is displayed on a line in the inner loop, with j being 1, 2, 3, …, 9.  
T1/NL/S8 The if statement in the inner loop (lines 22–25) is used so that the product will be aligned properly.  
T1/NL/S9 If the product is a single digit, it is displayed with an extra space before it.  
4.7  MINIMIZING NUMERICAL ERRORS  
T1/MNE/S1 Numeric errors involving floating-point numbers are inevitable.  
T1/MNE/S2 This section discusses how to minimize such errors through an example. 

Read this section that discusses how to minimize such errors through an example. 
Dec/St/Co 

T1/MNE/S3 Listing 4.5 presents an example that sums a series that starts with 0.01 and ends with 1.0. 
See Listing 4.5 that presents an example that sums a series that starts with 0.01 and ends with 1.0. 

Dec/St/Co 

T1/MNE/S4 The numbers in the series will increment by 0.01, as follows: 0.01 + 0.02 + 0.03 and so on.  
T1/MNE/S5 The output of the program appears in Figure 4.7. 

See the output of the program in Figure 4.7. Dec/St/Co 
 

T1/MNE/S6 The for loop (lines 9–10) repeatedly adds the control variable i to the sum.  
T1/MNE/S7 This variable, which begins with 0.01, is incremented by 0.01 after each iteration.  
T1/MNE/S8 The loop terminates when i exceeds 1.0.  
T1/MNE/S9 The for loop initial action can be any statement, but it is often used to initialize a control variable.  
T1/MNE/S10 From this example, you can see that || a control variable can be a float type. 

From this example, see that a control variable can be a float type. 
Dec/St/Co & 
Men/Prob 

T1/MNE/S11 In fact, it can be any data type.   
T1/MNE/S12 The exact sum should be 50.50, but the answer is 50.499985.  
T1/MNE/S13 The result is not precise because computers use a fixed number of bits to represent floating-point numbers, 

and thus cannot represent some floating-point numbers exactly. 
 

T1/MNE/S14 If you change float in the program to double as follows, you should see a slight improvement in precision 
because a double variable takes sixty-four bits, whereas a float variable takes thirty-two bits. 
If you change float in the program to double as follows, notice a slight improvement in precision because a 
double variable takes sixty-four bits, whereas a float variable takes thirty-two bits. 

Dec/St/Co 



T1/MNE/S15 However, you will be stunned to see that || the result is actually 49.50000000000003. 
However, see that the result is actually 49.50000000000003. 

Dec/St/Co & 
Men/Prob 

T1/MNE/S16 What went wrong? 
There is a mistake. 

Int/Qu/St 

T1/MNE/S17 If you print out i for each iteration in the loop, you will see that the last i is slightly larger than 1 (not exactly 1).  
T1/MNE/S18 This causes the last i not to be added into sum.  
T1/MNE/S19 The fundamental problem is that || the floating-point numbers are represented by approximation. Rel/Prob 
T1/MNE/S20 Errors commonly occur.  
T1/MNE/S21 There are two ways to fix the problem.  
T1/MNE/S22 Minimizing errors by processing large numbers first. 

Minimize errors by processing large numbers first. 
Dec/St/Co 

T1/MNE/S23 Using an integer count to ensure that all the numbers are processed. 
Use an integer count to ensure that all the numbers are processed. 

Dec/St/Co 

T1/MNE/S24 To minimize errors, add numbers from 1.0, 0.99, down to 0.1, as follows: 
To minimize errors, you can add numbers from 1.0, 0.99, down to 0.1, as follows: 

Imp/Co/St 

T1/MNE/S25 To ensure that all the items are added to sum, use an integer variable to count the items.  
To minimize errors, you can use an integer variable to count the items. 

Imp/Co/St 

T1/MNE/S26 Here is the new loop. 
See here for the new loop. 

Dec/St/Co 

T1/MNE/S27 After this loop, sum is 50.50000000000003.  
4.8  CASE STUDIES  
T1/CS/S1 Control statements are fundamental in programming.  
T1/CS/S2 The ability to write control statements is essential in learning Java programming.  
T1/CS/S3 If you can write programs using loops, you know || how to program! Men/Prob 
T1/CS/S4 For this reason, this section presents three additional examples of how to solve problems using loops. 

For this reason, read this section that presents three additional examples of how to solve problems using loops. 
Dec/St/Co 

4.8.1 EXAMPLE: FINDING THE GREATEST COMMON DIVISOR  
T1/FGCD/S1 This section presents a program that prompts the user to enter two positive integers and finds their greatest 

common divisor. 
Read this section that presents a program that prompts the user to enter two positive integers and finds their 
greatest common divisor. 

Dec/St/Co 

T1/FGCD/S2 The greatest common divisor of two integers 4 and 2 is 2.  
T1/FGCD/S3 The greatest common divisor of two integers 16 and 24 is 8.  
T1/FGCD/S4 How do you find the greatest common divisor? 

Find the greatest common divisor 
Dec/St/Co 

T1/FGCD/S5 Let the two input integers be n1 and n2. 
You can let the two input integers be n1 and n2. 

Imp/Co/St 

T1/FGCD/S6 You know that || number 1 is a common divisor, but it may not be the greatest common divisor. Men/Prob 
T1/FGCD/S7 So you can check whether k (for k = 2, 3, 4 and so on) is a common divisor for n1 and n2, until k is greater than Dec/St/Co 



n1 or n2. 
Check whether k (for k = 2, 3, 4 and so on) is a common divisor for n1 and n2, until k is greater than n1 or n2. 

