COMPARISON BETWEEN IN VITRO AND IN VIVO ANTIBACTERIAL ACTIVITY OF Curcuma zedoaria FROM MALAYSIA

BEHROOZ BANISALAM

DISSERTATION SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF BIOTECHNOLOGY

INSTITUDE OF BIOLOGICAL SCIENCES UNIVERSITY OF MALAYA FACULTY OF SCIENCE KUALA LUMPUR

2010

This Thesis is dedicated to my Parents Who supported me for each and every day of my life since birth, Enabling such a study to take place today

ACKNOWLEDGEMENTS

I wish to express my sincere thanks to my supervisor, En.Wirakarnain Sani. This thesis would not have been completed without his expert advice and unfailing patience. I am also most grateful for his faith in this study especially during the difficult circumstances and those hard times of work.

I would like to express a special word of thanks to my friends, N.S.Zainuddin, A.Khorasani, A.Rafat & H.Imdadul who offered encouragement when it was most needed.

I wish to thank Professor Koshy Philip and Jeffery Saravana from Microbiology Division, Faculty Science, University Malaya for their great help and support and Professor Datin Sri Nurestri from chemistry department of Faculty Science University Malaya for providing the plants.

TABLE OF CONTENTS

		Page
DEDI	CATION	ii
ACK	NOWLEDGMENTS	iii
TABI	LE OF CONTENTS	iv
LIST	OF TABLES	viii
LIST	OF FIGURES	ix
LIST	OF DIAGRAMS	ix
LIST	OF PICTURES	xi
LIST	OF ABBREVIETIONS	xiii
ABAS	STRACT	xiv
	CHAPTER 1: INTRODUCTION	
1.1.	Curcuma zedoaria	1
	1.1.1. Description and distribution	2
	1.1.2. Chemical and molecular specification	3
	1.1.3. Curcuma zedoaria and medicine	4
1.2.	Micropropagation	5
1.3.	Antimicrobial assay	6
1.4.	Aim of the study	7
	CHAPTER 2: LITERATURE REVIEW	
2.1.	Importance of bringing novel antibiotics	8
2.2.	Medicinal plants and the Curcuma zedoaria place	9
2.3.	Micropropagation	10
	2.3.1. Micropropagation and medicinal plants	10
	2.3.2. Organized growth	11

2.3.3. Advantages	11
2.3.4. Contaminants/Decontamination	12
2.3.5. Surface Sterilants	13
2.3.6. Hypochlorite solutions	14
2.3.7. Alcohols	14
2.3.8. Heavy metal ions	15
2.3.9. Combined treatment	15
2.3.10. Media	19
2.3.11. Use of activated charcoal (AC)	21
2.3.11.1. Activated charcoal in plant tissue culture	22
2.3.12. Growth regulators	23
2.3.12. pH	26
2.3.13. The effect of autoclaving	26
2.4. Antibacterial assays	27
2.4.1. Extracts and solvents	27
2.4.2. Antibacterial activity test	28
2.4.2.1 Antibacterial assay techniques	28
2.4.2.2. Agar-well diffusion Method	28
2.4.3. Bacterial Strains	30
2.4.3.1. Staphylococcus aureus	32
2.4.3.2. Bacillus cereus	33
2.4.3.3. <i>E.coli</i>	33
2.4.3.4. Pseudomonas aeruginosa	34
2.4.4. Results in earlier reports and current study	34
2.5. Overall review	36

CHAPTER 3: MATERIALS AND METHODS

3.1. Introduction	
3.2. Plant material	
3.3. <i>In vivo</i> system	41
3.3.1. Preparing plant extracts	41
3.4. Antimicrobial activity assay	45
3.4.1. Preparing the extract material for disc diffusion test	45
3.4.2. Preparing the Bacterial material for disc diffusion test	46
3.4.2.1 Microbial identification	46
3.4.2.2 Bacteria preparation	46
3.4.3. Agar-well disc diffusion test	49
3.5. In vitro system	51
3.5.1. Micropropagation	
3.5.1.1 Equipments and chemicals	52
3.5.1.2. Surface sterilization	
3.5.1.3. Preparing media	53
3.5.1.4. Preparing growth hormone stock	55
3.5.1.5. Inoculation of explants into media	60
3.5.2. Preparing extracts	60
3.5.3. Antimicrobial activity assay	
3.6. Comparison	
CHAPTER 4: RESULTS AND DISCCUSION	
4.1. Introduction	
4.2. In vitro / in vivo systems	65
4.2.1. Preparing plant extracts	65
4.2.2. Antimicrobial activity assay	66

