

Figure 1.1: Schematic diagrams of hybrid types-all end view

Figure 2.1: Stress distribution usually assumed for a given fibre in a discontinuous, aligned fibre composite subjected to a tensile stress, σ_c and at the point of failur

Figure 2.2: Variation of fibre stress with length

Figure 2.3: Specimens and loading configurations for (a) Charpy V-notch and (b)Izod tests

Figure 2.4: An edge crack of length, a in the material

Table 3.1Specimens' abbreviation and formulation

Sample	V _f	Fibre	Description
SCD0			Technyl® A216 used as received in dry
5000			condition
SC 50% DH0	0.00		Technyl® A216 used as received in 50%RH
5G30%KH0	0.00	-	condition
SGW0			Technyl® A216 used as received in wet
50 00			condition
SCD4			Technyl® A216 V30, diluted with Technyl®
5004			A216 in dry condition
SC 500/ DII4	-		Technyl® A216 V30, diluted with Technyl®
5030%КП4	0.04	Short	A216 in 50%RH condition
CONVA	-		Technyl® A216 V30, diluted with Technyl®
5GW4			A216 in wet condition
			Technyl® A216 V30, diluted with Technyl®
SGD8			A216 in dry condition
SG50%RH8	-	Short	Technyl® A216 V30, diluted with Technyl®
	0.08		A216 in 50%RH condition
CCW/0	-		Technyl® A216 V30, diluted with Technyl®
50.00			A216 in wet condition
			Technyl® A216 V30, diluted with Technyl®
SGD13			A216 in dry condition
0.0.500/DU12	-		Technyl® A216 V30, diluted with Technyl®
SG50%RH13	0.13	Short	A216 in 50%RH condition
SCW12			Technyl® A216 V30, diluted with Technyl®
50 W 15			A216 in wet condition
SCD16			Technyl® A216 V30, used as received in dry
50010			condition
SC 500/ DU16			Technyl® A216 V30, used as received in 50%
505076KH10	0.16	Short	RH condition
SGW16			Technyl® A216 V30, used as received in wet
			condition

Table 3.1 (Continued)

SGD18			Celanese® 1503-2, used as received in dry				
50010			condition				
SC 500/ DI119			Celanese® 1503-2, used as received in 50% RH				
SG30%KH18	0.18	Short	condition				
SGW18			Celanese® 1503-2, used as received in wet				
50 W 18			condition				
SG75/C25D			LNP® RC100-10, mixed with Celanese® 1503-2				
5075/6250			in dry conditon				
SG75/C25 50% RH	0.22	Short	LNP® RC100-10, mixed with Celanese® 1503-2				
50757025,5070101			in 50% RH condition				
SG75/C25W			LNP® RC100-10, mixed with Celanese® 1503-2				
5075/625 W			in wet condition				
SG50/C50D		Short	LNP® RC100-10, mixed with Celanese® 1503-2				
5050/0500			in dry condition				
SG50/C50 50% PH	0.26		LNP® RC100-10, mixed with Celanese® 1503-2				
5050/050,50/0101			in 50% RH condition				
SG50/C50W			LNP® RC100-10, mixed with Celanese® 1503-2				
5650/0501			in wet condition				
SG25/C75D			LNP® RC100-10, mixed with Celanese® 1503-2				
5625/6752			in dry condition				
SG25/C75 50%RH			LNP® RC100-10, mixed with Celanese® 1503-2				
5625/675,5070101	0.30	Short	in 50%RH condition				
SG25/C75W			LNP® RC100-10, mixed with Celanese® 1503-2				
56237673 1			in wet condition				
SCD33			LNP® RC100-10, used as received in dry				
50055			condition				
SC 50% PH33		Short	LNP® RC100-10, used as received in 50%RH				
SC3070K1133	0.33		condition				
SCW33			LNP® RC100-10, used as received in wet				
501133			condition				

Processing parameter	Unit	Glass fibre composite
Temperature setting Mould Rear Centre Front Nozzle	°C	80-100 270 275 280 285
Screw speed	RPM	50-60

Table 3.2: Temperature settings on automatic injection moulding machine model Boy[®] 50M

Figure 3.1: Dimensions of the tensile specimen

Figure 3.2: Specimen arrangement during the flexural test

length, L

Figure 3.3: Single edge notch impact specimen

Sample	Fibre	Fibre weight fraction, W _f (%)	Weight of composite before heating (g)	Weight of fibre after heating (g)	Actual fibre weight fraction, W _f (%)	Average V _f	
			0.46	0.20	44.10		
SC33	Carbon	44	0.53	0.23	43.00	0.33	
			0.53	0.23	44.00		
			0.51	0.04	7.99		
SG4	Glass	8	0.51	0.04	8.39	0.04	
			0.54	0.04	7.90		
			0.47	0.08	16.93		
SG8	Glass	17	0.48	0.08	16.90	0.08	
			0.59	0.10	17.15		
			0.51	0.13	24.42		
SG13	Glass	25	0.57	0.14	25.46	0.13	
			0.59	0.15	25.09		
			0.74	0.22	29.97		
SG16	Glass	30	0.66	0.20	30.19	0.16	
			0.82	0.25	29.87		
			0.52	0.17	31.87		
SG18	Glass	33	0.54	0.19	35.40	0.18	
			0.55	0.18	32.14		
1							

Table 4.1Determination of fibre volume fraction

Sample	V _f (%)	<i>T_m</i> (°C)	ΔH_m (J/g)	<i>T_c</i> (°C)	$-\Delta H_m$ (J/g)
SGD0	0	260.1	72.03	233.7	44.52
SGD4	4	260.3	66.51	234.1	41.14
SGD8	8	260.6	59.96	234.1	34.94
SGD13	13	260.9	53.65	234.1	32.38
SGD16	16	262.4	50.30	236.1	30.84

 Table 4.2

 Thermal properties (from DSC measurements) of glass fibre composite at dry condition

Sample	V _f (%)	<i>T_m</i> (°C)	ΔH_m (J/g)	<i>T_c</i> (°C)	$-\Delta H_m(\mathrm{J/g})$
SG50%RH0	0	262.5	71.40	235.7	45.68
SG50%RH4	4	261.1	63.85	233.9	40.76
SG50%RH8	8	260.8	58.07	233.8	37.54
SG50%RH13	13	261.1	51.41	234.0	32.04
SG50%RH16	16	262.3	48.88	236.2	30.39

 Table 4.3

 Thermal properties (from DSC measurements) of glass fibre composite at 50% relative humidity condition

Sample	V _f (%)	<i>T_m</i> (°C)	ΔH_m (J/g)	<i>T_c</i> (°C)	$-\Delta H_m(\mathrm{J/g})$
SGW0	0	262.9	66.14	236.0	43.11
SGW4	4	261.6	60.03	234.5	36.82
SGW8	8	260.9	55.88	234.3	34.83
SGW13	13	260.7	51.17	233.9	31.36
SGW16	16	262.5	47.05	236.2	30.49

 Table 4.4

 Thermal properties (from DSC measurements) of glass fibre composite at wet condition

 Table 4.5

 Thermal properties (from DSC measurements) of glass fibre composite at various conditions

