SHEAR BOND STRENGTH OF TWO CHEMICALLY DIFFERENT DENTURE BASE POLYMERS TO RELINE MATERIALS

FAUZIAH AHMAD

DEPARTMENT OF PROSTHETIC DENTISTRY
FACULTY OF DENTISTRY
UNIVERSITY OF MALAYA
KUALA LUMPUR
2007
SHEAR BOND STRENGTH OF TWO CHEMICALLY DIFFERENT DENTURE BASE POLYMERS TO RELINE MATERIALS

FAUZIAH AHMAD

RESEARCH REPORT SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF CLINICAL DENTISTRY IN RESTORATIVE DENTISTRY (PROSTHETIC DENTISTRY)
UNIVERSITY OF MALAYA

DEPARTMENT OF PROSTHETIC DENTISTRY
FACULTY OF DENTISTRY
UNIVERSITY OF MALAYA
KUALA LUMPUR
2007
DECLARATION

Name of Candidate: FAUZIAH BT AHMAD

Registration / Matric No: DGB 040008

Name of Degree: Master of Clinical Dentistry in Restorative (Prosthetic) Dentistry

Title of Research Report: Shear bond strength of two chemically different denture base polymers to reline materials

Field of study: Prosthetic Dentistry

I do solemnly and sincerely that,

1. I am the sole author/ writer of this work.
2. This work is original.
3. Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the work and its authorship have been acknowledged in this work.
4. I do not have any actual knowledge nor ought I reasonably to know that the making of this work constitutes an infringement of any copyright work.
5. I hereby assign all and every rights in the copyright to this work to the University of Malaya “UM”, who henceforth shall be owner of the copyright in this work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained.
6. I am fully aware that if in the course of making this work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate’s Signature Date

Subscribed and solemnly declared before,

Witness’s Signature Date

Name: Associate Professor Dr. Norsiah Bt Yunus
Designation: Associate Professor and lecturer in the Prosthetic Department of Faculty of Dentistry, University of Malaya
ACKNOWLEDGEMENTS

It is a pleasure to acknowledge the advice and assistance I received from the following individuals during my study.

Firstly, I am deeply indebted to Assoc. Prof. Dr. Norsiah Yunus (Dept of Prosthetic Dentistry) as my supervisor for giving me the idea of my study, and who patiently read and corrected my manuscript and guided me throughout the preparation of this research report.

Special thanks to Prof. Dr. Mohd Ibrhim Bin Abu Hassan (Dean of Faculty of Dentistry, University of Institute Technology Mara, Shah Alam), for his technical advice on using the Instron machine and conducting the test procedures.

I would like to thank Encik Rahim, the technician in the ceramic laboratory and staff in research laboratory, Mrs Yvonne Padmini Wilson for their kindness in helping me during the preparation of the specimens and testing procedures.

I wish to acknowledge Encik Zaini from the Engineering Faculty, UM for his expertise in fabricating the brass columns and brass rings for the specimen preparation.

To my classmates: Dr. Isma, Dr. Safa and Dr. Sabarina, my profound gratitude for their friendship, support and encouragement.

Last but not least, my parents Encik Ahmad and Puan Rokiah; my husband, Mohd Zabid for their prayers and encouragement, and for giving me support throughout this course, and my dearest sons Muhammad Rijal, Muhammad Dastur, Nurhuwari and Maksalmina for their love and inspiration throughout my study.
ABSTRACT

Introduction: A denture which is relined to improve tissue adaptation can only be successful if a satisfactory bond exists between the denture base and the reline material. The latest addition to light-activated denture base polymer in the market is a urethane-based known as Eclipse resin (Dentsply Int. York, USA).

Objectives: The aim of the study was to evaluate the shear bond strength of Eclipse light-polymerized urethane dimethacrylate (UDMA) and Meliodent heat-polymerized polymethylmethacrylate (PMMA) denture base polymers to various reline materials.