T1/FGCD/S8 Store the common divisor in a variable named gcd. 
You can store the common divisor in a variable named gcd. 

Imp/Co/St 

T1/FGCD/S9 Initially, gcd is 1.  
T1/FGCD/S10 Whenever a new common divisor is found, it becomes the new gcd.  
T1/FGCD/S11 When you have checked all the possible common divisors from 2 up to n1 or n2, the value in variable gcd is the 

greatest common divisor. 
Dec/St/Co 

T1/FGCD/S12 The idea can be translated into the following loop: 
Translate the idea into the following loop 

Dec/St/Co 

T1/FGCD/S13 The complete program is given in Listing 4.6, and a sample run of the program is shown in Figure 4.8. 
See the complete program in Listing 4.6 and a sample run of the program in Figure 4.8. 

 

T1/FGCD/S14 The program finds the greatest common divisor for two integers.  
T1/FGCD/S15 How did you write this program? 

Describe how you wrote this program. 
Dec/St/Co 

T1/FGCD/S16 Did you immediately begin to write the code?  
T1/FGCD/S17 No. 

You didn’t immediately begin to write the code. 
Int/Qu/St 

T1/FGCD/S18 It is important || to think before you type. 
Think before you type. 

Dec/St/Co & 
Rel/Prob 

T1/FGCD/S19 Thinking enables you to generate a logical solution for the problem without concern about how to write the 
code. 

 

T1/FGCD/S20 Once you have a logical solution, type the code to translate the solution into a Java program. 
Once you have a logical solution, you can type the code to translate the solution into a Java program. 

Imp/Co/St 

T1/FGCD/S21 The translation is not unique.   
T1/FGCD/S22 For example, you could use a for loop to rewrite the code as follows: 

For example, use a for loop to rewrite the code as follows: 
Dec/St/Co 

T1/FGCD/S23 A problem often has multiple solutions.  
T1/FGCD/S24 The GCD problem can be solved in many ways. 

You can solve The GCD problem in many ways. 
 

T1/FGCD/S25 Exercise 4.15 suggests another solution. 
See Exercise 4.15 that suggests another solution. 

 

T1/FGCD/S26 A more efficient solution is to use the classic Euclidean algorithm. 
For a more efficient solution, use the classic Euclidean algorithm. 

Dec/St/Co 

T1/FGCD/S27 See http://www.cut-the-knot.org/blue/Euclid.shtml for more information. 
You can see http://www.cut-the-knot.org/blue/Euclid.shtml for more information. 

Imp/Co/St 

T1/FGCD/S28 You might think that || a divisor for a number n1 cannot be greater than n1 / 2. Men/Prob 
T1/FGCD/S29 So you would attempt to improve the program using the following loop:  
T1/FGCD/S30 This revision is wrong.  



T1/FGCD/S31 Can you find the reason? 
Find the reason. 

Int/Qu/Co 

T1/FGCD/S32 See Review Question 4.9 for the answer. 
You can see Review Question 4.9 for the answer. 

Imp/Co/St 

4.8.2 EXAMPLE: FINDING THE SALES AMOUNT  
T1/FSA/S1 You have just started a sales job in a department store.  
T1/FSA/S2 Your pay consists of a base salary and a commission.  
T1/FSA/S3 The base salary is $5,000.  
T1/FSA/S4 The scheme shown below is used to determine the commission rate.  
T1/FSA/S5 Your goal is to earn $30,000 a year.  
T1/FSA/S6 This section writes a program that finds the minimum amount of sales you have to generate in order to make 

$30,000. 
Read this section that writes a program that finds the minimum amount of sales you have to generate in order 
to make $30,000. 

Dec/St/Co 

T1/FSA/S7 Since your base salary is $5,000, you have to make $25,000 in commissions to earn $30,000 a year.  
T1/FSA/S8 What is the sales amount for a $25,000 commission? 

Find the sales amount for a $25,000 commission. 
Dec/St/Co 

T1/FSA/S9 If you know the sales amount, the commission can be computed as follows. 
If you know the sales amount, compute the commission as follows. 

Dec/St/Co 

T1/FSA/S10 This suggests that || you can try to find the salesAmount to match a given commission through incremental 
approximation. 
Try to find the salesAmount to match a given commission through incremental approximation. 

Dec/St/Co & 
Rel/Prob 

T1/FSA/S11 For a salesAmount of $0.01 (1 cent), find commission.  
T1/FSA/S12 If commission is less than $25,000, increment salesAmount by 0.01 and find commission again.  
T1/FSA/S13 If commission is still less than $25,000, repeat the process until it is greater than or equal to $25,000.  
T1/FSA/S14 This is a tedious job for humans, but it is exactly what || a computer is good for. Rel/Prob 
T1/FSA/S15 You can write a loop and let a computer execute it painlessly. 

Write a loop and let a computer execute it painlessly.  
Dec/St/Co 

T1/FSA/S16 The idea can be translated into the following loop: 
Translate the idea into the following loop: 

Dec/St/Co 

T1/FSA/S17 The complete program is given in Listing 4.7, and a sample run of the program is shown in Figure 4.9. 
Read the complete program given in Listing 4.7, and a sample run of the program in Figure 4.9. 

 

T1/FSA/S18 The do-while loop (lines 12–24) is used to repeatedly compute commission for an incremental salesAmount.  
T1/FSA/S19 The loop terminates when commission is greater than or equal to a constant COMMISSION_SOUGHT.  
T1/FSA/S20 In Exercise 4.17, you will rewrite this program to let the user enter COMMISSION_SOUGHT dynamically from 

an input dialog. 
In Exercise 4.17, rewrite this program to let the user enter COMMISSION_SOUGHT dynamically from an input 
dialog. 

