AN EVALUATION OF DEMINERALIZATION POTENTIAL OF QAT EXTRACTS ON SMOOTH ENAMEL SURFACE AND RESTORATION INTERFACE

DR. KHALED RASHAD AL-ALIMI

DISSERTATION SUBMITTED IN FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF DENTAL SCIENCE

DEPARTMENT OF CONSERVATIVE DENTISTRY
FACULTY OF DENTISTRY

UNIVERSITY OF MALAYA
KUALA LUMPUR
MALAYSIA

2007
UNIVERSITI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Dr. Khaled Rashad AL-Alimi (I.C/Passport No: 00003289)

Registration/Matric No: DGC050002

Name of Degree: Master of Dental Science

AN EVALUATION OF DEMINERALIZATION POTENTIAL OF QAT EXTRACTS ON SMOOTH ENAMEL SURFACE AND RESTORATION INTERFACE

Field of Study: Conservative Dentistry

I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work;
(4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work;
(5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya (“UM”), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained;
(6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate’s Signature Date

Subscribed and solemnly declared before,

Witness’s Signature Date

Name: Dr. Khaled Rashad AL-Alimi
Designation: DGC050002
Declaration

I certify that this dissertation has been based on my own independent work, except where acknowledged in the text or by references. No part of this work has been submitted for a degree or diploma to this or any other university.

Dr. Khaled Rashad Al-Alimi, B.D.S

Date:

First Supervisor: Assoc. Prof. Dr. Noor Hayaty Abu Kasim

Date:

Department of Conservative Dentistry
Faculty of Dentistry
University of Malaya
Kuala Lumpur
Malaysia

Second Supervisor: Assoc. Prof. Dr. Rohana Ahmad

Date:

Department of Restorative Dentistry
Faculty of Dentistry
University Teknologi MARA
Shah Alam
Malaysia
ABSTRACT

Millions of people in Yemen and East Africans countries chew qat for its amphetamine-like effects for more than 5 hours daily (Kalix, 1987). There is obscure information in the literature concerning the possible effects of this habit on enamel demineralization and at restoration interface.

Purpose of Study: To evaluate the demineralization potential of qat extracts on smooth enamel surface and restoration interface.

Materials and Method: Class V cavities were prepared on the buccal surface of thirty extracted sound premolars and were restored with a nano-hybrid composite (Grandio, VOCO, Germany). Specimens were subsequently coated with nail varnish exposing 2mm of enamel around the restoration margin and an area of 3mm x 2mm on the lingual surface. The specimens were divided into three equal groups of 10 and immersed in acid gel and qat extracts (10% and 20%) for 4 weeks. All specimens were removed and washed by deionized water. All specimens were examined by direct vision and stereomicroscope. All specimens were sectioned and immersed in distilled water for 24 hours, following which the sections were examined under polarized light microscope and demineralized area was measured using image analyzer software (Image-Pro Version 4.5). Data were subjected to two statistical procedures: One-way ANOVA and One-way MANOVA.

Results: All specimens immersed in acid gel and qat extracts (10% and 20%) exhibited demineralization on the smooth enamel and at the restoration interface. The mean depth of demineralization on smooth enamel for the acid gel group, 10% qat extract group and 20% qat extract group were 311.23µm (±71.07), 146.54µm (±33.76) and 153.89µm (±44.68) respectively. Results of the One-way ANOVA indicated that the acid gel group was significantly different from 10% and 20% qat extract groups. The One-way
MANOVA also indicated significant differences between the three groups on the different restoration interface. Acid gel showing greater outer lesion depth at coronal and cervical part of restoration. However no significant difference was found between 10% and 20% qat extract. A significant difference between acid gel and 20% qat extract was found for the coronal wall and cervical wall at restoration interfaces. However, there are no significant differences between the 10% qat extract and acid gel and between 10% and 20% qat extract (p< .05). The ANOVA indicated no significant interaction between demineralizing agent and location of lesion, but significant main effect for demineralizing agent. The location main effect, on the other hand, was not significant.