Materials and Methods: The reline materials selected for this study were 2 intra-oral (Kooliner & Secure) and 2 laboratory-processed (Meliodent RR and Eclipse) reline materials. Denture base specimens of Eclipse were prepared by investing multiple brass columns each measuring 15 mm in diameter and 4 mm in height in a stone mould, which was sandwiched between two circular Perspex blank. Prior to finger adaptation into the mould, Eclipse resin was warmed in an oven at 55ºC for 2 minutes. Air barrier coating agent was applied and polymerization was accomplished in a processing unit by exposing the specimens to visible light of 400-500nm wavelength for 10 minutes. Six halogen lamps of 41 volts each were employed for polymerization. Meliodent denture base specimens were invested in the same manner as for Eclipse material except that a metal flask was used. The powder:liquid ratio of 35g:10ml was used and polymerization was accomplished in a water bath using a curing cycle of 7 hours at 70ºC followed by 1 hour at 100ºC. Thirty specimens were prepared for each denture base material and they were mounted in epoxy resin with one surface exposed. They were then immersed in water at 37ºC for 30 days before relining. The specimen was then dried and a customized brass ring of 2.5mm height and 6mm internal diameter was placed to cover the specimen surface except for a known area in the center of the ring. Reline materials
were applied to the confined denture base surface within the ring and were left to polymerize. Kooliner and Secure reline materials were polymerized in a chamber at 37°C to simulate the oral environment temperature while Meliodent RR resin was polymerized in a pressure pot at 55°C with 2 bar pressure to simulate laboratory reline procedures. When relining with Secure material, dichloromethane adhesive was applied to the denture base as recommended by the manufacturer. Ten additional Eclipse denture base specimens were prepared and were relined using the same Eclipse resin. For this relining procedure, polymerization was carried out in the processing unit for 6 minutes. All bonded specimens were immersed in water at 37°C for 24 hours before testing. The shear bond test was carried out using an Instron machine at a crosshead speed of 1.0 mm/min. Examination of failure mode was performed under a stereomicroscope. Samples of an Eclipse denture base-Eclipse reline and Meliodent denture base-Secure reline combinations were further examined under Scanning Electron Microscope (SEM). The effect of surface treatment with dichloromethane adhesive was also observed under SEM. One-way ANOVA was used for comparison of shear bond strength amongst seven denture base-reline polymer combinations and Post-hoc Dunnett’s T3 test to compare the significance difference between the groups. Two-way ANOVA was used to determine the effect of denture base material, reline material and the interaction between them. For this analysis, Eclipse reline material was excluded. Statistical analyses were carried out at a 95% significance level.

Results: The highest mean shear bond strength was observed in PMMA denture base-Meliodent RR reline combination (14.5±0.5 MPa) while the lowest value was observed in UDMA denture base-Kooliner reline combination (2.4±0.5 MPa). Within UDMA reline groups, the highest shear bond strength was achieved when they were relined with the same Eclipse material (11.4±0.6 MPa). For all the three auto-polymerized reline...
materials (Meliodent RR, Secure and Kooliner) their shear bond strengths to PMMA were significantly higher than to UDMA denture base polymers (p<0.05). Between the 2 intra-oral reline materials, (Secure and Kooliner), Secure material showed a significantly higher shear bond strengths to both PMMA and UDMA polymers (p<0.05).

All denture base-reline combinations showed 100% adhesive failure except for PMMA denture bases that were relined either with Meliodent RR (100% cohesive failures) or Secure materials (100% mixed failures). SEM views of denture base specimens before and after dichloromethane application showed some alteration to the surfaces.