4.3 Comparison	
4.3.1. Screening antimicrobial activity	77
4.3.1.1. Bacillus cereus	79
4.3.1.2. Escherichia coli	81
4.3.1.3. Staphylococcus aureus	81
4.3.1.4. Pseudomonas aeruginosa	82
4.3.1.5. AC	83
4.4. Summary	
CHAPTER 5: CONCLUSION	
CHAITER 5. CONCLUSION	
5.1. Conclusion	
5.2. Suggestions for future research	

References

87

LIST OF TABLES

	Title	Page
Table 1.1	Taxonomic classification of Curcuma zedoaria	1
Table 2.1	Comparing and summarizing earlier reports and this study base on their use of different sterilants and concentrations	17
Table 2.2	Time and preferences on use of the sterilants in earlier reports and this study	18
Table 2.3	Type of media used in earlier works	20
Table 2.4	Growth regulators on different combination or concentrations earlier reports and this study	25
Table 2.5	Comparing the results as "Antibacterial activity of <i>Curcuma zedoaria</i> "on different types of extracts in two earlier similar works	31
Table 2.6	An overall comparison on results base on the bacterial strains which have been used in earlier reports through different extracts of <i>Curcuma zedoaria</i> and this study	35
Table 2.7	An overall review on earlier reports and this study essentials	36
Table 3.1	Murashige-Skoog medium composition	54
Table 4.1	Length of shoots after within 4 weeks of growth after micropropagation with different concentrations of IBA and BAP	76
Table 4.2	Length of shoots after 4 weeks of growth after micropropagation with chosen concentrations of IBA and BAP	76
Table 4.3	Antibacterial activity of <i>Curcuma zedoaria</i> in the <i>in vitro</i> & <i>in vivo</i> systems over different extract solvents (petroleum ether / Methanol / Chloroform) presented as inhibitory zone in mm length (Using 2.5 mg/l BAP mixed with 0.5 mg/l IBA)	78

LIST OF FIGURES

	Title	Page
Figure 1.1	Chemical structures of Curcumin	3

LIST OF DIAGRAMS

	Title	Page
Diagram 3.1	The overall view of the work	38
Diagram 3.2	Plant material preparations for both <i>in vitro</i> and <i>in vivo</i> system	40
Diagram 3.3	Stages of plant extracts preparations prior to in vivo test	41
Diagram 3.4	Preparation of plant extracts before antibacterial activity assay	43
Diagram 3.5	Preparation of plant extracts before antibacterial activity assay	45
Diagram 3.6	Progress of preparing bacteria strains for the disc diffusion method	48
Diagram 3.7	Agar well disc diffusion method. For each selected bacteria strain, three discs were considered as negative control (Water), positive control (Antibiotic) and the disc which was soaked on the extract	50
Diagram 3.8	Stages of plant extracts preparations prior to the <i>in vitro</i> test	51
Diagram 3.9	Surface sterilization progress before inoculating the explants to the media	53
Diagram 3.10	Preparation of the media showing the time when PGRs are added	55
Diagram 3.11	Preparing Growth hormone stock	57
Diagram 3.12	Testing different PGR concentration mixed or single in order to the obtain the optimum combinations	58

Diagram 3.13	Media distribution after preparing the PGR stocks and chooses the best combination	59
Diagram 3.14	Progress of the work until the comparison stage	62
Diagram 3.15	Plan for comparing the results for gram positive bacteria	63
Diagram 3.16	Plan for comparing the results from gram negative bacteria	64
Diagram 4.1	Shoot length within 4 weeks after micropropagation with IBA (0.25 mg/l)	67
Diagram 4.2	Shoot length within 4 weeks after micropropagation with IBA (0.5 mg/l)	67
Diagram 4.3	Shoot length within 4 weeks after micropropagation with IBA (1 mg/l)	68
Diagram 4.4	Shoot length within 4 weeks after micropropagation with IBA (1.5 mg/l)	68
Diagram 4.5	Shoot length within 4 weeks after micropropagation with IBA (2 mg/l)	69
Diagram 4.6	Shoot length within 4 weeks after micropropagation with IBA (2.5 mg/l)	69
Diagram 4.7	Shoot length within 4 weeks after micropropagation with different concentrations of IBA	70
Diagram 4.8	Maximum shoot length with different IBA concentrations	71
Diagram 4.9	Shoot length within 4 weeks after micropropagation with BAP (1.5 mg/l)	72
Diagram 4.10	Shoot length within 4 weeks after micropropagation with BAP (2 mg/l)	72
Diagram 4.11	Shoot length within 4 weeks after micropropagation with BAP (2.5 mg/l)	73
Diagram 4.12	Shoot length within 4 weeks after micropropagation with BAP (3 mg/l)	73
Diagram 4.13	Shoot length within 4 weeks after micropropagation with BAP (3.5 mg/l)	74

