Abstract

This thesis presents the application of Assumed Flux Path (AFP)

Technique in calculating the unaligned permeance for single tooth and multi

tooth per pole Switched Reluctance Motors (SRMs). The developed

computational algorithm is based on the AFP Technique adopted by

Stephenson and Corda [24]. The calculated permeance is then used in a CAD

program to generate the magnetisation characteristics for static analysis. The

simplified Block Modeling Technique has been used to generate the

magnetisation characteristics leading to performance prediction of SRMs. The

computed magnetisation characteristics can then be used to model the flux

linkage/current/rotor position curves for subsequent prediction of SRMs

performance. The characteristics are modelled analytically by piecewise first

or second order function of the flux linkage against current with rotor position as undetermined parameter. A model equation is presented for accurate

representation of magnetisation characteristics and a simple procedure is

performed to determine the dynamic characteristics of SRMs. Optimisation

studies using various objective functions have also been conducted. The

results produced are of great significance to SRMs designers and researchers.

Researcher: Malek Pisol Md Saad, MEngSc Level

Supervisor: Dr Mohamad Rom Tamjis

Dated: 12th July 1995

iii