Sample	V _f (%)	<i>T_m</i> (°C)	ΔH_m (J/g)	<i>T_c</i> (°C)	$-\Delta H_m(\mathrm{J/g})$
SGD0	0	260.1	72.03	233.7	44.52
SG50%RH0	0	262.5	71.40	235.7	45.68
SGW0		262.9	66.14	236.0	43.11
SGD4		260.3	66.51	234.1	41.14
SG50%RH4	4	261.1	63.85	233.9	40.76
SGW4		261.6	60.03	254.5	36.82
SGD8		260.6	59.96	234.1	34.94
SG50%RH8	Q	260.8	58.07	233.8	37.54
SGW8	0	260.9	55.88	234.3	34.83
SGD13		260.9	53.65	234.1	32.38
SG50%RH13	13	261.1	51.41	234.0	32.04
SGW13		260.7	51.17	233.9	31.36
SGD16		262.4	50.30	236.1	30.84
SG50%RH16	16	262.3	48.88	236.2	30.39
SGW16		262.5	47.05	236.2	30.49

Sample	V _f (%)	<i>T_m</i> (°C)	ΔH_m (J/g)	<i>T</i> _c (°C)	$-\Delta H_m (\mathrm{J/g})$
SCD33		257.1	34.58	231.4	21.95
SC50%RH33	33	257.5	35.20	231.5	21.85
SCW33		257.8	34.29	231.6	21.47

 Table 4.6

 Thermal properties (from DSC measurements) of carbon fibre composite at various conditions

Sampla	Class/Carbon	V _{fc}	V _{fg}	V _{ft}	T_m	ΔH_m	Calculated*	T_c	$-\Delta H_m$	Calculated*
Sample	Glass/Carboli	(%)	(%)	(%)	(°C)	(J/g)	ΔH_m (J/g)	(°C)	(J/g)	$-\Delta H_m$ (J/g)
SGD18	100/0	0	18	18	258.9	47.37	47.37	232.7	29.59	29.59
SG75/C25D	75/25	9	13	22	258.7	45.35	44.17	232.3	27.18	27.68
SG50/C50D	50/50	17	9	26	258.5	41.14	40.98	232.9	25.13	25.77
SG25/C75D	25/75	26	4	30	258.0	38.05	37.78	231.9	23.63	23.86
SCD33	0/100	33	0	33	257.1	34.58	34.58	231.4	21.95	21.95

 Table 4.7

 Thermal properties of hybrid composite at dry condition

Keynotes:

 V_{fc} = volume fraction of carbon fibre in hybrid composites

 V_{fg} = volume fraction of glass fibre in hybrid composites

 V_{ft} = total volume fraction of fibre in hybrid composites

 $V_{ft} = V_{fc} + V_{fg}$

 $V_{ft} + V_m = 1$

* Calculated using simple ROM equation

Sampla	Class/Carbon	V _{fc}	V _{fg}	V _{ft}	T_m	ΔH_m	Calculated*	T_c	$-\Delta H_m$	Calculated*
Sample	Glass/Carboli	(%)	(%)	(%)	(°C)	(J/g)	$\Delta H_m(J/g)$	(°C)	(J/g)	$-\Delta H_m$ (J/g)
SGD18	100/0	0	18	18	259.4	48.97	48.97	232.6	29.25	29.25
SG75/C25D	75/25	9	13	22	259.2	42.89	45.53	232.9	27.24	27.40
SG50/C50D	50/50	17	9	26	258.9	40.49	40.73	232.4	25.63	25.55
SG25/C75D	25/75	26	4	30	258.5	37.47	38.64	232.4	24.59	23.70
SCD33	0/100	33	0	33	257.5	35.20	35.20	231.5	21.85	21.85

 Table 4.8

 Thermal properties of hybrid composite at 50% relative humidity condition

Sampla	Class/Carbon	V _{fc}	V _{fg}	V _{ft}	T_m	ΔH_m	Calculated*	T_c	$-\Delta H_m$	Calculated*
Sample Glass	Glass/Carboli	(%)	(%)	(%)	(°C)	(J/g)	ΔH_m (J/g)	(°C)	(J/g)	$-\Delta H_m$ (J/g)
SGD18	100/0	0	18	18	260.0	44.39	44.39	233.5	27.98	27.98
SG75/C25D	75/25	9	13	22	259.9	42.14	41.87	233.8	25.79	26.35
SG50/C50D	50/50	17	9	26	259.2	40.25	39.34	233.1	25.37	24.73
SG25/C75D	25/75	26	4	30	258.4	36.62	36.81	232.6	23.43	23.09
SCD33	0/100	33	0	33	257.8	34.29	34.29	231.6	21.47	21.47

 Table 4.9

 Thermal properties of hybrid composite at wet condition

Sample	Glass/Carbon	<i>T_m</i> (°C)	ΔH_m (J/g)	<i>T_c</i> (°C)	$-\Delta H_m$ (J/g)
SGD18		258.9	47.37	232.7	29.59
SG50%RH18	100/0	259.4	48.97	232.6	29.25
SGW18		260.0	44.39	233.5	27.98
SG75/C25D		258.7	45.35	232.3	27.18
SG75/C25,50%RH	75/25	259.2	42.89	232.9	27.24
SG75/C25W		259.9	42.14	233.8	25.79
SG50/C50D		258.5	41.14	232.9	25.13
SG50/C50, 50%RH	50/50	258.9	40.49	232.4	25.63
SG50/C50W		259.2	40.25	233.1	25.37
SG25/C75D		258.0	38.05	231.9	23.63
SG25/C75, 50%RH	25/75	258.5	37.47	232.4	24.59
SG25/C75W		258.4	36.62	232.6	23.43
SCD33		257.1	34.58	231.4	21.95
SC50%RH33	0/100	257.5	35.20	231.5	21.85
SCW33		257.8	34.29	231.6	21.47

 Table 4.10

 Thermal properties of hybrid composite at various conditions

Sample	V _f (%)	$\tan \delta_{25}^{A}$	α- tra	nsition	β-transition		
Sumpre			$\tan \delta_{\max}^{B}(x \ 10^{-2})$	$T_{\alpha}^{C}(^{\circ}C)$	$\tan \delta_{\max}^{B}(x \ 10^{-2})$	$T_{\beta}^{D}(^{\circ}C)$	
SGD0	0	5.12	8.21	55	3.83	-70	
SGD4	4	1.24	7.40	68	3.37	-63	
SGD8	8	0.87	5.87	68	2.67	-64	
SGD13	13	0.93	5.22	71	2.40	-63	
SGD16	16	3.45	4.32	52	2.41	-69	

 Table 4.11

 Thermomechanical data of glass fibre composite at dry condition

Keynotes:

- A: loss tangent value at the temperature of 25°C
- B: maximum value of loss tangent
- C: temperature at the maximum value of tan δ in $\alpha\text{-transition}$
- D: temperature at the maximum value of tan δ in β -transition

Sample	V _f (%)	tan δ ₂₅ ^A (x 10 ⁻²)	a- trai	nsition	β-transition		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			$\tan \delta_{\max}{}^{B}(x \ 10^{-2})$	$T_{\alpha}^{C}(^{\circ}C)$	$\tan \delta_{\max}{}^{B}(x \ 10^{-2})$	$T_{\beta}^{D}(^{\circ}C)$	
SG50%RH0	0	9.43	10.10	17	3.98	-74	
SG50%RH4	4	7.24	7.72	18	3.74	-74	
SG50%RH8	8	5.24	5.50	19	2.68	-75	
SG50%RH13	13	4.65	4.85	19	2.43	-75	
SG50%RH16	16	4.03	4.50	11	2.12	-76	

 Table 4.12

 Thermomechanical data of glass fibre composite at 50% relative humidity condition