Dec/St/Co 

T1/FSA/S21 You can improve the performance of this program by estimating a higher INITIAL_SALES_AMOUNT (e.g., Dec/St/Co 



25000). 
Improve the performance of this program by estimating a higher INITIAL_SALES_AMOUNT (e.g., 25000). 

T1/FSA/S22 What is wrong if salesAmount is incremented after the commission is computed, as follows? 
Find the mistake if salesAmount is incremented after the commission is computed, as follows? 

Dec/St/Co 

T1/FSA/S23 The change is erroneous because salesAmount is 1 cent more than is needed for the commission when the 
loop ends. 

 

T1/FSA/S24 This is a common error in loops, known as the off-by-one error.  
4.8.3 EXAMPLE: DISPLAYING A PYRAMID OF NUMBERS Dec/St/Co 
T1/DPN/S1 This section presents a program that prompts the user to enter an integer from 1 to 15 and displays a pyramid. 

Read this section that presents a program that prompts the user to enter an integer from 1 to 15 and displays a 
pyramid. 

Dec/St/Co 

T1/DPN/S2 If the input integer is 12, for example, the output is shown in Figure 4.10. 
If the input integer is 12, for example, see the output in Figure 4.10. 

 

T1/DPN/S3 The program uses nested loops to print numbers in a triangular pattern.  
T1/DPN/S4 Your program receives the input for an integer (numberOfLines) that represents the total number of lines.  
T1/DPN/S5 It displays all the lines one by one.  
T1/DPN/S6 Each line has three parts.  
T1/DPN/S7 The first part comprises the spaces before the numbers;   
T1/DPN/S8 The second part, the leading numbers, such as 3 2 1 in line 3.   
T1/DPN/S9 And the last part, the ending numbers, such as 2 3 in line 3.  
T1/DPN/S10 Each number occupies three spaces.  
T1/DPN/S11 Display an empty space before a double-digit number, and display two empty spaces before a single-digit 

number. 
 

T1/DPN/S12 You can use an outer loop to control the lines. 
Use an outer loop to control the lines. 

Dec/St/Co 

T1/DPN/S13 At the nth row, there are (numberOfLines – n)*3 leading spaces, the leading numbers are n, n-1, … 1, and the 
ending numbers are 2, ..., n. 

 

T1/DPN/S14 You can use three separate inner loops to print each part. 
Use three separate inner loops to print each part. 

Dec/St/Co 

T1/DPN/S15 Here is the algorithm for the problem. 
Read the algorithm for the problem. 

Dec/St/Co 

T1/DPN/S16 The complete program is given in Listing 4.8. 
See the complete program in Listing 4.8. 

Dec/St/Co 

T1/DPN/S17 The program uses the print method (lines 20, 24, and 28) to display a string to the console.  
T1/DPN/S18 The conditional expression (num >= 10) ? " " + num : " " + num in lines 24 and 28 returns a string with a single 

empty space before the number if the number is greater than or equal to 10, and otherwise returns a string with 
two empty spaces before the number. 

 

T1/DPN/S19 Printing patterns like this one and the ones in Exercises 4.18 and 4.19 is a good exercise for practicing loop 
control statements. 

 



T1/DPN/S20 The key is to understand the pattern and to describe it using loop control variables. 
Understand the pattern and to describe it using loop control variables. 

 

T1/DPN/S21 The last line in the outer loop (line 31), System.out.println(), does not have any argument in the method.  
T1/DPN/S22 This call moves the cursor to the next line.  
4.9 KEYWORDS BREAK AND CONTINUE  
T1/KBC/S1 Two statements, break and continue, can be used in loop statements to provide the loop with additional control. 

Use the two statements, break and continue in loop statements to provide the loop with additional control. 
Dec/St/Co 

T1/KBC/S2 break immediately ends the innermost loop that contains it.   
T1/KBC/S3 It is generally used || with an if statement. 

Use it with an if statement. 
Dec/St/Co & 
Rel/Ob 

T1/KBC/S4 continue only ends the current iteration.   
T1/KBC/S5 Program control goes to the end of the loop body.   
T1/KBC/S6 This keyword is generally used || with an if statement. 

Use this keyword with an if statement. 
Dec/St/Co & 
Rel/Ob 

T1/KBC/S7 You have already used the keyword break in a switch statement.  
T1/KBC/S8 You can also use break and continue in a loop. 

Use break and continue in a loop. 
Dec/St/Co 

T1/KBC/S9 Listings 4.9 and 4.10 present two programs to demonstrate the effect of the break and continue keywords in a 
loop. 
See Listings 4.9 and 4.10 that present two programs which demonstrate the effect of the break and continue 
keywords in a loop. 

 

T1/KBC/S10 The program in Listing 4.9 adds the integers from 1 to 20 in this order to sum until sum is greater than or equal 
to 100. 

 

T1/KBC/S11 Without the if statement (line 10), the program calculates the sum of the numbers from 1 to 20.  
T1/KBC/S12 But with the if statement, the loop terminates when the sum becomes greater than or equal to 100.  
T1/KBC/S13 The output of the program is shown in Figure 4.11(a).  
T1/KBC/S14 If you changed the if statement as shown below, the output would resemble that in Figure 4.11(b).  
T1/KBC/S15 In this case, the if condition will never be true.  
T1/KBC/S16 Therefore, the break statement will never be executed.  
T1/KBC/S17 The program in Listing 4.10 adds all the integers from 1 to 20 except 10 and 11 to sum.  
T1/KBC/S18 With the if statement in the program (line 9), the continue statement is executed when number becomes 10 or 

11. 
 

