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CHAPTER 3  

METHODOLOGY AND DATA 

 

This section is divided into three parts. The first part discusses the various CAPM 

variants and two non-CAPM based models for estimating cost of equity. The second 

part provides a list of potential determinants as well as the expected relationship 

between these variables and the firm’s cost of equity. The third part discusses the data 

and the procedures of analysis adopted for this study. The analysis of this study is 

basically divided into two parts: cost of equity measurement and cost of equity 

determinant analysis. Their results are reported separately in Chapter 4 and Chapter 5, 

respectively. 

  

3.1 Measuring Cost of Equity  

Modern financial economics assumes that the risk perception of investors is reflected in 

the cost of equity of the firm. Being risk-adverse, investors will demand a higher return 

when the perceived risk is larger. This transforms into a simple method for computing 

the firm’s cost of equity by adding up the risk-free rate and the premium for systematic 

risk, which is the product of the beta for the firm ( i ) and the benchmark market risk 

premium, as follows: 

Cost of Equity = (Risk-Free Rate) + (Risk Measure) x (Market Risk Premium) 

or   fmifi RRRCEE  )(       (3.1) 

where )( iCEE  represents the expected cost of equity for firm i; ( fm RR  ) represents 

the  market risk premium; mR  is the return on the benchmark market index; fR is the 

return on the risk-free asset; and i  measures the sensitivity of the firm returns to the 

benchmark market returns.  
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The above setting discounts out firm level unsystematic risk as investors believe that 

firm specific risks can be diversified away and hence should not be incorporated into 

the calculation of the cost of equity. What matters in evaluating firm performance is by 

looking at i , where conventionally it can be estimated via a CAPM where:  

tmtiiit rr           (3.1a) 

where itr  is the excess return for firm i, that is,  fi RR  ; mtr  is the excess return for the 

market portfolio, that is,  fm RR  . The parameter i  represents the intercept, and 

 
 mt

mtit
i r

rr

var

,cov
  is the beta regression coefficient capturing the sensitivity of the 

returns of firm i to the market risk. 

 

The contribution of the CAPM is the idea of benchmarking the firm to the overall 

market or systematic risk – the co-movement of the firm’s returns with the market 

returns. This is powerful in practice as it avoids the tedious calculation of risk measure 

in the modern portfolio theory that requires an extremely large portfolio 

covariance/correlation matrix for establishing an efficient portfolio. By benchmarking 

to the market, the calculation of risk involving n  firms measure is reduced from having 

to calculate the covariance matrix for  nn 2 /2 portfolios to only n  risk measures (the 

beta in equation 3.1a). In the case of 100 firms, instead of the covariance matrix for 

 1001002  /2 = 4,950 portfolios, we only need to find out the betas for 100 firms. 

This simplistic feature may be part of the reason for the widespread popularity of 

CAPM among practitioners despite the many debates associated with the use of market 

beta as the only factor that explains variation in stock returns.  
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Before emerging markets attracted the attention of international investor communities, 

the application of the CAPM for generating cost of equity estimates was based on the 

appraiser’s belief of whether the world capital market is segmented or integrated. 

Depending on the choice, the variables used in the CAPM are different.   

 

3.1.1 Local CAPM (LCAPM) 

In its original form, the setting of the CAPM in equation (3.1) assumes the benchmark 

portfolio is the local market portfolio and that it is the only source of systematic risk for 

firms. This assumption is based on the segmented international financial market during 

the 1960s, when the model was developed. Thus, equation (3.1) can be regarded as a 

local CAPM (LCAPM, henceforth). Proponents of segmented world capital market may 

use the LCAPM to calculate the cost of equity for a firm. Equation (3.1) in a local 

setting is given by: 

Cost of Equity = (Risk-Free Rate) +  

(Local Risk Measure) x (Premium for Local Systematic Risk)  

or   FMiFi RRRCEE  )(       (3.2) 

where MR  is the return on the local market index and the risk measure i  is obtained 

by regressing a market model using time series of firm stock returns on the local market 

returns:  

tMtiiit rr           (3.2a) 

where itr  is the actual return for firm i  and Mtr  is the actual return for the local market 

portfolio. The parameter i  and i are the intercept and beta coefficient, respectively. 