Sample	V _f (%)	tan δ ₂₅ ^A (x 10 ⁻² )	α- tra	nsition	β-transition		
~~~~~			$\tan \delta_{\max}^{B}(x \ 10^{-2})$	$T_{\alpha}^{C}(^{\circ}C)$	$\tan \delta_{\max}{}^{B}(x \ 10^{-2})$	$T_{\beta}^{D}(^{\circ}C)$	
SGW0	0	5.71	11.43	-13	-	-	
SGW4	4	3.80	9.48	-17	-	-	
SGW8	8	3.08	7.38	-19	-	-	
SGW13	13	2.72	6.18	-18	-	-	
SGW16	16	3.27	5.93	-16	-	-	

 Table 4.13

 Thermomechanical data of glass fibre composite at wet condition

Vc (%)	Sample	Condition	$\tan \delta_{25}^{A}$	α- transit	tion	β-transition		
(1())	Sample	Condition	$(x \ 10^{-2})$	$\tan \delta_{\max}^{B}(x \ 10^{-2})$	$T_{\alpha}^{C}(^{\circ}C)$	$\tan \delta_{\max}{}^{B}(x \ 10^{-2})$	$T_{\beta}^{D}(^{\circ}C)$	
	SGD0	Dry	5.12	8.21	55	3.83	-70	
0	SG50%RH0	50%RH	9.43	10.10	17	3.98	-74	
	SGW0	Wet	5.71	11.43	-13	-	-	
	SGD4	Dry	1.24	7.40	68	3.37	-63	
4	SG50%RH4	50%RH	7.24	7.72	18	3.74	-74	
SGW4	SGW4	Wet	3.80	9.48	-17	-	-	
	SGD8	Dry	0.87	5.87	68	2.67	-64	
8	SG50%RH8	50%RH	5.24	5.50	19	2.68	-74	
	SGW8	Wet	3.08	7.38	-19	-	-	
	SGD13	Dry	0.93	5.22	71	2.40	-63	
13	SG50%RH13	50%RH	4.65	4.85	19	2.43	-75	
	SGW13	Wet	2.72	6.18	-18	-	-	
	SGD16	Dry	0.35	4.32	52	2.41	-69	
16	SG50%RH16	50%RH	4.03	4.50	11	2.12	-76	
	SGW16	Wet	3.27	5.93	-16	-	-	

 Table 4.14

 Thermomechanical data of glass fibre composite at various conditions

Sample	Condition	$\tan \delta_{25}^{A}$ (x 10 ⁻²)	α- transi	tion	β-transition		
			$\tan \delta_{\max}^{B}(x \ 10^{-2})$	Τ _α ^C (°C)	$\tan \delta_{\max}^{B}(x \ 10^{-2})$	$T_{\beta}^{D}(^{\circ}C)$	
	Dry	1.10	4.83	69	1.66	-66	
SCD33	50%RH	4.17	4.65	19	1.58	-76	
	Wet	3.98	5.44	-11	-	-	
	Sample	SampleConditionSCD33DrySCD43Wet	SampleCondition $\frac{\tan \delta_{25}^{A}}{(x \ 10^{-2})}$ SCD33Dry1.10SCD3350%RH4.17Wet3.98	Sample Condition $\tan \delta_{25}^{A}$ (x 10 ⁻²) α - transition Dry 1.10 4.83 SCD33 50%RH 4.17 4.65 Wet 3.98 5.44	Sample Condition $\frac{\tan \delta_{25}^{A}}{(x \ 10^{-2})}$ $\frac{\alpha - \text{transition}}{\tan \delta_{\text{max}}^{B}(x \ 10^{-2})}$ T_{α}^{C} SCD33 Dry 1.10 4.83 69 Wet 3.98 5.44 -11	Sample $tan \delta_{25}^{A}$ (x 10 ⁻²) $a - transition$ $\beta - transition$ Dry 1.10 4.83 69 1.66 SCD33 50%RH 4.17 4.65 19 1.58 Wet 3.98 5.44 -11 -	

 Table 4.15

 Thermomechanical data of carbon fibre composite at various conditions

Sample	Glass/Carbon	$\tan \delta_{25}^{A}$	α- transi	tion	β-transition		
		$(x \ 10^{-2})$	$\tan \delta_{\max}{}^{B}(x \ 10^{-2})$	$T_{\alpha}^{C}(^{\circ}C)$	$\tan \delta_{\max}{}^{B}(x \ 10^{-2})$	$T_{\beta}^{D}(^{\circ}C)$	
SGD18	100/0	0.82	4.72	69	1.88	-64	
SG75/C25D	75/25	1.05	5.09	66	1.89	-66	
SG50/C50D	50/50	0.83	5.07	67	1.77	-66	
SG25/C75D	25/75	1.15	5.07	66	1.72	-66	
SCD33	0/100	1.10	4.83	69	1.66	-66	

 Table 4.16

 Thermomechanical data of hybrid composite at dry condition

Sample	Glass/Carbon	$\tan \delta_{25}^{A}$	α- transi	tion	β-transition		
r r		$(x \ 10^{-2})$	$\tan \delta_{\max}^{B}(x \ 10^{-2})$	$T_{\alpha}^{C}(^{\circ}C)$	$\tan \delta_{\max}{}^{B}(x \ 10^{-2})$	$T_{\beta}^{D}(^{\circ}C)$	
SG50%RH18	100/0	4.86	5.10	18	2.05	-76	
SG75/C25, 50%RH	75/25	4.42	4.79	16	1.86	-77	
SG50/C50, 50%RH	50/50	4.35	4.57	18	1.77	-76	
SG25/C75, 50%RH	25/75	4.36	4.60	17	1.59	-75	
SC50%RH 33	0/100	4.17	4.65	19	1.58	-76	

 Table 4.17

 Thermomechanical data of hybrid composite at 50% relative humidity condition

Sample	Glass/Carbon	$\tan \delta_{25}^{A}$	α- transit	tion	β-transition		
		$(x \ 10^{-2})$	$\tan \delta_{\max}^{B}(x \ 10^{-2})$	$T_{\alpha}^{C}(^{\circ}C)$	$\tan \delta_{\max}{}^{B}(x \ 10^{-2})$	$T_{\beta}^{D}(^{\circ}C)$	
SGW18	100/0	2.80	5.37	-16	-	-	
SG75/C25W	75/25	3.02	5.59	-14	-	-	
SG50/C50W	50/50	3.30	5.52	-13	-	-	
SG25/C75W	25/75	3.47	5.46	-12	-	-	
SCW33	0/100	3.98	5.44	-11	-	-	

 Table 4.18

 Thermomechanical data of hybrid composite at wet condition

	Samnle	Condition	$\tan \delta_{25}^{A}$	α- transiti	ion	β-transition		
Glass/Carbon	Sampie	Condition	$(x \ 10^{-2})$	$\tan \delta_{\max}^{B}(x \ 10^{-2})$	T _α ^C (°C)	$\tan \delta_{\max}^{B}(x \ 10^{-2})$	$T_{\beta}^{D}(^{\circ}C)$	
	SGD18	Dry	0.82	4.72	69	1.88	-64	
100/0	SG50%RH18	50%RH	4.86	5.10	18	2.05	-76	
	SGW18	Wet	2.80	5.37	-16	-	-	
	SG75/C25D	Dry	1.05	5.09	66	1.89	-66	
75/25	SG75/C25, 50%RH	50%RH	4.42	4.79	16	1.86	-77	
	SG75/C25W	Wet	3.02	5.59	-14	-	-	
	SG50/C50D	Dry	0.83	5.07	67	1.77	-66	
50/50	SG50/C50, 50%RH	50%RH	4.35	4.57	18	1.77	-76	
	SG50/C50W	Wet	3.30	5.52	-13	-	-	
	SG25/C75D	Dry	1.15	5.07	67	1.72	-66	
25/75	SG25/C75, 50%RH	50%RH	4.36	4.60	17	1.59	-74	
	SG25/C75W	Wet	3.47	5.44	-12	-	-	
	SCD33	Dry	1.10	4.83	69	1.66	-66	
0/100	SC50%RH33	50%RH	4.17	4.65	19	1.58	-76	
	SCW33	Wet	3.98	5.44	-11	-	-	

 Table 4.19

 Thermomechanical data of hybrid composite at various conditions

Sample	V.(%)	Percenta	age of fibre with	length, L	L _m (mm)	L _w (mm)	
Sumple	, 1(, v)	L< 0.2 mm	L< 0.2 mm L< 0.4 mm L< 0.6 mm				
SG4	4	20.5	74.9	93.4	0.33	0.41	
SG8	8	22.0	78.2	96.6	0.31	0.38	
SG13	13	22.2	75.0	93.3	0.33	0.42	
SG16	16	33.0	83.4	98.3	0.27	0.34	
SG18	18	45.4	94.3	99.7	0.23	0.27	

Table 4.20The fibre characteristics of glass fibre composites

Sample	V _f (%)	Tensile strength (MPa)			Tensile modulus (GPa)			Fracture strain (%)		
		Dry	50%RH	Wet	Dry	50%RH	Wet	Dry	50%RH	Wet
SG0	0	53.11	49.80	35.30	0.71	0.62	0.38	231.20	348.99	148.69
SG4	4	88.72	59.91	43.26	1.64	0.62	0.38	6.94	33.15	29.54
SG8	8	121.37	74.52	58.65	2.42	1.25	0.73	8.03	15.98	14.62
SG13	13	151.62	118.18	72.42	3.06	1.79	1.29	8.96	9.38	10.29
SG16	16	159.17	104.37	84.85	3.81	2.81	2.31	8.18	9.92	9.64

 Table 4.21

 Tensile properties of glass fibre composites at different condition

V _f (%)	Sample	Condition	Tensile strength (MPa)	Tensile modulus (GPa)	Fracture strain (%)
	SCD33	DRY	227.55	7.04	5.55
33	SC50%RH33	50%RH	188.36	5.04	6.07
	SCW33	Wet	117.76	4.45	7.19

 Table 4.22

 Tensile properties of carbon fibre composites at different condition

	Composition of	Tensile strength (MPa)								
Sample	carbon fibre	Dr	'y	50%	GRH	W	Wet			
	composites (%)	Experimental	Calculated*	Experimental	Calculated*	Experimental	Calculated*			
SG18	0	168.81	168.81	130.31	130.31	90.55	90.55			
SG75/C25	25	173.51	185.00	129.44	144.50	90.75	98.25			
SG50/C50	50	184.64	200.00	144.76	159.00	101.71	105.50			
SG25/C75	75	201.94	215.00	155.92	174.50	113.06	112.75			