T1/KBC/S19 The continue statement ends the current iteration so that the rest of the statement in the loop body is not 
executed; therefore, number is not added to sum when it is 10 or 11. 

 

T1/KBC/S20 The output of the program is shown in Figure 4.12(a). 
See the output of the program in Figure 4.12(a). 

Dec/St/Co 

T1/KBC/S21 Without the if statement in the program, the output would look like Figure 4.12(b). 
Without the if statement in the program, see how the output would look like in Figure 4.12(b). 

 

T1/KBC/S22 In this case, all of the numbers are added to sum, even when number is 10 or 11.  



T1/KBC/S23 Therefore, the result is 210, which is 21 more than it was with the if statement.  
 

 

 

 



Appendix 10B 
 

Text 2 – Features of Metaphor of Mood and Metaphor Modality 
 
 
 
 
 
 

 

 

 

 

 

CHAPTER 9 FEELING A LITTLE LOOPY 
 

Code 

TITLE A LOOP FOR EVERY OCCASION (LEO)  
T2/LEO/S1 Have you ever been talking to someone and it seems like || he or she is saying the same thing over and 

over? 
There is probably a time when you talk to someone and it seems like he or she is saying the same thing over 
and over. 

Int/Qu/St & 
Rel/Prob 

T2/LEO/S2 I mean, || you keep listening, and they keep talking, and it all sounds the same. 
I mean, you keep listening, and they keep talking, doesn’t it all sound the same? 

Men/Ob 

T2/LEO/S3 And they talk somemore and you listen somemore and you wonder || if it will ever end! 
And they talk somemore and you listen somemore and you wonder, will it ever end? 

Men/Prob 

T2/LEO/S4 Congratulations, you just experienced || a perfect example of a verbal loop! 
Congratulations, experience a perfect example of a verbal loop! 

Dec/St/Co & 
Men/Prob 

T2/LEO/S5 In Java, a loop is a programming construct that enables you to repeat a section of code over and over, much 
like my conversation example. 

 

T2/LEO/S6 Loops are very valuable in Java because they enable you to tightly control repetitive functions.   
T2/LEO/S7 Three type of loops are used in Java: for loops, while loops and do loops.  
TITLE GETTING REDUNDANT WITH THE FOR LOOP (GRL)  

Notes: 
1. For every table entry with metaphorical clauses with Metaphor of Mood, the 

metaphorical sentence precedes the congruent sentence.  
2. Mental projection clauses are in bold and separated with oblique lines (||).  
3. Relational projection clauses are in bold and separated with oblique lines (||).  
 
Keys: 
1. Dec/St/Co denotes Declarative clauses realizing Statement and Command  
2. Int/Qu/St denotes Interrogative clauses realizing Question and Statement 
3. Int/Qu/Co denotes Interrogative clauses realizing Question and Command 
4. Imp/Co/St denotes Imperative clauses realizing Command and Statement 
5. Men/Prob denotes Mental Projection clause with Probability 
6. Men/Ob denotes Mental Projection clause with Obligation 
7. Rel/Prob denotes Relational projection clause with Probability 
8. Rel/Ob denotes Relational projection clause with Obligation 



T2/GRL/S1 Let’s pretend NASA used Java applets to control the launch of the space shuttle.  
Pretend NASA used Java applets to control the launch of the space shuttle. 

Dec/St/Co 

T2/GRL/S2 Any ideas on how controllers would initiate the launch sequence? 
Think of how controllers would initiate the launch sequence. 

Int/Qu/Co 

T2/GRL/S3 With loops!   
T2/GRL/S4 Counting down from ten to one is a piece of cake with a loop.  
T2/GRL/S5 Granted, without a loop it wouldn’t be too tough either, but it would require some unnecessary code.   
T2/GRL/S6 Following is code to perform the launch sequence without the use of a loop. 

See the following for the code to perform the launch sequence without the use of a loop. 
Dec/St/Co 

T2/GRL/S7 And now the loop version: 
And now see the loop version: 

Dec/St/Co 

T2/GRL/S8 See what I mean about tightening up the code? 
This is what I mean about tightening up the code.  

Int/Qu/St 

T2/GRL/S9 You probably wonder || exactly how the loop code works. 
Think of how does the loop code work. 

Dec/St/Co & 
Men/Prob 

T2/GRL/S10 This code relies on a for loop, which is the most structured type of loop supported by Java.  
T2/GRL/S11 For loops repeat a section of code a fixed number of times.   
T2/GRL/S12 Following is the syntax for the for loop: 

See the following for the syntax for the for loop. 
 

T2/GRL/S13 The for loop repeats the Statement the number of time determined by the InitializationExpression, 
LoopCondition and StepExpression: 

 

T2/GRL/S14 The InitializationExpression is used to initialize a loop control variable. 
Use the InitializationExpression to initialize a loop control variable. 

Dec/St/Co 

T2/GRL/S15 The LoopCondition compares the loop control variable to some limit or value.  
T2/GRL/S16 The StepExpression specifies how the loop control variable should be modified before the next iteration of the 

loop. 
 

T2/GRL/S17 Let’s take a look at the NASA launch sequence code again to make some sense of this stuff. 
Take a look at the NASA launch sequence code again to make some sense of this stuff. 

Dec/St/Co 

T2/GRL/S18 In this code the InitializationExpression is int i310, which is evaluated initially before the loop begins.  
T2/GRL/S19 This is the code you use to prime the loop and get it ready. 