Excess returns are not employed here as it is not the purpose of this study to test the 

validity of CAPM. Furthermore, the use of the market model does not affect the quality 

of the estimates. Hence, actual returns are used in the estimation of beta for this study. 
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3.1.2 Global CAPM (GCAPM) 

With the fast development of world financial market after the 1980s, the world equity 

market has gained a high level of liberalization and integration. In a fully integrated 

global capital market, a firm’s stockholders could be investors from many different 

countries because it is assumed that each of them holds a globally diversified portfolio. 

A global, classic CAPM could then be used in which the return premium to any 

investment, when measured in a specific currency unit, is the same for all investors. 

This is because the beta of each stock is measured with reference to the global capital 

market index and the market premium to be used is the global equity risk premium.  

 

Extending equation (3.1) to a global setting, a global CAPM (GCAPM, henceforth) is 

given by: 

Cost of Equity = (Global Risk-Free Rate) +  

(Global Risk Measure) x (Premium for Global Systematic Risk)  

or   G
F

G
M

G
i

G
Fi RRRCEE  )(       (3.3) 

where G
FR  is the global risk-free rate, G

MR  the global portfolio return, and G
i  is 

obtained by regressing firm returns on the global market returns: 

t
G
Mt

G
i

G
iit rr          (3.3a) 

where G
Mtr  is the return for the global market portfolio. The parameter G

i  and G
i are 

the intercept and beta coefficient, respectively. 

 

3.1.3 Two-factor CAPM (2F-CAPM) 

The preceding sections have discussed the CAPM under two extreme assumptions, that 

is, either the world capital market is fully segmented or is fully integrated. Tests of the 

classic CAPM under the hypothesis of full market integration have rejected a single 
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source of risk as being adequate in describing cross-section variations of returns across 

different countries (see Harvey, 1991). This rejection could mean that the world capital 

market is not integrated. Driven by the belief that the world capital market is probably 

neither fully segmented nor fully integrated, as well as the findings of Bekaert and 

Harvey (1995) and Bekaert et al. (2005) that some emerging markets are partially 

integrated with global capital markets, this study proposes a two-factor model which 

introduces a global market factor into the classic CAPM, hereafter denoted as 2F-

CAPM.5  

 

The 2F-CAPM includes both types of premium, one for the stock’s exposure to the 

return on the local market portfolio and another for the exposure to the return on the 

global market portfolio. Therefore, the model captures the sensitivity of a firm’s returns 

not only to the local market movements, but also to the global market movements. The 

cost of equity under the 2F-CAPM is given by: 

Cost of Equity = (Risk-Free Rate) + (Local Risk Measure) x  

(Premium for Local Systematic Risk) +  

(Global Risk Measure) x (Premium for Global Systematic Risk) 

or    G
F

G
MGiFMLiFi RRRRRCEE  )(     (3.4) 

 

Note that Li  and Gi  in equation (3.4) are denoted differently from the 

 coefficients in equations (3.2) and (3.3). This is to highlight the fact that they are 

coefficients measuring partial sensitivity of firm returns to the local and global market 

movements, respectively.  

 

                                                 
5 A two-factor setting is common in the literature of asset pricing for partially integrated markets. However, there are a few different 
approaches to deal with partially integrated pricing models, see for example, Errunza and Losq (1985), Errunza et al. (1992), 
Kearney (2000) and Gérard et al. (2003). 
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The beta estimation for the 2F-CAPM is based on the following model: 

t
G
MtGiMtLiiit rrr         (3.4a) 

 

In conjunction with the findings of Estrada (2002) and Chen and Chen (2004) that 

downside beta has a stronger explanatory power on stock returns than standard beta, this 

study proposes a downside version of the LCAPM, GCAPM and 2F-CAPM, where the 

risk measures in equation (3.2), (3.3) and (3.4) are replaced with downside beta. The 

downside models are discussed in more details in the following section. 