SC33	100	227.55	227.55	188.36	188.36	117.76	117.76			

 Table 4.23

 Tensile properties of glass/carbon hybrid fibre composites at different condition

* Calculated using simple ROM equation

	Composition of		Tensile modulus (GPa)								
Sample	carbon fibre	Dry		50%	GRH	Wet					
Sampie	composites (%)	Experimental	Calculated*	Experimental	Calculated*	Experimental	Calculated*				
SG18	0	3.65	3.65	2.63	2.63	2.01	2.01				
SG75/C25	25	4.64	4.51	3.70	3.23	2.45	2.61				
SG50/C50	50	5.84	5.32	4.66	3.77	3.45	3.24				
SG25/C75	75	6.39	6.24	4.47	4.40	3.97	3.79				
SC33	100	7.04	7.04	5.04	5.04	4.45	4.45				

 Table 4.24

 Tensile properties of glass/carbon hybrid fibre composites at different condition

	Composition of	Fracture strain (%)								
Sample	carbon fibre	Dry		50%	6RH	Wet				
	composites (%)	Experimental	Calculated*	Experimental	Calculated*	Experimental	Calculated*			
SG18	0	9.00	9.00	10.46	10.46	11.74	11.74			
SG75/C25	25	6.93	8.12	7.69	9.43	8.47	10.79			
SG50/C50	50	6.65	7.32	6.70	8.33	8.54	9.51			
SG25/C75	75	6.05	6.40	6.41	7.01	7.59	8.33			
SC33	100	5.55	5.55	6.07	6.07	7.19	7.19			

 Table 4.25

 Tensile properties of glass/carbon hybrid fibre composites at different condition

Sample	V_{f} (%)	Flexural strength (MPa)			Flexural modulus (GPa)			Flexural displacement (mm/mm)		
		Dry	50%RH	Wet	Dry	50%RH	Wet	Dry	50%RH	Wet
SG0	0	140.08	110.38	81.98	2.23	1.14	0.52	0.09	0.13	0.20
SG4	4	115.52	147.30	46.08	2.59	1.23	0.79	0.07	0.12	0.09
SG8	8	168.07	191.15	81.06	3.81	2.67	1.49	0.07	0.10	0.08
SG13	13	219.59	231.51	105.72	5.55	3.72	2.39	0.05	0.09	0.06
SG16	16	272.32	251.04	189.65	6.40	4.70	3.20	0.05	0.07	0.08

 Table 4.26

 Flexural properties of glass fibre composites at different condition

V _f (%)	Sample	Condition	Flexural strength (MPa)	Flexural modulus (GPa)	Flexural displacement (mm/mm)
	SCD33	DRY	432.22	27.14	0.02
33	SC50%RH33	50%RH	363.32	14.01	0.04
	SCW33	Wet	255.43	9.29	0.04

 Table 4.27

 Flexural properties of carbon fibre composites at different condition

Sample	Composition of	Flexural strength (MPa)							
	carbon fibre	Dry		50%RH		Wet			
	composites (%)	Experimental	Calculated*	Experimental	Calculated*	Experimental	Calculated*		
SG18	0	323.92	323.92	240.10	240.10	199.78	199.78		
SG75/C25	25	349.94	356.25	280.16	271.25	212.83	215.05		
SG50/C50	50	375.04	387.50	313.93	302.50	227.40	230.94		
SG25/C75	75	407.32	418.75	331.32	333.75	243.25	245.44		
SC33	100	432.22	432.22	363.32	363.32	255.43	255.43		

 Table 4.28

 The experimental and calculated flexural strength of hybrid fibre composites

* Calculated using simple ROM equation

Sample	Composition of			Flexural mod	odulus (GPa)			
	carbon fibre	Dry		50%RH		Wet		
	composites (%)	Experimental	Calculated*	Experimental	Calculated*	Experimental	Calculated*	
SG18	0	7.61	7.61	4.22	4.22	3.36	3.36	
SG75/C25	25	10.67	13.53	6.23	7.25	4.54	5.53	
SG50/C50	50	14.37	19.09	8.36	9.50	5.86	7.04	
SG25/C75	75	18.38	24.51	10.37	11.75	7.14	8.55	
SC33	100	27.14	27.14	14.01	14.01	9.29	9.29	

 Table 4.29

 The experimental and calculated flexural modulus of hybrid fibre composites
	Composition of	Flexural displacement (mm/mm)						
Sample	carbon fibre	Dr	Dry		50%RH		Wet	
	composites (76)	Experimental	Calculated*	Experimental	Calculated*	Experimental	Calculated*	
SG18	0	0.05	0.05	0.09	0.09	0.08	0.08	
SG75/C25	25	0.04	0.05	0.06	0.08	0.06	0.07	
SG50/C50	50	0.03	0.04	0.05	0.07	0.05	0.06	
SG25/C75	75	0.03	0.03	0.04	0.05	0.04	0.05	
SC33	100	0.02	0.02	0.04	0.04	0.04	0.04	

 Table 4.30

 The experimental and calculated flexural displacement of hybrid fibre composites

Sample	V _f (%)	a/D	Fracture energy (mJ)	Peak load (N)
		0.1	536.13	836.50
SCD0	0	0.2	313.24	658.92
SODU	0	0.3	227.18	523.03
		0.4	198.40	464.52
		0.1	127.38	506.12
SCD4	Λ	0.2	120.77	452.10
56D4	4	0.3	90.58	421.42
		0.4	74.46	296.35
	8	0.1	308.86	817.76
SCD8		0.2	212.57	613.76
SGD8		0.3	150.47	503.70
		0.4	123.07	406.47
		0.1	642.90	1144.63
SCD12	10	0.2	332.32	816.66
SGD15	15	0.3	210.26	553.80
		0.4	188.96	522.33
		0.1	613.13	1743.74
SCD16	16	0.2	360.52	1289.25
50010	10	0.3	281.33	957.69
		0.4	226.42	822.66

 Table 4.31

 The average values of fracture energy, peak load and notch to depth ratio of glass fibre composites at dry condition

Sample	V _f (%)	a/D	Fracture energy (mJ)	Peak load (N)
		0.1	2281.00	1257.53
SG50%RH0	0	0.2	1228.85	934.44
5050701010	0	0.3	803.81	696.57
		0.4	721.04	580.49
		0.1	309.44	771.80
SC500/DI14	4	0.2	203.56	603.42
SG30%RH4		0.3	152.63	523.72
		0.4	107.56	389.33
	8	0.1	680.98	1172.12
SC 500/ DIL 9		0.2	320.54	794.26
5030%КП 8		0.3	231.60	719.86
		0.4	169.68	416.53
		0.1	1116.53	1660.90
SC 500/ D1112	12	0.2	560.54	1213.95
SG50%KH13	15	0.3	358.28	906.64
		0.4	253.90	610.44
		0.1	1220.93	1723.15
SC 500/ D111/	16	0.2	787.17	1343.51
5G3U%KH10	10	0.3	525.15	955.51
		0.4	295.40	624.21

 Table 4.32

 The average values of fracture energy, peak load and notch to depth ratio of glass fibre composites at 50% relative humidity condition

Sample	V _f (%)	a/D	Fracture energy (mJ)	Peak load (N)
		0.1	5726.40	965.18
SCWO	0	0.2	3033.95	765.99
30.00	0	0.3	1883.62	587.60
		0.4	1347.55	483.10
		0.1	1875.55	960.16
SCWA	1	0.2	1221.80	742.03
50w4	4	0.3	837.97	566.38
		0.4	622.87	447.38
	8	0.1	1774.80	1147.61
SCW9		0.2	1137.85	870.02
5GW8		0.3	739.88	669.88
		0.4	547.80	509.01
		0.1	1814.05	1334.71
SCW12	10	0.2	1232.81	1043.46
5GW13	15	0.3	974.34	759.63
		0.4	907.90	567.18
		0.1	1647.62	1520.13
SCW16	16	0.2	1265.93	1212.35
5Gw10	10	0.3	728.15	805.90
		0.4	709.25	647.12

 Table 4.33

 The average values of fracture energy, peak load and notch to depth ratio of glass fibre composites at wet condition

Sample	V _f (%)	a/D	G _c (kJm ⁻²)	K _c (MPa√m)
SGD0	0	0.1 0.2 0.3 0.4	9.12	4.55
SGD4	4	0.1 0.2 0.3 0.4	2.82	3.14
SGD8	8	0.1 0.2 0.3 0.4	5.75	4.48
SGD13	13	0.1 0.2 0.3 0.4	10.52	5.91
SGD16	16	0.1 0.2 0.3 0.4	10.83	9.40

 Table 4.34

 The critical strain energy release rate, G_c and the critical stress intensity factor, K_c values of glass fibre composites at dry condition

Sample	V _f (%)	a/D	G _c (kJm ⁻²)	K _c (MPa√m)
SG50%RH0	0	0.1 0.2 0.3 0.4	42.07	6.53
SG50%RH4	4	0.1 0.2 0.3 0.4	6.41	4.34
SG50%RH 8	8	0.1 0.2 0.3 0.4	12.27	5.99