Use this code to prime the loop and get it ready. 
Dec/St/Co 

T2/GRL/S20 The LoopCondition is i>0, which is a Boolean test that is performed before each iteration of the loop.   
T2/GRL/S21 If the Boolean test result is true, the Statement is executed, which in this case prints the current value of i.  
T2/GRL/S22 After each iteration the StepExpression is evaluated, which is i--.   
T2/GRL/S23 This serves to decrement i after each iteration, and ultimately proves the countdown.  
T2/GRL/S24 The loop continues to iterate and print numbers as i counts down to 0.  
T2/GRL/S25 After i reaches 0, the LoopCondition test fails (i>0), so the loop bails out without printing any more numbers.  
T2/GRL/S26 Whew, that explanation seemed || a little long-winded, and that’s coming from the person that wrote it! Men/Prob 
T2/GRL/S27 Unfortunately, it isn’t always easy || to verbalize the flow of program code. Rel/Prob 



T2/GRL/S28 This is why it’s easy || to fall back on figures. Rel/Prob 
T2/GRL/S29 Just ask Ross Perot, who isn’t a Java programmer but who nonetheless relied on diagrams and illustrations to 

help us grasp his big plans for the presidency. 
You can ask Ross Perot, who isn’t a Java programmer but who nonetheless relied on diagrams and 
illustrations to help us grasp his big plans for the presidency. 

Imp/Co/St 

T2/GRL/S30 You can feel safe and secure knowing that || I’m not running for president or trying to help you visualize my 
answer to global trade. 
Be safe and secure knowing that I’m not running for president or trying to help you visualize my answer to 
global trade. 

Dec/St/Co & 
Men/Prob 

T2/GRL/S31 I just want || to help you learn how loops work! Men/Ob 
T2/GRL/S32 To help you visualize the looping process, take a look at the following figure. 

To help you visualize the looping process, you can take a look at the following figure. 
Imp/Co/St 

T2/GRL/S33 Notice in the figure that Statement 1 and Statement 2 will be repeatedly executed as long as the loop condition 
is true.  
You can notice in the figure that Statement 1 and Statement 2 will be repeatedly executed as long as the loop 
condition is true.  

Imp/Co/St 

T2/GRL/S34 When the loop condition goes false, the program falls out of the loop and executes Statement 3.   
T2/GRL/S35 The previous figure alludes to the fact that a loop can execute multiple statements.   
T2/GRL/S36 Loops can execute as many statements as they want, provided curly braces ({}) enclose the statements.  
T2/GRL/S37 If you recall, this grouping of statements is known as a compound statement and was used in the previous 

chapter when dealing with if-else branches. 
Recall that this grouping of statements is known as a compound statement and was used in the previous 
chapter when dealing with if-else branches. 

Dec/St/Co 

T2/GRL/S38 Following is an example of a for loop with a compound statement: 
See the following for an example of a for loop with a compound statement: 

Dec/St/Co 
 

T2/GRL/S39 This code calculates the squares of the numbers 1 through 10, stores them in an array, and prints each one.  
T2/GRL/S40 Notice that the loop counter (i) is used as the index (i-1) into the squares array.  

You can notice that the loop counter (i) is used as the index (i-1) into the squares array. 
Imp/Co/St 

T2/GRL/S41 This is a very popular way || to handle arrays. Rel/Prob 
T2/GRL/S42 It is necessary || to subtract 1 in this case because all Java array indexes start with 0, which means they are 

zero based. 
Subtract 1 in this case because all Java array indexes start with 0, which means they are zero based. 

Dec/St/Co & 
Rel/Prob 

T2/GRL/S43 It might be worth nothing that || although zero-based arrays were used in other programming languages in 
the 1980s and before, they have nothing to do with the 80s movie Less than Zero or the 80s hit song saved by 
Zero. 

Rel/Ob 

T2/GRL/S44 Rest assured I would be the first to tell you if they did! 
You can be rest assured I would be the first to tell you if they did! 

Imp/Co/St 

TITLE LOOPING FOR JUST A LITTLE WHILE (LJLW)  
T2/LJLW/S1 Like the for loop, the while loop has a loop condition that controls the number of times a loop is repeated.  



T2/LJLW/S2 However, the while loop has no initialization or step expression.  
T2/LJLW/S3 A for loop is like one of those friends who tells you a story three or four times and then waits for a response, 

whereas a while loop is like one of those friends who continues to repeat himself as long as you continue to 
listen. 

 

T2/LJLW/S4 They’re both annoying, but in different ways.   
T2/LJLW/S5 Not the loops, the people!  
T2/LJLW/S6 Following is the syntax for the while loop, which should make its usage a little more clear: 

See the following for the syntax for the while loop, which should make its usage a little more clear: 
Dec/St/Co 

T2/LJLW/S7 If the Boolean LoopCondition evaluates to true, the Statement is executed.  
T2/LJLW/S8 When the Statement finishes executing, the LoopCondition is tested again and the process repeats itself.  
T2/LJLW/S9 This continues until the LoopCondition evaluates to false, in which case the loop immediately bails out.  
T2/LJLW/S10 Because the while loop has no step expression, it is important to make sure that || the Statement somehow 

impacts the LoopCondition. 
Because the while loop has no step expression, make sure that the Statement somehow impacts the 
LoopCondition. 

Dec/St/Co & 
Rel/Ob 

T2/LJLW/S11 Otherwise, it is possible || for the loop to repeat infinitely, which is usually a bad thing. Rel/Ob 
T2/LJLW/S12 Following is a simple example of an infinite while loop: 

See the following for a simple example of an infinite while loop: 
Dec/St/Co 

T2/LJLW/S13 Because the loop condition in this example is permanently set to true, the loop will repeat infinitely, or at least 
until you manually terminate the programme. 