Conclusion: Qat extract caused significantly lower demineralization on smooth surface enamel and at restoration interface compared to acid gel.
ACKNOWLEDGEMENT

I thank Allah for giving me the strength and capability to fulfill this work, and giving me the health and patience to keep going.

With much gratitude I would like to thank my supervisor the Deputy Dean, Faculty of Dentistry, University of Malaya Assoc. Prof. Dr. Noor Hayat Abu Kasim, for her encouragement, help and efforts. Her smart advice as well as her encouragement will never be forgotten. Without her moral support, this study would not have been possible. I am also grateful for my co-supervisor the Deputy Dean, Faculty of Dentistry, University Teknologi MARA, Assoc. Prof. Dr. Rohana Ahmad for her moral support and encouragement during the early days of my study.

I am truly grateful for the head of Conservative Department, Faculty of Dentistry, University of Malaya Professor Dato’ Dr. Abdul Aziz Abdul Razak for his guidance and support during my study. My thanks also extended to the head of Oral Biology Department Professor Dr. Zubaidah Hj A. Rahim for giving me support, guidance and permission to use the Oral Biology Laboratory. I also wish to thank the staff of Oral Pathology Department for their guidance to use polarized light microscope and Image Analyzer.

My thanks are also extended to staff of research lab in Faculty of Dentistry, University of Malaya for their help and guidance during my work. Special acknowledgment is also given to University of Malaya for awarding me this opportunity to carry out my research interest. I want to thank Dr. Noor Lide Abu Kasim for her help and guidance during the statistical analysis.
My deepest thanks are also extended to Professor Daranee Tantbirojn (Minnesota Dental Research, U.S.A), Professor James Wefel (Dows Institute for Dental Research, U.S.A), Dr. Adilson Ramos (Brazil), Dr. Wail Al-Omari (Jordan University of Science and Technology), Dr. Ali Al-Sharabi (Faculty of Dentistry, University of Sana’a, Yemen), and Dr. Nezar Al-Hebshi (Faculty of Dentistry, University of science and Technology, Yemen), for their helpful advice and guidance throughout my research program.

I would like to express my acknowledgment to University of Sana’a, Yemen for providing me the scholarship.

My special and warm thanks extended for my father Dr. Rashad Mohammed Al-Alimi, and my great mother without their support, prayers and unending loves, I would have never been able to even consider this study. Warm appreciation is extended to my wonderful brothers for their unlimited support and help.

Last but not least, I thank my wonderful wife for her patience and moral support throughout the period of this study.
TABLE OF CONTENT

Original Literary Work Declaration
Declaration
Abstract
Acknowledgement
Table of Content
List of Figures
List of Tables

CHAPTER ONE: INTRODUCTION & OBJECTIVES OF STUDY
1.1 Introduction
1.2 Aim of the Study
1.3 Objectives of the Study

CHAPTER TWO: REVIEW OF LITERATURE
2.1 Dental Caries
2.1.1 Caries process
2.1.2 Early enamel demineralization
2.1.2.1 Histopathology of enamel demineralization
2.1.3 Dentine caries
2.1.4 Demineralization phenomena
2.1.5 Secondary caries
2.1.5.1 Histopathology of secondary caries
2.1.6 Causative factors