SG50%RH13	13	0.1 0.2 0.3 0.4	20.04	8.47
SG50%RH16	16	0.1 0.2 0.3 0.4	24.92	8.04

 Table 4.35

 The critical strain energy release rate, G_c and the critical stress intensity factor, K_c values of glass fibre composites at 50% relative humidity condition

Sample	V _f (%)	a/D	G _c (kJm ⁻²)	K _c (MPa√m)
SGW0	0	0.1 0.2 0.3 0.4	102.10	5.19
SGW4	4	0.1 0.2 0.3 0.4	38.64	5.24
SGW8	8	0.1 0.2 0.3 0.4	35.77	6.16
SGW13	13	0.1 0.2 0.3 0.4	40.72	7.16
SGW16	16	0.1 0.2 0.3 0.4	36.57	8.07

 Table 4.36

 The critical strain energy release rate, G_c and the critical stress intensity factor, K_c values of glass fibre composites at wet condition

Sample	V _f (%)	a/D	Fracture energy (mJ)	Peak load (N)
		0.1	686.02	2371.78
SCD22		0.2	320.15	1708.68
SCD33		0.3	258.54	1007.60
	33	0.4	225.58	865.60
SC50%RH33		0.1	683.91	2178.80
		0.2	420.53	1514.80
		0.3	341.99	1223.20
		0.4	253.03	892.50
		0.1	1077.00	1642.30
SCW33		0.2	803.90	1244.14
		0.3	631.83	1075.14
		0.4	507.46	890.54

 Table 4.37

 The average values of fracture energy, peak load and notch to depth ratio of carbon fibre composites at various conditions

Table 4.38
The critical strain energy release rate, Gc and the critical stress intensity factor, Kc values of
carbon fibre composites at various condition

Sample	V _f (%)	$G_c (kJm^{-2})$	Kc(MPa√m)
SCD33		11.27	11.50
SC50%RH33	33	14.57	11.17
SCW33		24.55	8.99

Table 4.39 The average values of fracture energy, peak load and notch to depth ratio of hybrid composites at dry condition

Sample	Composition of carbon composites (%)	a/D	Fracture energy (mJ)	Peak load (N)
		0.1	711.83	1779.08
SCD19	0	0.2	456.41	1146.27
50018	0	0.3	270.45	746.13
		0.4	219.03	534.54
		0.1	781.10	1850.04
SC75/C25D	25	0.2	368.05	1365.60
5075/C25D	25	0.3	334.50	966.87
		0.4	194.10	685.57
	50	0.1	1014.73	2391.03
SG50/C50D		0.2	643.46	1764.14
		0.3	271.55	1046.55
		0.4	215.90	1001.05
		0.1	720.67	2086.76
$\Omega C 2 5 / C 7 5 D$	75	0.2	336.22	1659.18
SG25/C75D	75	0.3	268.07	1286.28
		0.4	222.80	738.38
CODI		0.1	686.02	2371.78
	100	0.2	320.15	1708.68
SCD33	100	0.3	258.54	1007.60
		0.4	225.58	865.60

Table 4.40
The average values of fracture energy, peak load and notch to depth ratio of hybrid composites
at 50% relative humidity condition

Sample	Composition of carbon composites (%)	a/D	Fracture energy (mJ)	Peak load (N)
		0.1	1487.20	2069.80
SC500/DU18	0	0.2	902.63	1267.40
SU3070K1110	0	0.3	443.43	915.70
		0.4	359.37	784.33
		0.1	1490.67	2338.70
SC75/C25 500/DII	25	0.2	829.73	1707.23
50/5/С25,50%КП	25	0.3	397.95	1047.15
		0.4	375.40	925.33
		0.1	1385.12	2350.40
SC50/C50 500/ DII	50	0.2	606.53	1611.37
5050/С50,50%КП	50	0.3	532.30	1356.36
		0.4	299.73	912.72
		0.1	950.82	2336.10
SC25/C75 500/DII	75	0.2	550.40	1730.55
5023/С/3,30%КП	15	0.3	337.92	1191.87
		0.4	268.70	962.13
		0.1	683.91	2178.80
SC50%RH33	100	0.2	420.53	1514.80
		0.3	341.99	1223.23
		0.4	253.03	892.57

Table 4.41 The average values of fracture energy, peak load and notch to depth ratio of hybrid composites at wet condition

Sample	Composition of carbon composites (%)	a/D	Fracture energy (mJ)	Peak load (N)
		0.1	1796.80	1365.30
SCW18	0	0.2	1207.68	1119.84
50 W 10	0	0.3	1052.08	802.74
		0.4	991.56	675.14
		0.1	1526.30	1577.57
SC75/C25W	25	0.2	1177.68	1275.65
SG75/C25W	23	0.3	949.16	918.33
		0.4	716.97	691.58
		0.1	1859.90	1818.36
SC50/C50W	50	0.2	970.94	1299.48
5030/C30W	30	0.3	599.92	911.60
		0.4	728.30	657.98
		0.1	1335.66	1737.43
SC25/C75W	75	0.2	882.91	1333.22
8G25/C75W	75	0.3	645.14	963.82
		0.4	636.46	667.82
		0.1	1077.00	1642.30
SCW33	100	0.2	803.90	1244.14
		0.3	631.83	1075.14
		0.4	507.46	890.54

Table 4.42
The critical strain energy release rate, Gc and the critical stress intensity factor, Kc values
of hybrid composites at dry condition

Sample	Composition of carbon composites (%)	$G_{c}(kJm^{-2})$	K _c (MPa√m)
SGD18	0	12.41	8.34
SG75/C25D	25	12.45	9.30
SG50/C50D	50	16.27	11.86
SG25/C75D	75	11.53	10.85
SCD33	100	11.27	11.50

Table 4.43
The critical strain energy release rate, Gc and the critical stress intensity factor, Kc values
of hybrid composites at 50% relative humidity condition

Sample	Composition of carbon composites (%)	G _c (kJm ⁻²)	K _c (MPa√m)
SG50%RH18	0	27.72	9.85
SG75/C25,50%RH	25	26.68	11.55
SG50/C50,50%RH	50	24.16	11.71
SG25/C75,50%RH	75	17.86	11.73
SC50%RH33	100	14.57	11.17

Table 4.44	
The critical strain energy release rate, G _c and the critical stress in	tensity factor, Kc values
of hybrid composites at wet condition	

Sample	Composition of carbon composites (%)	G _c (kJm ⁻²)	K _c (MPa√m)
SGW18	0	41.43	7.60
SG75/C25W	25	34.31	8.34
SG50/C50W	50	35.22	8.97
SG25/C75W	75	28.68	8.90
SCW33	100	24.55	8.99

Figure 4.1 TGA thermographs of unreinforced polyamide 6,6 at different conditions

Figure 4.2: TGA thermographs of glass fibre composite (4% V_f) at different conditions

Figure 4.3: TGA thermographs of glass fibre composite (8% V_f) at different conditions

Figure 4.4: TGA thermographs of glass fibre composite (13% V_f) at different conditions

Figure 4.5: TGA thermographs of glass fibre composite (16% V_f) at different conditions

Figure 4.6: TGA thermographs of glass fibre composite at various fibre volume fractions under dry condition

Figure 4.7: TGA thermographs of glass fibre composite ($18\%V_f$) at different conditions

Figure 4.8: TGA thermographs of carbon fibre composite $(33\%V_f)$ at different conditions

Figure 4.9: TGA thermographs of glass/carbon hybrid fibre composite (SG75/C25) at different conditions

Figure 4.10: TGA thermographs of glass/carbon hybrid fibre composite (SG50/C50) at different conditions

Figure 4.11: TGA thermographs of glass/carbon hybrid fibre composite (SG25/C75) at different conditions

Figure 4.12: TGA thermographs of hybrid composites at different carbon fibre content

Figure 4.13: DSC results of glass fibre composites with various volume fractions at dry condition

Figure 4.14: DSC results of glass fibre composites with various volume fractions at 50% RH condition

Figure 4.15: DSC results of glass fibre composites with various volume fractions at wet condition

Figure 4.16: DSC results of single carbon fibre composites at various conditions