 

T2/LJLW/S14 Infinite loops are extremely dangerous because they can result in your computer overheating.   
T2/LJLW/S15 Just kidding!  
T2/LJLW/S16 Actually, infinite loops are useful in some situations.  
T2/LJLW/S17 They are never truly infinite because you can typically terminate one by shutting down the application or applet 

containing it. 
 

T2/LJLW/S18 You can think of || the while loop as a more general for loop. 
Think of the while loop as a more general for loop. 

Dec/St/Co & 
Men/Ob 

T2/LJLW/S19 To understand what I mean by this, check out the following code. 
To understand what I mean by this, you can check out the following code. 

Imp/Co/St 

T2/LJLW/S20 This is the NASA launch sequence implemented using a while loop instead of a for loop.  
T2/LJLW/S21 Because while loops don’t have initialization expressions, the initialization of the counter variable i had to be 

performed before the loop.  
 

T2/LJLW/S22 Likewise, the step expression i had to be performed within the Statement part of the loop.  
T2/LJLW/S23 Regardless of the structural differences, this while loop is functionally equivalent to the for loop you saw earlier 

in the chapter.  
 

T2/LJLW/S24 If a for loop can do everything a while loop can and in a more organized way, then why do we need while 
loops? 
Even when a for loop can do everything a while loop can and in a more organized way, we still need while 
loops. 

Int/Qu/St 



T2/LJLW/S25 Because there is a time and a place for everything, and in many situations you have no need for initialization 
and step expressions.  

 

T2/LJLW/S26 A for loop is overkill in situations like this.  
T2/LJLW/S27 Even more importantly, a while loop is much more readable than a for loop when you have no need for 

initialization and step expressions.  
 

T2/LJLW/S28 Consider the following example: 
You can consider the following example: 

Imp/Co/St 

T2/LJLW/S29 This code demonstrates how a while loop could be used to ask a question and patiently wait for the correct 
answer. 
See this code that demonstrates how a while loop could be used to ask a question and patiently wait for the 
correct answer. 

Dec/St/Co 

T2/LJLW/S30 The loop repeats itself as long as the Boolean variable correct is false.   
T2/LJLW/S31 This results in the code repeating the question as many times as necessary until the user guesses the correct 

answer.  
 

T2/LJLW/S32 The details of the methods askQuestion() and isCorrect() aren’t important for this example.   
T2/LJLW/S33 Just assume that they somehow present the user with a question, retrieve an answer, and then judge the 

correctness of the answer.  
You can assume that they somehow present the user with a question, retrieve an answer, and then judge the 
correctness of the answer.  

Imp/Co/St 

T2/LJLW/S34 The main concern is that || the isCorrect () method returns a Boolean value that indicates whether or not the 
answer is correct. 

Rel/Prob 

T2/LJLW/S35 In this example, it is impossible || to know how many times the user will miss the answer and need the 
question repeated.  

Rel/Prob 

T2/LJLW/S36 For this reason, the structured step expression of a for loop wouldn’t be of much use.   
T2/LJLW/S37 While loops are perfect in situations where you don’t know ahead of time how many times a loop needs to be 

repeated.  
 

T2/LJLW/S38 If you aren’t completely satisfied with while loops, however, there is one other option.  
If you aren’t completely satisfied with while loops, however, consider one other option. 

Dec/St/Co 

TITLE TO DO , OR NOT TO DO (TDNTD)  
T2/TDNTD/S1 The while loop has a very close relative known as the do loop, or do-while loop, that is surprisingly similar to 

the while loop. 
 

T2/TDNTD/S2 Because you’re becoming pretty loop savvy, I’ll show you the syntax for the do-while loop first and see if you 
can figure out how it works. 
Because you’re becoming pretty loop savvy, take note on the syntax for the do-while loop first and see if you 
can figure out how it works. 

Dec/St/Co 

T2/TDNTD/S3 Give up? 
If you can’t figure it out, the answer is as follows: 
Give up now because the answer is as follows: 

 
Int/Qu/St 
Int/Qu/Co 

T2/TDNTD/S4 The do-while loop is basically a while loop with the LoopCondition moved to the end.  



T2/TDNTD/S5 Why is this necessary? 
This is necessary. 

Int/Qu/St 

T2/TDNTD/S6 Because there are some situations where you would like the Statement to execute before evaluating the 
LoopCondition, instead of afterward.  

 

T2/TDNTD/S7 This also guarantees that the Statement is executed at least once, regardless of the LoopCondition.  
T2/TDNTD/S8 Let’s take a look at the question and answer example implemented using a do-while loop: 

You can take a look at the question and answer example implemented using a do-while loop: 
Imp/Co/St 

T2/TDNTD/S9 The code really isn’t much different than before, except that you no longer need to initialise the correct 
variable. 

 

T2/TDNTD/S10 It is always initially set || during the first pass through the loop. Rel/Prob 
T2/TDNTD/S11 Although both types of loops accomplish the goal of this example, the do-while loop is a better fit because of 

its structure more closely mimics the function of the code. 
 

T2/TDNTD/S12 What do I mean by this? 
Read on to know what I mean by this. 
The following describes what I mean by this. 

 
Int/Qu/Co 
Int/Qu/St 

T2/TDNTD/S13 Well, if you “read” the code, it is saying “ask the question and if the answer is not correct, ask it again.”  
T2/TDNTD/S14 This makes more sense || than if it read “if the answer is not correct, ask the question and then check the 

answer again.” 
Rel/Ob 

T2/TDNTD/S15 Admittedly, this is a subtle difference, but a large part of successful programming is keeping things logical and 
straightforward. 