Diagram 4.14	Shoot length within 4 weeks after micropropagation with BAP (4 mg/l)	74
Diagram 4.15	Shoot length within 4 weeks after micropropagation with different concentrations of BAP; Diagram shows that using 2.5 mg/l of BAP has provided a higher shoot length in comparison with other concentrations	75

LIST OF PICTURES

	Title	Page
Picture 1.1	<i>Curcuma zedoaria</i> plant	2
Picture 3.1	Ceramic pot	39
Picture 3.2	Holes were about 1-2 inch across and the base of the pot	39
Picture 3.3	<i>Curcuma zedoaria</i> rhizomes ready for preparing extracts	41
Picture 3.4	<i>Curcuma zedoaria</i> rhizomes, sliced before drying	41
Picture 3.5	Rhizomes after they were dried in the incubator	42
Picture 3.6	Dried rhizomes after being ground in the miller, ready to soak in the solvent	42
Picture 3.7	Powders being soaked in the solvent	44
Picture 3.8	Powders soaked in the solvents are filtered in order to distill the solvent in the evaporator	44
Picture 3.9	Extracts ready for distillation	44
Picture 3.10	Rotary evaporator used to distil the solvents	44
Picture 3.11	Solvents were distilled under reduced pressure at 40 °C in the rotary evaporator	44
Picture 3.12	Microorgnisms were inoculated in MH broth media using sterile cotton swab in a laminar flow cabinet	47
Picture 3.13	Tubes ready after spectrophotometry and dilution stage	47

Picture 3.14	Disposable spectrophotometer cuvettes for spectroscopy	47
Picture 3.15	a) IBA box, b) BAP box	53
Picture 3.16	a) MS box, b) Phytogel Agar box	53
Picture 3.17	Growth progress of the <i>in vitro</i> explants until desired length and level of growth	61
Picture 4.1	Disc diffusion test result on the plate; applying petroleum ether extracts produced from the <i>in vitro</i> system on <i>B.cereus</i>	79
Picture 4.2	Disc diffusion test result on the plate; applying petroleum ether extracts produced from <i>in vivo</i> system on <i>B.cereus</i>	80
Picture 4.3	Disc diffusion test result on the plate; applying methanol extracts produced from the <i>in vivo</i> system on <i>B.cereus</i>	80
Picture 4.4	Disc diffusion result on the plate; applying methanol extracts produced from the <i>in vivo</i> system on <i>S.aureus</i>	81
Picture 4.5	Disc diffusion result on the plate; applying p.ether extracts produced from the <i>in vivo</i> system on <i>S.aureus</i>	82
Picture 4.6	Disc diffusion result on the plate; applying petroleum ether extracts produced from the <i>in vitro</i> system on <i>P.aeruginosa</i>	83

LIST OF ABBREVIETIONS

MS	Murashige and Skoog
HgCl ₂	Mercury chloride
BA	N ₆ – Benzyladenine
IBA	Indole-3-butyric acid
NAA	1-naphthaleneacetic acid
2,4-D	2,4-dichlorophenoxyacetic acid
mm	Millimetere
nm	nanometere
cm	Centimeter
mg/L	Milligram per liter
g/L	Gram per liter
w/v	Weight per volume
v/v	Volume per volume
PGR	Plant growth hormone

Abstract

The rhizomes of the Zingiberaceae family are vegetables widely used in many Asian countries and their medicinal functions have been broadly discussed and accepted in many traditional recipes.

In this study, the antimicrobial activity of extracts of Curcuma zedoaria from

Malaysia was compared between two systems as *in vitro* and *in vivo*. The comparison was performed against four bacterial strains including two gram negative strains (*E.coli* and *Pseudomonas aeruginosa*) and two gram positive strains (*Bacillus cereus* and

Staphylococcus aureus) using the agar well diffusion method. Extracts were made in three different solvents; petroleum ether, chloroform and methanol extracts exhibited antibacterial activity. Growth hormones, Indole-3-butyric acid (IBA) and 6-

Benzylaminopurine (BAP) were used in the *in vitro* system separately between the range of 0.25-3.5 mg/l for IBA and 0.5-4 mg/l for BAP and a mix formula containing both hormones using the best ranges after rapid tests.

Petroleum ether extracts showed great comparable antimicrobial results with the *in vitro* system for *Bacillus cereus* and *Staphylococcus aureus* as well as methanolic extracts did. Chloroform extracts showed comparable antimicrobial activity for both *Bacillus cereus* and *Staphylococcus aureus*.

This study is the first report of the antimicrobial comparison between *in vitro* and *in vivo* systems of *Curcuma zedoaria* in Malaysia. *Curcuma zedoaria* has shown antimicrobial activity both *in vitro* and *in vivo* systems based on the results presented in this study.