AN EVALUATION OF THE MECHANICAL PROPERTIES OF A LIGHT-POLYMERIZED DENTURE BASE POLYMER

By

DR.ISMA LIZA BINTI ALI

BDS (MAL)

This dissertation is submitted in partial fulfilment of the requirements for the Degree of

MASTER OF CLINICAL DENTISTRY IN RESTORATIVE (PROSTHETIC DENTISTRY)

Department of Prosthetic Dentistry

Faculty of Dentistry

University of Malaya

Kuala Lumpur.

DECLARATION Name of Candidate: ISMA LIZA BT ALI **Registration / Matric No:** DGB030008 Name of Degree: Master of Clinical Dentistry in Restorative (Prosthetic) **Dentistry Title of Research Report**: An evaluation of the mechanical properties of a lightpolymerized denture base polymer Field of Study: **Prosthetic Dentistry** I do solemnly and sincerely that. 1. I am the sole author/ writer of this work. 2. This work is original 3. Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the work and its authorship have been acknowledged in this work. 4. I do not have any actual knowledge nor ought I reasonably to know that the making of this work constitutes an infringement of any copyright work. 5. I hereby assign all and every rights in the copyright to this work to the University of Malaya "UM", who henceforth shall be owner of the copyright in this work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained. 6. I am fully aware that if in the course of making this work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM. Candidate's Signature **Date** Subscribed and solemnly declared before,

Name: Associate Professor Dr. Norsiah Bt Yunus

Designation: Associate Professor and lecturer in the Prosthetic Department of Faculty of

Date

Dentistry, University of Malaya

Witness's Signature

ACKNOWLEDGEMENTS

It is pleasure to acknowledge the advice and assistance I received from the following individuals during my study.

Firstly, I am deeply indebted to Assoc. Prof. Dr. Norsiah Yunus (Dept of Prosthetic Dentistry) as my supervisor for giving me the idea of my study, and who patiently read and corrected my manuscript and guided me throughout the preparation of this research report.

Special thanks to Prof. Dr Mohd. Ibrahim Bin Abu Hassan (Dean of Faculty of Dentistry, University of Institute Technology Mara, Shah Alam), for the information on the Instron machine and his cooperation in my statistical analysis.

I would like to thank all the technicians in the prosthetic laboratory and staff in research laboratory for their kindness in helping me during the preparation of the specimens and testing procedures.

I wish to acknowledge En Zaini from the Engineering Faculty, UM for his kindness in modifying the Instron machine for me.

To my classmates, Drs Safa, Ibrahim and Fauziah, my profound gratitude for their friendship, support and encouragement.

Last but not least, my parents and my husband for their prayers and encouragement, and for giving me support throughout this course, and my dearest children Luqman, Balqis and Naqibah for inspiring me through these difficult times.

ABSTRACT

Objectives: The aim of this study was to compare the hardness and flexural properties of a relatively new light-polymerized urethane dimethacrylate polymer to other denture base polymers.

Methods: Specimens of light-polymerized urethane dimethacrylate denture base polymer (Eclipse), were prepared by first investing a Perspex block of size 70 x 50 x 3mm in a conventional metal flask which was preheated in a special oven at 55° C for 2 minutes to improve adaptation of the resin. The resin was adapted using finger pressure. Air barrier coating agent was applied on the resin and pressed with a glass slab to allow uniform thickness of the material. Specimens of heat-polymerized PMMA (Meliodent) were prepared by investing a Perspex block of size 70 x 50 x 3mm in a conventional metal flask. The powder: liquid ratio was 23.4 gm:10 ml. The polymerization cycle was accomplished in a water bath with a cycle of seven hours at 70°C followed by one hour at 100° C. Specimens of chemically-polymerized material (Probase Cold) were prepared using the powder:liquid ratio of 20.5gm:10 ml. The flasks were maintained under constant pressure at 80 bar for 30 minutes at room temperature (23°C). Specimens were then immersed in water at 37°C for 30 days. Surface hardness test was conducted on a Shimadzu hardness tester, and flexural strength and flexural modulus were measured by using an Instron machine according to ISO specification 1567:1999 for denture base polymers. ANOVA and post-hoc Scheffe's test were used for statistical analysis at significant level of p = 0.05.