Figure 4.17: DSC results of hybrid fibre composites with different carbon fibre content at dry condition

Figure 4.18: DSC results of hybrid fibre composites with different carbon fibre content at 50% RH condition

Figure 4.19: DSC results of hybrid fibre composites with different carbon fibre content at wet condition

Figure 4.20: The tan delta–temperature behaviour of injection-moulded short glass fibre composites at dry condition

Figure 4.21: The storage modulus–temperature behaviour of injection- moulded short glass fibre composites at dry condition

Figure 4.22: The tan delta–temperature behaviour of injection-moulded short glass fibre composites at 50% RH condition

Figure 4.23: The storage modulus–temperature behaviour of injection- moulded short glass fibre composites at 50% RH condition

Figure 4.24: The tan delta–temperature behaviour of injection-moulded short glass fibre composites at wet condition

Figure 4.25: The storage modulus–temperature behaviour of injection- moulded short glass fibre composites at wet condition

Figure 4.26: The tan delta–temperature behaviour of unreinforced polyamide 6,6 matrix at different conditions

Figure 4.27: The storage modulus–temperature behaviour of unreinforced polyamide 6,6 matrix at different conditions

Figure 4.28: The tan delta–temperature behaviour of 4% $V_{\rm f}$ glass fibre composites at different conditions

Figure 4.29: The storage modulus–temperature behaviour of 4% V_f glass fibre composites at different conditions

Figure 4.30: The tan delta-temperature behaviour of 8% V_f glass fibre composites at different conditions

Figure 4.31: The storage modulus–temperature behaviour of 8% V_f glass fibre composites at different conditions

Figure 4.32: The tan delta–temperature behaviour of 13% V_f glass fibre composites at different conditions

Figure 4.33: The storage modulus–temperature behaviour of 13% V_f glass fibre composites at different conditions

Figure 4.34: The tan delta-temperature behaviour of 16% V_f glass fibre composites at different conditions

Figure 4.35: The storage modulus–temperature behaviour of 16% V_f glass fibre composites at different conditions

Figure 4.36: The tan delta-temperature behaviour of 18% V_f glass fibre composites at different conditions

Figure 4.37: The storage modulus–temperature behaviour of 18% V_f glass fibre composites at different conditions

Figure 4.38: The tan delta-temperature behaviour of carbon fibre composites at different conditions

Figure 4.39: The storage modulus–temperature behaviour of carbon fibre composites at different conditions

Figure 4.40: The tan delta–temperature behaviour of injection-moulded hybrid fibre composites at dry condition

Figure 4.41: The storage modulus–temperature behaviour of injection-moulded hybrid fibre composites at dry condition

Figure 4.42: The tan delta–temperature behaviour of injection-moulded hybrid fibre composites at 50% RH condition

Figure 4.43: The storage modulus–temperature behaviour of injection-moulded hybrid fibre composites at 50% RH condition

Figure 4.44: The tan delta–temperature behaviour of injection-moulded hybrid fibre composites at wet condition

Figure 4.45: The storage modulus–temperature behaviour of injection-moulded hybrid fibre composites at wet condition

Figure 4.46: The tan delta–temperature behaviour of injection-moulded (SG75/C25) hybrid fibre composites at different conditions

Figure 4.47: The storage modulus–temperature behaviour of injection-moulded (SG75/C25) hybrid fibre composites at different conditions

Figure 4.48: The tan delta–temperature behaviour of injection-moulded (SG50/C50) hybrid fibre composites at different conditions

Figure 4.49: The storage modulus–temperature behaviour of injection-moulded (SG50/C50) hybrid fibre composites at different conditions

Figure 4.50: The tan delta–temperature behaviour of injection-moulded (SG25/C75) hybrid fibre composites at different conditions

Figure 4.51: The storage modulus–temperature behaviour of injection-moulded (SG25/C75) hybrid fibre composites at different conditions

Figure 4.52: Fibre length distribution of short glass fibre composites for 18% $V_{\rm f}$ before and after moulding

Figure 4.53: Fibre length distribution of short carbon fibre composites for 33% $V_{\rm f}$ before and after moulding

Figure 4.54: Fibre length distribution of short glass fibre composite (4% $V_{\rm f}$)

Figure 4.55: Fibre length distribution of short glass fibre composite $(8\% V_f)$

Figure 4.56: Fibre length distribution of short glass fibre composite $(13\% V_f)$

Figure 4.57: Fibre length distribution of short glass fibre composite (16% V_f)

Figure 4.58: Fibre length distribution of short glass fibre composite (18% V_f)

Figure 4.59: Fibre length distribution of short carbon fibre composite $(33\% V_f)$

Figure 4.60: Fibre length distribution of short glass fibre composites

Figure 4.61: Cumulative fibre frequency of short glass fibre composites

Figure 4.62: Average residual fibre length versus fibre volume fraction

Figure 4.63: The tensile strength of injection-moulded short glass fibre composites for various fibre volume fractions at different conditions

Figure 4.64: The tensile modulus of injection-moulded short glass fibre composites for various fibre volume fractions at different conditions

Figure 4.65: The fracture strain of injection-moulded short glass fibre composites for various fibre volume fractions at different conditions

Figure 4.66: The tensile strength of injection-moulded short glass fibre composites at dry, 50% RH and wet condition for various fibre volume fractions

Figure 4.67: The tensile modulus of injection-moulded short glass fibre composite at dry, 50% RH and wet condition for various fibre volume fractions

Figure 4.68: The fracture strain of injection-moulded short glass fibre composite at dry, 50% RH and wet condition for various fibre volume fractions

Figure 4.69: Tensile strength of carbon fibre composites at various conditions

Figure 4.70: Tensile modulus of carbon fibre composites at various conditions

Figure 4.71: Fracture strain of carbon fibre composites at various conditions