Conclusion: The results of this study showed that there was a significant different in the shear bond strength values among denture base-reline material combinations (p<0.05) except for PMMA-Kooliner and UDMA-Meliodent RR denture base-reline combinations (p>0.05). There were statistically significant differences on the shear bond strength values because of the denture base polymer (p<0.05), reline materials (p<0.05) and their interaction (p<0.05). UDMA denture base polymer (Eclipse) showed the highest mean shear bond strength when relined using similar base material while PMMA denture base polymer (Meliodent) showed the highest mean shear bond strength when relined with auto-polymerized PMMA reline material (Meliodent RR).
LIST OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration</td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>iii</td>
</tr>
<tr>
<td>Abstract</td>
<td>iv</td>
</tr>
<tr>
<td>Lists of Contents</td>
<td>vii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xi</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xii</td>
</tr>
</tbody>
</table>

CHAPTER 1. INTRODUCTION AND OBJECTIVES OF STUDY 1

1.1 Introduction 2

1.2 Objectives of study 4

CHAPTER 2. LITERATURE REVIEW 5

2.1 Denture Base Polymers 6

 2.1.1 Conventional heat-polymerized PMMA 6

 2.1.2 Auto-polymerized PMMA 7

 2.1.3 Microwave-polymerized PMMA 8

 2.1.4 Light-polymerized denture base polymer 8

2.2 Relining 13

 2.2.1 Relining Procedure 14

 2.2.2 Denture reline materials 15

 2.3.2.1 Soft lining materials and tissue conditioners 15

 2.3.2.2 Hard reline materials 16

2.3 Bond strength 17
2.3.1 Bond strength of relining materials to denture base materials 18

2.3.2 Bond strength test method 19
 2.3.2.1 Transverse loading method 19
 2.3.2.2 Tensile bond test 20
 2.3.2.3 Shear bond test 21

2.3.3 Failure mode 22

CHAPTER 3. MATERIALS AND METHODS 23

3.1 Materials 24
 3.1.1 Denture Base Materials 24
 3.1.1.1 Heat- and light-polymerized UDMA 24
 3.1.1.2 Heat-polymerized PMMA 24
 3.1.2 Reline materials 26
 3.1.2.1 Auto-polymerized PMMA laboratory reline material (Meliodent RR) 26
 3.1.2.2 Auto-polymerized HEMA-based intra-oral reline material (Secure) 26
 3.1.2.3 Auto-polymerized PEMA-based intra-oral reline material (Kooliner) 26

3.2 Methods 29
 3.2.1 Preparation of denture base specimens 29
 3.2.1.1 Heat-polymerized PMMA specimens 29
 3.2.1.2 Light-polymerized UDMA specimens 30
 3.2.2 Mounting of denture base specimens 30
 3.2.3 Relining 31
3.2.3.1 Preparation of relining materials

3.2.3.1.1 Meliodent RR material

3.2.3.1.2 Secure material

3.2.3.1.3 Kooliner material

3.2.3.1.4 Eclipse to be used as relining material

3.2.4 Shear Bond Strength Testing

3.2.5 Examination of failure modes

3.2.6 SEM evaluation

3.2.7 Statistical Analysis

CHAPTER 4. RESULTS

4.1 Shear bond strength of denture base-reline polymer combinations

4.2 Mode of failure

4.3 SEM findings

CHAPTER 5. DISCUSSION AND CONCLUSION

5.1 Materials, method of specimen preparation, relining procedure and testing procedure

5.2 Result

5.3 Clinical implications

5.4 Limitation of study

5.5 Conclusion

CHAPTER 6. RECOMMENDATION FOR FURTHER STUDY

REFERENCES

APPENDIX I List of equipments and instruments used in this study
APPENDIX II The raw data of shear bond strength of Meliodent and Eclipse denture base polymers