Results:

Eclipse denture base resin had a surface hardness of 19.37, Meliodent resin recorded 17.03, and Probase Cold resin recorded 16.03.

Eclipse resin had a flexural strength of 103 MPa, Meliodent resin had 78 MPa and Probse Cold resin had 63 MPa.

Eclipse resin had a flexural modulus of 2498 MPa, Meliodent resin had 1969 MPa and Probase Cold resin had 1832 MPa.

Conclusion:

The results of this study showed that light-polymerized denture base polymer (Eclipse) exhibits significantly higher surface hardness, flexural strength and flexural modulus than polymethylmethacrylate (PMMA)-based denture base polymers. A comparison between the two PMMA-based polymers, heat-polymerized denture base polymer (Meliodent) showed a significantly higher surface hardness, flexural strength and flexural modulus compared with chemically-polymerized denture base polymer (Probase Cold).

LIST OF CONTENTS

SEC	CTION	N PA	AGE NO.
ACI	KNOW	VLEGEMENTS	i
ABS	STRAC	CT	ii
LIS	ΓOFC	CONTENTS	iv
LIS	ГОГТ	TABLES	vii
LIS	Γ OF F	FIGURES	X
1.1		HAPTER 1 INTRODUCTION AND REVIEW OF LITERATURE roduction and literature review	
1.2	Req	quirements of denture base polymers	3
1.3	Тур	pes of denture base polymers	3
	1.3.1	Heat-polymerized denture base polymer	3
	1.3.2	Light-polymerized poly-urethane based polymer	6
	1.3.3	Chemically-polymerized denture base polymer	10
1.4	Med	chanical properties of denture base polymers	11
	1.4.1	Microhardness	11
	1.4.2	Flexural strength and flexural modulus	14

CHAPTER 2 MATERIALS AND METHODS

2.1	Materials	18
	2.1.1 Light-polymerized urethane dimethacrylate-based polymer	18
	2.1.2 Heat-polymerized denture base polymer	20
	2.1.3 Chemically-polymerized denture base polymer	20
2.2	Methods	22
	2.2.1 Surface hardness of light-polymerized denture base polymer	
	(Eclipse)	22
	2.2.1.1 Specimen preparation of Eclipse polymer	22
	2.2.1.2 Hardness test of Eclipse polymer	25
2.2.2	Hardness test of three denture base polymers	29
	2.2.2.1 Specimen preparation	29
	2.2.2.1.1 Eclipsepolymer	29
	2.2.2.1.2 Meliodent polymer	29
	2.2.2.1.3 Probase Cold polymer	29
	2.2.2.2 Test procedure	. 30
2.2.3	3-point flexural bending test	30
	2.2.3.1 Specimen preparation	30
	2.2.3.2 Test procedure	30
2.2.4	Statistical analysis	33
	2.2.4.1 Standard deviation (S.D)	33
	2.2.4.2 Analysis of variance (ANOVA)	33
	2.2.4.3 Scheffe's test	33

CHAPTER 3 RESULTS

3.1	The irradiated and non-irradiated surface hardness of Eclipse polymer35
3.2	Surface hardness of three denture base polymers
3.3	A comparison of flexural strength of three denture base polymers36
3.4	A comparison of flexural modulus of three types denture base polymers37
	CHAPTER 4 DISSCUSSION AND CONCLUSION
4.1	Method of specimen preparation and 3-point flexural bending test53
4.2	Material
4.3	Surface hardness
4.4	Flexural strength and flexural modulus
4.5	Recommendation for further study60
4.6	Clinical implications
4.7	Limitations of study
4.8	Conclusions61
REF	FERENCES63
API	PENDIX I List of materials and instruments69
AP	PENDIX II Tables of surface hardness, flexural strength and flexural
	modulus70

LIST OF TABLES

Table No. Page No.