2.1.6.1 Bacteria and dental plaque

2.1.6.2 Dietary and habits factors

2.2 Qat

2.2.1 Qat chewing habit

2.2.2 Prevalence of chewing habit

2.2.3 Chemistry and mechanism of action

2.2.4 General effect on human

2.2.5 Effect on oral health

2.2.5.1 Effect on hard tissues

2.2.5.2 Effect on soft tissues

2.3 Artificial Caries

2.3.1 Evaluation techniques

2.3.1.1 Polarized light microscopy

2.3.1.2 Microradiography

2.3.1.3 Scanning electron microscope

2.3.1.4 Microhardness

2.3.1.5 Wet chemical analysis

2.3.1.6 Iodine absorptiometry

2.3.1.7 Iodide permeability test

CHAPTER THREE: MATERIALS AND METHOD

3.1 Specimens Selection

3.2 Specimens Preparation

3.3 Restoration Placement
3.4 Qat extract Preparation 38
3.5 Lactic acid Preparation 39
3.6 Demineralization Procedure 40
3.7 Sectioning of Specimens 41
3.8 Microscopic Evaluation and Measurements 44
 3.8.1 Smooth enamel surface 44
 3.8.2 Restoration interface 46
3.9 Research Design and Data Analysis Procedures 47
3.10 Intra-examiner Reliability 48

CHAPTER FOUR: RESULTS 49

4.1 pH of Qat Extract 50
4.2 Gross Examination of Specimens 50
4.3 Smooth Enamel Surface 51
 4.3.1 Histopathology of demineralized area 51
 4.3.2 Depth of smooth enamel surface lesion 53
 4.3.2.1 Intra-examiner reliability 54
 4.3.3 Statistical analysis 54
 4.3.3.1 Preliminary analysis 54
 4.3.3.2 One way ANOVA 56
4.4 Restoration Interface 57
 4.4.1 Histopathology of demineralized area 57
 4.4.2 Depth of the lesion at restoration interface 62
 4.4.2.1 Outer surface lesion depth at coronal and cervical area 62