APPENDIX III The result of Dunnett T3 Post-Hoc Multiple Comparisons
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Table Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Materials used in this study</td>
<td>25</td>
</tr>
<tr>
<td>3.2</td>
<td>Processing method for various denture base and reline materials used in this study</td>
<td>35</td>
</tr>
<tr>
<td>4.1</td>
<td>Shear bond strength of PMMA & UDMA denture base polymers to various reline materials (mean values and S.Ds).</td>
<td>47</td>
</tr>
<tr>
<td>4.2</td>
<td>One-way ANOVA result for shear bond strength of seven denture base-reline polymer combinations</td>
<td>49</td>
</tr>
<tr>
<td>4.3</td>
<td>Levene’s test of homogeneity of variances</td>
<td>49</td>
</tr>
<tr>
<td>4.4</td>
<td>Two-way ANOVA result for shear bond strength of denture base polymers to auto-polymerized reline polymers</td>
<td>50</td>
</tr>
<tr>
<td>4.5</td>
<td>Mode of failures for denture base-reline polymer combinations</td>
<td>51</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Eclipse base plate material</td>
<td>27</td>
</tr>
<tr>
<td>3.2</td>
<td>Eclipse base plate material with ABC and Separating Agent</td>
<td>27</td>
</tr>
<tr>
<td>3.3</td>
<td>Meliodent heat-polymerized PMMA-based polymer.</td>
<td>27</td>
</tr>
<tr>
<td>3.4</td>
<td>Meliodent RR laboratory processed reline material.</td>
<td>28</td>
</tr>
<tr>
<td>3.5</td>
<td>Secure intra-oral reline material.</td>
<td>28</td>
</tr>
<tr>
<td>3.6</td>
<td>Kooliner intra-oral reline material.</td>
<td>28</td>
</tr>
<tr>
<td>3.7</td>
<td>Investments of brass columns in metal flask for Meliodent denture base specimens.</td>
<td>36</td>
</tr>
<tr>
<td>3.8</td>
<td>Mould for preparation of Eclipse denture base specimens.</td>
<td>36</td>
</tr>
<tr>
<td>3.9</td>
<td>Eclipse material after adaptation in the mould.</td>
<td>36</td>
</tr>
<tr>
<td>3.10</td>
<td>Eclipse processing unit.</td>
<td>37</td>
</tr>
<tr>
<td>3.11</td>
<td>Eclipse specimens in the processing unit during polymerization.</td>
<td>37</td>
</tr>
<tr>
<td>3.12</td>
<td>Example of Meliodent and Eclipse denture base specimens.</td>
<td>37</td>
</tr>
<tr>
<td>3.13</td>
<td>Denture base specimen in the mounting cup.</td>
<td>38</td>
</tr>
<tr>
<td>3.14</td>
<td>Denture base specimen embedded within epoxy resin in the mounting cup.</td>
<td>38</td>
</tr>
<tr>
<td>3.15</td>
<td>The mounted denture base specimen after setting.</td>
<td>38</td>
</tr>
<tr>
<td>3.16</td>
<td>Grinding and polishing machine.</td>
<td>39</td>
</tr>
<tr>
<td>3.17</td>
<td>Grinding of the denture base surface under water irrigation.</td>
<td>39</td>
</tr>
<tr>
<td>3.18</td>
<td>Incubator chamber.</td>
<td>39</td>
</tr>
<tr>
<td>3.19</td>
<td>The two parts of brass ring apparatus</td>
<td>40</td>
</tr>
<tr>
<td>3.20</td>
<td>Brass ring position on the mounted denture base specimen.</td>
<td>40</td>
</tr>
<tr>
<td>3.21</td>
<td>Reline material being applied onto the denture base surface.</td>
<td>40</td>
</tr>
<tr>
<td>3.22</td>
<td>The relined denture base specimen mounted in epoxy resin.</td>
<td>41</td>
</tr>
</tbody>
</table>
3.23 Diameter of specimen measured by digital micrometer. 41
3.24 Relined Eclipse denture base specimen in the processing unit for polymerization. 41
3.25 The Instron machine. 42
3.26 Close-up view of the knife edged blade during shear bond test. 42
3.27 Stereomicroscope for examination of failure mode. 42
4.1 Shear bond strength of PMMA & UDMA denture base polymers to various reline materials (MPa). 48
4.2 SEM observations at the UDMA and PMMA denture base surfaces. 52
4.3 SEM observations at the UDMA-Eclipse bonding interface after shear test. 53
4.4 SEM observations at the PMMA-Secure bonding interface after shear test. 54