3.1:	Irradiated and non-irradiated surface hardness of Eclipse material
	polymerized at various curing times
3.2:	One-way ANOVA results for irradiated surface hardness of Eclipse
	material polymerized at various curing times
3.3:	One-way ANOVA result for non-irradiated surface hardness of Eclipse
	material polymerized at various curing times
3.4:	Statistical analysis by using t-test comparing irradiated and non-irradiated
	surface hardness polymerized at various curing time42
3.5:	Surface hardness of three denture base polymers
3.6:	One-way ANOVA results for surface hardness of three denture base
	polymers
3.7:	Flexural strength (MPa) of three denture base polymers
3.8:	One-way ANOVA results for flexural strength of denture base
	polymers
3.9:	Flexural modulus (MPa) of three denture base polymers
3.10:	: One-way ANOVA results for flexural modulus of three denture base
	polymers51
4.1:	List of materials, instruments and manufacturers
4.2:	Surface hardness (Vickers hardness) of light-polymerized urethane
	dimethacrylate polymer (Eclipse) when irradiated for 4 minutes70
4.3: 1	t-Test: paired two sample for means (4 min irradiation time), comparing
	the surface hardness between two surfaces of Eclipse polymer70
4.4:	Surface hardness (Vickers hardness) of light-polymerized urethane

dimethacrylate polymer (Eclipse) when irradiated for 6 minutes71.
4.5: t-Test: paired two sample for means (6 min irradiation time), comparing
the surface hardness between two surfaces of Eclipse polymer71
4.6: Surface hardness (Vickers hardness) of light-polymerized urethane
dimethacrylate polymer (Eclipse) when irradiated for 8 minutes72
4.7: t-Test: paired two sample for means (8 min irradiation time), comparing
the surface hardness between two surfaces of Eclipse polymer72
4.8: Surface hardness (Vickers hardness) of light-polymerized urethane
dimethacrylate polymer (Eclipse) when irradiated for 10 minutes73
4.9: t-Test: paired two sample for means (10 min irradiation time), comparing
the surface hardness between two surfaces of Eclipse polymer73
10: Surface hardness (Vickers hardness) of light-polymerized urethane
dimethacrylate polymer (Eclipse) when irradiated for 12 minutes74
4.11: t-Test: paired two sample for means (12 min irradiation time), comparing
the surface hardness between two surfaces of Eclipse polymer74
4.12: Surface hardness (Vickers hardness) of light-polymerized urethane
dimethacrylate polymer (Eclipse) when irradiated for 14 minutes75
4.13: t-Test: paired two sample for means (14 min irradiation time), comparing
the surface hardness between two surfaces of Eclipse polymer75
4.14: Surface hardness of three denture polymers (Vickers hardness)
4.15: Test specimens dimensions and the results of three-point flexural
bending test of light-polymerized denture base polymer (Eclipse)77
4.16: Test specimens dimensions and the results of three-point flexural
bending test of heat-polymerized denture base polymer (Meliodent)78
4.17: Test specimens dimensions and the results of three-point flexural bending
test of chemically-polymerized denture base polymer (Probase Cold)79

LIST OF FIGURE

Figure No.	Page No.
------------	----------

Shapes of indentations produced by three types of hardness test	12
Light-polymerized urethane dimethacrylate denture base polymer	19
Light-polymerized urethane dimethacrylate denture base polymer supplied	in
arch form	19
Heat-polymerized denture base polymer	21
Chemically-polymerized denture base polymer	21
Perspex block	23
Investment of Perspex block in metal flask	23
Oven to preheat the model for light-polymerized polymer	23
Eclipse processing unit	24
Flask on the rotating table in processing unit	24
Final size of specimen	26
Polishing machine, Stuer Rotopole	26
Length of specimen measured by micrometer	27
Width of specimen measured by micrometer	27
Thickness of specimen measured by micrometer	27
Shimadzu microhardness tester	28
Close-up view of Shimadzu microhardness tester during the indentation	
	28
Electronic balance	
	32
	Investment of Perspex block in metal flask

3.1	Comparison of irradited and non-irradiated surface hardness of Eclipse materia	
	polymerized at various curing times	41
3.2	Surface hardness of three denture base polymers	44
3.3	Flexural strength (MPa) of denture base polymers	47
3.4:	Flexural modulus of three denture base polymers	50