Figure 4.72: Tensile strength of hybrid fibre composites subjected to dry condition

Figure 4.73: Tensile strength of hybrid fibre composites subjected to 50% RH condition

Figure 4.74: Tensile strength of hybrid fibre composites subjected to wet condition

Figure 4.75: Tensile modulus of hybrid fibre composites subjected to dry condition

Figure 4.76: Tensile modulus of hybrid fibre composites subjected to 50% RH condition

Figure 4.77: Tensile modulus of hybrid fibre composites subjected to wet condition

Figure 4.78: Fracture strain of hybrid fibre composites subjected to dry condition

Figure 4.79: Fracture strain of hybrid fibre composites subjected to 50% RH condition

Figure 4.80: Fracture strain of hybrid fibre composites subjected to wet condition

Figure 4.81: The flexural strength of injection-moulded short glass fibre composites for various fibre volume fractions at different conditions

Figure 4.82: The flexural modulus of injection-moulded short glass fibre composites for various fibre volume fractions at different conditions

Figure 4.83: The flexural displacement of injection-moulded short glass fibre composites for various fibre volume fractions at different conditions

Figure 4.84: The flexural strength of injection-moulded short glass fibre composites at dry, 50% RH and wet condition for various fibre volume fractions

Figure 4.85: The flexural modulus of injection-moulded short glass fibre composites at dry, 50% RH and wet condition for various fibre volume fractions

Figure 4.86: The flexural displacement of injection-moulded short glass fibre composites at dry, 50% RH and wet condition for various fibre volume fractions

Figure 4.87: Flexural strength of carbon fibre composites at various conditions

Figure 4.88: Flexural modulus of carbon fibre composites at various conditions

Figure 4.89: Flexural displacement of carbon fibre composites at various conditions

Figure 4.90: Flexural strength of composites subjected to dry condition

Figure 4.91: Flexural strength of composites subjected to 50% RH condition

Figure 4.92: Flexural strength of composites subjected to wet condition

Figure 4.93: Flexural modulus of composites subjected to dry condition

Figure 4.94: Flexural modulus of composites subjected to 50% RH condition

Figure 4.95: Flexural modulus of composites subjected to wet condition

Figure 4.96: Flexural displacement of composites subjected to dry condition

Figure 4.97: Flexural displacement of composites subjected to 50% RH condition

Figure 4.98: Flexural displacement of composites subjected to wet condition

Figure 4.99: Variation of fracture energy with notch to depth ratio of composites subjected to dry condition

Figure 4.100: Variation of peak load with notch to depth ratio of composites subjected to dry condition

Figure 4.101: Variation of fracture energy with notch to depth ratio of composites subjected to 50% RH condition

Figure 4.102: Variation of peak load with notch to depth ratio of composites subjected to 50% RH condition

Figure 4.103: Variation of fracture energy with notch to depth ratio of composites subjected to wet condition

Figure 4.104: Variation of peak load with notch to depth ratio of composites subjected to wet condition

Figure 4.105: Variation of fracture energy with notch to depth ratio of unreinforced polyamide 6,6 matrix at different conditions

Figure 4.106: Variation of peak load with notch to depth ratio of unreinforced polyamide 6,6 matrix at different conditions

Figure 4.107: Variation of fracture energy with notch to depth ratio of glass fibre composites, $V_f 4\%$ at different conditions

Figure 4.108: Variation of peak load with notch to depth ratio of glass fibre composites, V_f 4% at different conditions

Figure 4.109: Variation of fracture energy with notch to depth ratio of glass fibre composites, $V_f 8\%$ at different conditions

Figure 4.110: Variation of peak load with notch to depth ratio of glass fibre composites, V_f 8% at different conditions

Figure 4.111: Variation of fracture energy with notch to depth ratio of glass fibre composites, $V_f 13\%$ at different conditions

Figure 4.112: Variation of peak load with notch to depth ratio of glass fibre composites, $V_f 13\%$ at different conditions

Figure 4.113: Variation of fracture energy with notch to depth ratio of glass fibre composites, $V_f 16\%$ at different conditions

Figure 4.114: Variation of fracture energy with notch to depth ratio of glass fibre composites, V_f 16% at different conditions

Figure 4.115: Variation of fracture energy of glass fibre composites with fibre volume fraction at various notches to depth ratio at dry condition

Figure 4.116: Variation of peak load of glass fibre composites with fibre volume fraction at various notches to depth ratio at dry condition

Figure 4.117: Variation of fracture energy of glass fibre composites with fibre volume fraction at various notches to depth ratio at 50% RH condition

Figure 4.118: Variation of peak load of glass fibre composites with fibre volume fraction at various notches to depth ratio at 50% RH condition

Figure 4.119: Variation of fracture energy of glass fibre composites with fibre volume fraction at various notches to depth ratio at wet condition

Figure 4.120: Variation of peak load of glass fibre composites with fibre volume fraction at various notches to depth ratio at wet condition

Figure 4.121: Variation of fracture energy with specimen geometry function of glass fibre composites at dry condition

Figure 4.122: Variation of fracture energy with specimen geometry function of glass fibre composites at 50% RH condition

Figure 4.123: Variation of fracture energy with specimen geometry function of glass fibre composites at wet condition

Figure 4.124: G_c values of glass fibre composites for various fibre volume fractions at different conditions

Figure 4.125: G_c values of glass fibre composites at dry, 50% RH and wet condition for various fibre volume fractions

Figure 4.126: Variation of σY with $a^{-1/2}$ of glass fibre composites at dry condition

Figure 4.127: Variation of σY with $a^{-1/2}$ of glass fibre composites at 50% RH condition