 

3.1.4 Downside LCAPM (DLCAPM) 

The calculation of downside beta involves isolating instances when the firm and the 

local market index returns are less than zero. In the LCAPM framework as in equation 

(3.2), the cost of equity calculation utilizing the downside beta approach is denoted as 

DLCAPM and the equation becomes: 

Cost of Equity = (Risk-Free Rate) +  

(Downside Local Risk Measure) x (Premium for Local 

Systematic Risk)  

or  FM
D

iFi RRRCEE  )(       (3.5) 

where D
i is the downside local risk measure, and this is the only component that 

differentiates equation (3.5) from equation (3.2). 

  

To obtain the downside risk measure or downside beta, two new ‘downside’ series D
itr  

and D
Mtr  are generated to replace itr  and Mtr , respectively. These two downside series 

are the firm and market returns that have value less than zero6. These two newly 

                                                 
6 Chen and Chen (2004) found that downside risk measure relative-to-zero return rate, which is a measure relative to investors’ net 
wealth effect, has stronger power in explaining future returns than downside risk measure relative-to-mean return rate (a measure 
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generated downside series are  0,min it
D

it rr   and  0,min Mt
D

Mt rr  , respectively (see 

Estrada, 2002). The beta that is obtained from the regression of these two new series is 

called ‘downside beta’, denoted as D
i . The regression to obtain the downside local risk 

measure is given by: 

t
D

Mt
D

i
D
i

D
it rr          (3.5a) 

where 
 
 D

Mt

D
Mt

D
itD

i r

rr

var

,cov
    

     

3.1.5 Downside GCAPM (DGCAPM) 

Using Estrada’s approach, the downside risk model can be extended to the GCAPM. 

The rationale is that even if the market is globally integrated, investors might still have 

a preference for asymmetric risk. The downside version of the GCAPM where we 

termed as DGCAPM is shown below: 

Cost of Equity = (Global Risk-Free Rate) +  

(Downside Global Risk Measure) x  

(Premium for Global Systematic Risk)  

or  G
F

G
M

DG
i

G
Fi RRRCEE  )(       (3.6) 

where DG
i  is the downside global risk measure. 

 

The regression to obtain the downside global risk measure for this model is given by: 

t
DG

Mt
DG

i
DG
i

D
it rr          (3.6a) 

where DG
Mtr  is the return for global market portfolio that has value less than zero. This 

new downside series is  0,min G
Mt

DG
Mt rr  . The downside global beta coefficient is then 

given by: 
                                                                                                                                               
relative to the market performance). This finding is consistent with their hypothesis that investors are more concerned with their net 
wealth effect than the market relative performance. 
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3.1.6 Two-factor Downside CAPM (2F-DCAPM) 

We also propose a downside version of the two-factor CAPM to calculate cost of equity. 

This is an extension from equation (3.4) and is given by: 

Cost of Equity = (Risk-Free Rate) + (Downside Local Risk Measure) x  

(Premium for Local Systematic Risk) +  

(Downside Global Risk Measure) x  

(Premium for Global Systematic Risk) 

or    G
F

G
M

D
GiFM

D
LiFi RRRRRCEE  )(     (3.7) 

where D
Li  is the downside local beta and D

Gi  the downside global beta. These beta 

coefficients are obtained from the regression given by: 

    t
DG

Mt
D
Gi

D
Mt

D
Li

D
i

D
it rrr         (3.7a) 

where 

 

                 
           222

2

0,min0,min0,min0,min

0,min0,min0,min0,min0,min0,min0,min
G

MtMt
G

MtMt

G
Mtit

G
MtMtMtit

G
MtD

Li
rrErErE

rrErrErrErE




  

        

 

                 
           222

2

0,min0,min0,min0,min

0,min0,min0,min0,min0,min0,min0,min
G

MtMt
G

MtMt

Mtit
G

MtMt
G

MtitMtD
Gi

rrErErE

rrErrErrErE




  

 

 

 

 



72 

 

3.1.7 The Non-CAPM Cost of Equity: Estrada Model 

Existing empirical evidence has questioned the validity of the classical CAPM for 

applications in emerging markets. For example, Harvey (1995) and Estrada (2000) 

showed that standard betas are not correlated with returns computed for the world 

market. In addition, the beta values seem to be too small to reflect cost of equity that 

most investors deem as reasonable. These problems have led some scholars to look for 

measures of risk beyond the realm of CAPM. One of such alternatives is offered in 

Estrada (2000, 2001).  