 
 

T2/TDNTD/S16 You won’t always succeed because sometimes code gets complicated regardless of how you construct it, but 
using loops intelligently is a good start.  

 

TITLE APPLET COUNTDOWN (AC)  
T2/AC/S1 Have you ever visited a Web page that directed you to another page, but informed you that if you waited a few 

second sit would automatically take you there? 
There is probably a time when you visit a Web page that directed you to another page, but informed you that if 
you waited a few second sit would automatically take you there. 

Int/Qu/St 

T2/AC/S2 I used to run across these pages and wonder how you could make a page wait a few seconds and then 
automatically navigate to a new page. 

 

T2/AC/S3 After I started programming in Java, I realised || what a trivial task this is. Men/Ob 
T2/AC/S4 In this section you use your knowledge of loops to build a “countdown” applet that counts down from ten to 

one and then navigates to a new Web page. 
In this section, use your knowledge of loops to build a “countdown” applet that counts down from ten to one 
and then navigates to a new Web page. 

Dec/St/Co 

T2/AC/S5 The following figure shows the Countdown applet in action. 
See the following figure that shows the Countdown applet in action. 

Dec/St/Co 

T2/AC/S6 When the applet finishes counting down, it navigates to the web page identified by the page applet parameter.  
T2/AC/S7 As an example, what web site could be better than NASA’s to demonstrate how this applet works? 

As an example, think of what web site that could be better than NASA’s to demonstrate how this applet works. 
Dec/St/Co 



T2/AC/S8 Following is NASA’s Web site, to which the Countdown applet will take you after it finishes its countdown. 
See the following for NASA’s Web site to which the Countdown applet will take you after it finishes its 
countdown. 

Dec/St/Co 

T2/AC/S9 To understand how the Countdown applet works, let’s first take a look at the Countdown. Html Web page that 
contains the embedded applet. 
To understand how the Countdown applet works, you can first take a look at the Countdown. Html Web page 
that contains the embedded applet. 

Imp/Co/St 

T2/AC/S10 All this stuff should look pretty familiar to you by now.   
T2/AC/S11 The main thing on which I want you || to focus is the page parameter, which is defined as: 

Focus on the page parameter, which is defined as: 
Dec/St/Co & 
Men/Ob 

T2/AC/S12 Notice that the value of the page parameter is set to http://www.nasa.gov, which is the URL of NASA’s Web 
site. 
You can notice that the value of the page parameter is set to http://www.nasa.gov, which is the URL of 
NASA’s Web site. 

Imp/Co/St 

T2/AC/S13 Changing this value enables you to change the page that is loaded after the applet finishes counting down.  
T2/AC/S14 This page could have easily been set as a variable within the applet code, but a recompile would be required 

to change the page. 
 

T2/AC/S15 That is the beauty of applet parameters.   
T2/AC/S16 They enable you to customize the function of applets without doing any real programming! 

Customize the function of applets without doing any real programming! 
Dec/St/Co 

T2/AC/S17 Let’s move on to the actual code required of the countdown applet. 
You can move on to the actual code required of the countdown applet. 

Imp/Co/St 

T2/AC/S18 Unfortunately, the Countdown applet requires some code that is a little beyond the lesson, so I don’t expect all 
of this applet to make sense to you. 

 

T2/AC/S19 However, you can download the complete source code for the applet from the book’s companion Web site, 
which was mentioned a little earlier in this section. 

 

T2/AC/S20 Also, the core mechanics of the applet are very straightforward and should be familiar to you from your recent 
study of loops. 

 

T2/AC/S21 Following is the run() method in the Countdown applet class, which forms the heart of the applet: 
See the following for the run() method in the Countdown applet class, which forms the heart of the applet: 

Dec/St/Co 

T2/AC/S22 Ouch, that looks a little messy!  
T2/AC/S23 Try not to get intimidated by any code that doesn’t look familiar. 

You must try not to get intimidated by any code that doesn’t look familiar. 
Imp/Co/St 

T2/AC/S24 Just concentrate on the loop code. 
You can just concentrate on the loop code. 

Imp/Co/St 

T2/AC/S25 As you can see, the for loop counts down from 10 to 1 just like the Countdown code you saw earlier in the 
chapter.  
See that the for loop counts down from 10 to 1 just like the Countdown code you saw earlier in the chapter.  

Dec/St/Co 

T2/AC/S26 The Statement part of this for loop is completely new territory, however.   



T2/AC/S27 The call to the repaint () method is necessary to update the applet’s window with the new countdown number.  
T2/AC/S28 The call to the thread.sleep() method results in the applet waiting one second, which effectively pauses the 

countdown for one second between numbers.  
 

T2/AC/S29 When the for loop finishes, the code gets the page applet parameter and proceed to navigate to the Web page 
identified by it.  

 

T2/AC/S30 The code required to navigate to the Web page is probably pretty strange looking to you because it has to deal 
with exceptions. 

 

T2/AC/S31 Exceptions are errors caused by unforeseen problems such as your computer running out of memory, your 
modem coming unplugged, spilling coffee on your keyboard, hurling your monitor out the window, and so on. 

 

T2/AC/S32 I’ll explain exceptions as you encounter them throughout the book.  
Be ready for explanation of exceptions as you encounter them throughout the book. 

Dec/St/Co 

T2/AC/S33 The complete source code for the countdown applet is as follows. 
See the complete source code for the countdown applet as follows. 