Figure 4.128: Variation of σY with $a^{-1/2}$ of glass fibre composites at wet condition

Figure 4.129: K_c values of glass fibre composites for various fibre volume fractions at different conditions

Figure 4.130: K_c values of glass fibre composites at dry, 50% RH and wet condition for various fibre volume fractions

Figure 4.131: Variation of fracture energy with notch to depth ratio of carbon fibre composite at different conditions

Figure 4.132: Variation of peak load with notch to depth ratio of carbon fibre composite at different conditions

Figure 4.133: Variation of fracture energy with notch to depth ratio of carbon fibre composite at different conditions

Figure 4.134: Variation of peak load with notch to depth ratio of carbon fibre composite at different conditions

Figure 4.135: Variation of fracture energy with specimen geometry function of carbon fibre composites at dry condition

Figure 4.136: G_c values of carbon fibre composites at different conditions

Figure 4.137: Variation of σY with $a^{-1/2}$ of carbon fibre composites at various conditions

Figure 4.138: K_c values of carbon fibre composites at different conditions

Figure 4.139: Variation of fracture energy with notch to depth ratio of hybrid fibre composite at dry condition

Figure 4.140: Variation of peak load with notch to depth ratio of hybrid fibre composite at dry condition

Figure 4.141: Variation of fracture energy with notch to depth ratio of hybrid fibre composite at 50% RH condition

Figure 4.142: Variation of peak load with notch to depth ratio of hybrid fibre composite at 50% RH condition

Figure 4.143: Variation of fracture energy with notch to depth ratio of hybrid fibre composite at wet condition

Figure 4.144: Variation of peak load with notch to depth ratio of hybrid fibre composite at wet condition

Figure 4.145: Variation of fracture energy with notch to depth ratio of 18% fibre volume fraction glass fibre composites at different conditions

Figure 4.146: Variation of peak load with notch to depth ratio of 18% fibre volume fraction glass fibre composites at different conditions

Figure 4.147: Variation of fracture energy with notch to depth ratio of SG75/C25 hybrid composites at different conditions

Figure 4.148: Variation of peak load with notch to depth ratio of SG75/C25 hybrid composites at different conditions

Figure 4.149: Variation of fracture energy with notch to depth ratio of SG50/C50 hybrid composites at different conditions

Figure 4.150: Variation of peak load with notch to depth ratio of SG50/C50 hybrid composites at different conditions

Figure 4.151: Variation of fracture energy with notch to depth ratio of SG25/C75 hybrid composites at different conditions

Figure 4.152: Variation of peak load with notch to depth ratio of SG25/C75 hybrid composites at different conditions

Figure 4.153: Variation of fracture energy with notch to depth ratio of carbon fibre composites at different conditions

Figure 4.154: Variation of peak load with notch to depth ratio of carbon fibre composites at different conditions

Figure 4.155: Variation of fracture energy of hybrid fibre composites with carbon fibre composite contents and a/D ratios at dry condition

Figure 4.156: Variation of peak load of hybrid fibre composites with carbon fibre composite contents and a/D ratios at dry condition

Figure 4.157: Variation of fracture energy of hybrid fibre composites with carbon fibre composite contents and a/D ratios at 50% RH condition

Figure 4.158: Variation of peak load of hybrid fibre composites with carbon fibre composite contents and a/D ratios at 50% RH condition

Figure 4.159: Variation of fracture energy of hybrid fibre composites with carbon fibre composite contents and a/D ratios at wet condition

Figure 4.160: Variation of peak load of hybrid fibre composites with carbon fibre composite contents and a/D ratios at wet condition

Figure 4.161: Variation of fracture energy with specimen geometry function of hybrid fibre composites at dry condition

Figure 4.162: Variation of fracture energy with specimen geometry function of hybrid fibre composites at 50% RH condition

Figure 4.163: Variation of fracture energy with specimen geometry function of hybrid fibre composites at wet condition

Figure 4.164: G_c values of hybrid fibre composites for various carbon fibre content at different conditions

Figure 4.165: G_c values of hybrid fibre composites at dry, 50% RH and wet condition

Figure 4.166: Variation of σY with $a^{-1/2}$ of hybrid fibre composites at dry condition

Figure 4.167: Variation of σY with $a^{-1/2}$ of hybrid fibre composites at 50% RH condition

Figure 4.168: Variation of σY with $a^{-1/2}$ of hybrid fibre composites at wet condition

Figure 4.169: K_c values of hybrid composites for various carbon fibre content at different conditions

Figure 4.170: K_c values of hybrid composites at dry, 50% RH and wet condition

Figure 4.171: SEM micrographs of the fracture surfaces of the composites which shows fibre-matrix interfaces at (a) low fibre loading, $V_f 4 \%$ (b) high fibre loading, $V_f 8 \%$

Figure 4.172: SEM micrographs of the fracture surfaces of the composites at various magnifications show the misalignment of the fibres

Figure 4.173: SEM micrographs taken from tensile fracture surface of glass fibre composite at dry as moulded condition

Figure 4.174: SEM micrographs taken from tensile fracture surface of glass fibre composite at wet condition

Figure 4.175: SEM micrographs taken from tensile fracture surface of carbon fibre composite at dry as moulded condition

Figure 4.176: SEM micrographs taken from tensile fracture surface of carbon fibre composite at wet condition

Figure 4.177: SEM micrographs taken from impact fracture surface of glass fibre composite at dry as moulded condition

Figure 4.178: SEM micrographs taken from impact fracture surface of glass fibre composite after water immersion

Figure 4.179: SEM micrographs taken from impact fracture surface of carbon fibre composite at dry as moulded condition

Figure 4.180: SEM micrographs taken from impact fracture surface of carbon fibre composite after immersed in water