x
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Early Enamel Lesion</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Qat Chewing Habit</td>
<td>19</td>
</tr>
<tr>
<td>2.3</td>
<td>Effect of Qat Chewing on Hard and Soft Tissues</td>
<td>25</td>
</tr>
<tr>
<td>2.4</td>
<td>Caries-like Lesion on Smooth Enamel Surface Under Polarized Light Microscopy after Imbibition in Water</td>
<td>30</td>
</tr>
<tr>
<td>3.1</td>
<td>Teeth Embedded in Die Stone</td>
<td>36</td>
</tr>
<tr>
<td>3.2</td>
<td>Restorative Materials</td>
<td>37</td>
</tr>
<tr>
<td>3.3</td>
<td>Fresh Qat Leaves</td>
<td>38</td>
</tr>
<tr>
<td>3.4</td>
<td>Qat Extract Filter Procedure</td>
<td>39</td>
</tr>
<tr>
<td>3.5</td>
<td>Acid Gel Component</td>
<td>40</td>
</tr>
<tr>
<td>3.6</td>
<td>Specimen Immersed in Acid Gel and Qat Extract</td>
<td>41</td>
</tr>
<tr>
<td>3.7</td>
<td>Stereomicroscope</td>
<td>42</td>
</tr>
<tr>
<td>3.8</td>
<td>Specimen Embedded in Epoxy Resin</td>
<td>42</td>
</tr>
<tr>
<td>3.9</td>
<td>Isomet Low Speed Saw</td>
<td>43</td>
</tr>
<tr>
<td>3.10</td>
<td>Grinding and Polishing Machine</td>
<td>43</td>
</tr>
<tr>
<td>3.11</td>
<td>Micrometer</td>
<td>44</td>
</tr>
<tr>
<td>3.12</td>
<td>Polarized Light Microscopy</td>
<td>45</td>
</tr>
<tr>
<td>3.13</td>
<td>Schematic Representation of Smooth Enamel Lesion Evaluation under Polarized Light Microscopy</td>
<td>45</td>
</tr>
<tr>
<td>3.14</td>
<td>Schematic Representation of Lesion Evaluation at Restoration Interface under Polarized Light Microscope</td>
<td>46</td>
</tr>
<tr>
<td>4.1</td>
<td>Chalky Appearances of Enamel Around Restoration (Acid gel)</td>
<td>50</td>
</tr>
<tr>
<td>4.2</td>
<td>Discolorations on Smooth Enamel Surface and around restoration (10% qat extract)</td>
<td>51</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>4.3</td>
<td>Smooth Enamel Surfaces Lesion in Acid Gel at 20X</td>
<td>52</td>
</tr>
<tr>
<td>4.4</td>
<td>Smooth Enamel Surface Demineralization in 10% Qat Extract at 20X</td>
<td>52</td>
</tr>
<tr>
<td>4.5</td>
<td>Smooth Enamel Surface Demineralization in 20% Qat Extract at 20X</td>
<td>53</td>
</tr>
<tr>
<td>4.6</td>
<td>Mean of Smooth Enamel Lesion Depth</td>
<td>54</td>
</tr>
<tr>
<td>4.7</td>
<td>Boxplots of Outer Lesion Depth</td>
<td>55</td>
</tr>
<tr>
<td>4.8</td>
<td>Caries-like Lesion at Restoration Interface (Acid Gel Group). 20X</td>
<td>58</td>
</tr>
<tr>
<td>4.9</td>
<td>Wall Lesion Appeared as Ribbon-like Extension at Coronal Part Due to Acid gel at 40X</td>
<td>59</td>
</tr>
<tr>
<td>4.10</td>
<td>Wall Lesion Appeared as Ribbon-like Extension at Cervical Area Due to Acid Gel at 20X</td>
<td>59</td>
</tr>
<tr>
<td>4.11</td>
<td>“V” Shape Notch at Enamel Margin (Acid Gel) at 40X</td>
<td>60</td>
</tr>
<tr>
<td>4.12</td>
<td>Caries-like Lesion Formed at Restoration Interface of 10% Qat Extract Group</td>
<td>61</td>
</tr>
<tr>
<td>4.13</td>
<td>Wall lesion Appeared as Ribbon-like Extension at Coronal Area of 10% Qat Extract Group</td>
<td>61</td>
</tr>
<tr>
<td>4.14</td>
<td>No Wall Lesion Observed in 20% Qat Extract Group</td>
<td>62</td>
</tr>
<tr>
<td>4.15</td>
<td>Outer Lesion Depth at Coronal and Cervical area of restoration</td>
<td>63</td>
</tr>
<tr>
<td>4.16</td>
<td>Wall Lesion Depth at Coronal and Cervical Part of Restoration</td>
<td>64</td>
</tr>
<tr>
<td>4.17</td>
<td>Scatterplots of All Pairs of Dependent Variables</td>
<td>67</td>
</tr>
<tr>
<td>4.18</td>
<td>Coronal Outer Lesion Depth</td>
<td>68</td>
</tr>
<tr>
<td>4.19</td>
<td>Cervical Outer Lesion Depth</td>
<td>68</td>
</tr>
</tbody>
</table>
Figure 4.20 Coronal Wall Lesion Depth 68
Figure 4.21 Cervical Wall Lesion Depth 68
Figure 4.22 Estimated Marginal Means of Coronal and cervical Wall Lesion 71
List of Tables

Table 2.1 Composition of Qat .. 22
Table 4.1 pH of Qat Extract .. 50
Table 4.2 Skewness and Kurtosis Values of Outer Lesion Depth 55
Table 4.3 One-way Between-subjects ANOVA 56
Table 4.4 Test of Homogeneity of Variances 57
Table 4.5 Tukey HSD and Dunnett t-test 57
Table 4.6 Intra-class correlation coefficient for Intra-examiner Reliability .. 64
Table 4.7 Means and Standard Deviations for Each Level of Independent Variables on the Four Dependent Variables Before Removal of outliers and Extreme Values .. 65
Table 4.8 Means and Standard Deviations for Each Level of Independent Variables on the Four Dependent Variables after Removal of outliers and Extreme Values 65
Table 4.9 Skewness and Kurtosis Values of Dependent Variables for Different Levels of the Independent Variables after Removal the Outliers .. 66
Table 4.10 Univariate Tests on each of the Dependent Variables 69
Table 4.11 Summarized Comparison Between Groups Using Dunnett T3 .. 70
Table 4.12 Results of the Two-way ANOVA 71
Table 4.13 Multiple Pairwise Comparison Using the Dunnett T3 Test .. 72