Dec/St/Co 

T2/AC/S34 Although this is a longer program than you are accustomed to seeing, a lot of it should look familiar to you.  
T2/AC/S35 For example, the paint() method code is very similar to the code used in the DateTime applet from Chapter 4, 

“constructing Applets of Your Own.”  
 

T2/AC/S36 On the other hand, the start() method is entirely new and is related to the applet’s use of threads.   
T2/AC/S37 You don’t need to understand it fully at this point.   
TITLE  BREAKING AWAY (BA)  
T2/BA/S1 If you recall from the previous chapter, each case section of a switch branch ends with a break statement. 

Recall from the previous chapter, each case section of a switch branch ends with a break statement. 
Dec/St/Co 

T2/BA/S2 Following is an example to recap: 
See the following for an example to recap: 

Dec/St/Co 

T2/BA/S3 The purpose of the break statement in this example is to bail out of the switch branch so that no other code is 
executed.  

 

T2/BA/S4 The break statement serves a similar purpose in loops.  
T2/BA/S5 It breaks out of a loop regardless of the loop condition.   
T2/BA/S6 Following is an example of circumventing an infinite loop with a break statement:  

See the following for an example of circumventing an infinite loop with a break statement:  
Dec/St/Co 

T2/BA/S7 Without the assistance of the break statement, this while loop would continue forever thanks to the permanent 
true loop condition. 

 

T2/BA/S8 The break statement sidesteps this problem by breaking out of the loop after one hundred iterations (0-99).   
T2/BA/S9 Of course, it is rare that || you would purposely create an infinite loop and then use a break statement to bail 

out of it. 
Rel/Prob 

T2/BA/S10 However, the break statement can be very useful in some tricky loops when you need to exit at an otherwise 
inconvenient time.  

 

T2/BA/S11 A close relative of the break statement is the continue statement, which is used to skip to the next iteration of a 
loop.  

 

T2/BA/S13 The following example shows how  a continue statement can be used to print only the even numbers between Dec/St/Co 



1 and 100: 
See the following example that shows how  a continue statement can be used to print only the even numbers 
between 1 and 100: 

T2/BA/S14 Having trouble seeing how this one works? 
You might have trouble seeing how this one works. 

Int/Qu/St 

T2/BA/S15 Think back to the modulus operator (%), which returns the remainder of a division.  
You can think back to the modulus operator (%), which returns the remainder of a division.  

Imp/Co/St 

T2/BA/S16 Now consider what the remainder of a division by 2 yields for even and odd numbers.  
Now, you can consider what the remainder of a division by 2 yields for even and odd numbers. 

Imp/Co/St 

T2/BA/S17 Aha!  
T2/BA/S18 Even numbers divided by 2 always yield a remainder of 0, and odd numbers always leave a remainder of 1!  
T2/BA/S19 The example code exploits this characteristic of even and odd numbers to skip to the next iteration bypasses 

the println() call, which prevents odd numbers from being printed. 
See that the example code exploits this characteristic of even and odd numbers to skip to the next iteration 
bypasses the println() call, which prevents odd numbers from being printed. 

Dec/St/Co 

T2/BA/S20 Pretty tricky!  
TITLE THE LEAST YOU NEED TO KNOW (LNK)  
T2/LNK/S1 Computers are often called upon to perform tasks we humans find to be utterly redundant.   
T2/LNK/S2 As dull as some humans can be, I guarantee you || computers are much duller when it comes to repeating 

the same thing over and over.  
Men/Ob 

T2/LNK/S3 Java enables you to build programs that repeat themselves through the use of loops.  
T2/LNK/S4 The different types of loops basically perform the same function.   
T2/LNK/S5 They repeat a section of code over and over.   
T2/LNK/S6 Let’s go over the main points you learned about loops in this chapter. 

You can go over the main points you learned about loops in this chapter. 
Imp/Co/St 

T2/LNK/S7 Loops can execute as many statements as you want them to, provided the statements are grouped together 
as a single compound statement enclosed by curly braces ({}). 

 

T2/LNK/S8 A for loop is used to repeat a section of code a given number of iterations.  
Use a for loop to repeat a section of code a given number of iterations. 

Dec/St/Co 

T2/LNK/S9 A while loop is a more general for loop.   
T2/LNK/S10 A do while is a while loop with the loop condition moved to the end.   
T2/LNK/S11 The break statement is used to break out of a loop regardless of the loop condition.  

Use the break statement to break out of a loop regardless of the loop condition. 
Dec/St/Co 

T2/LNK/S12 The continue statement is used to skip to the next iteration of a loop.  
Use the continue statement to skip to the next iteration of a loop. 

Dec/St/Co 

 


	Appendix 1A - Text 1 Coding
	Appendix 1B - Text 2 coding
	Appendix 2A - Text 1 Metaphor of Mood feature
	Appendix 2B - Text 2 Metaphor of Mood feature
	Appendix 3A - Text 1 Semantic Expansion of Declarative
	Appendix 3B - Text 2 semantic expansion declarative
	Appendix 4A, 4B, 4C, 4D Semantic Expansion Interrogative
	Appendix 5A -  Text 1 Semantic Expansion Imperative
	Appendix 5B -Text 2  Semantic Expansion Imperative
	Appendix 6A, 6B Features of Metaphors of Modality
	Appendix 7A 7B Mental Projection
	Appendix 8A 8B Relational Projection
	Appendix 9A Text 1 Features of Metaphor of Mood and Metaphor of Modality
	Appendix 9B Text 2 Features of Metaphor of Mood and Metaphor of Modality