 

In the application of the classical one-factor CAPM, beta coefficient is used as the only 

risk measure in the calculation of cost of equity. However, Estrada (2000, 2001) argued 

that the standard beta is not appropriate for estimating the cost of equity for emerging 

markets and suggested several risk variables such as total risk as measured by the 

standard deviation of returns, and downside risk as measured by the semi-deviation of 

returns and downside beta. The application of downside beta in calculating cost of 

equity has been shown in equations (3.5), (3.6) and (3.7). The measures using standard 

deviation and semi-deviation of returns are discussed next.   

 

(i) Standard Deviation of Returns (Total Risk)  

From a local investor perspective, the general framework of Estrada’s model can be 

given as: 

Cost of Equity = (Risk-Free Rate) + (Total Risk Measure) x  

(Premium for Total Risk)  

or  fmifi RRRCEE  )(       (3.8) 
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The total risk for the stock returns of any particular firm is basically given by the simple 

standard deviation of the return series,  



T

t
iit rr

1

2

i T

1     (3.8a) 

where T is the total number of observations and 



T

t
iti rr

1T

1
. 

 

(ii) Semi-Deviation of Returns (Downside Risk)  

Using downside risk as risk measure is not a new concept. It was first suggested by Roy 

(1952) who believed investors will prefer safety of principal first and will set some 

minimum acceptable return that will preserve the principal. Roy’s concept became 

influential in the development of downside risk measures.  The cost of equity measure 

for this model can be written as: 

Cost of Equity = (Risk-Free Rate) + (Downside Risk Measure) x  

(Premium for Downside Risk)  

or  fmiRfi RRRCEE
ft

 ,)(        (3.9) 

The semi-deviation measures the average deviation of returns below zero: 

  



T

t
itiR r

ft
1

2
, 0,min

T

1        (3.9a) 

The iR ft , measure obtained is then applied to equation (3.8) in replacement of i to 

calculate the firm-level cost of equity. 

 

3.2 Selection of the Best Risk Measure 

Previous sections have proposed eight different risk measures for application in the 

calculation of cost of equity. We are interested to find one risk measure that gives the 

best fit to calculate the firm’s cost of equity. Previous literature, including Estrada 

(2000, 2001, 2002) and Chen and Chen (2004) have used the risk-return approach to 
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compare the performance of several risk measures investigated. They estimated either a 

cross section regression (see Estrada, 2000, 2001, 2002) or a pooled regression (see 

Chen and Chen, 2004) of the actual stock returns which reflect the ex-post cost of 

equity on each of the various risk measures under investigation, and then refers to the 

coefficient of determination (R2) of the model to decide the best risk measure.  

 

We follow this approach and estimate the following pooled regression of the actual firm 

stock returns on the risk measure: 

it
panel

ititr   10        (3.10) 

where i=1,2,...,n, n is the number of firms; t=1,2,...,T; itr  is the panel stack series of the 

actual realized ex-post firm stock returns; panel
it  represents the panel stack series of the 

risk measure; and 0 and 1  are the panel regression coefficients.  

 

The R2 of model (3.10) is basically the sum of square of the regression divided by the 

total sum of square of the model, given by: 

 
 2
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2
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
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




RR

RR
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it
 

where itR̂  is the fitted or the estimated value of the firm stock returns from model (3.10).  

 

In the view that some models have two betas and some have one beta, the adjusted R2 of 

the models were recorded and used as the selection criterion to find out which of the 

risk measures has the highest explanatory power. The advantage of referring to adjusted 

R2 value is that it only increases if the additional beta improves the model more than 

would be expected by chance. The adjusted R2 is given by: 
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 
1

1
11 22





kn

n
RR  

where n is the number of observations and k is the total number of regressors. The 

empirical models used in this study are summarized in Table 3.1. 

 

3.3 Determinants of Cost of Equity  

After we identify the model with the best fit for calculating cost of equity, we proceed 

to investigate the potential determinant(s) of the firm’s cost of equity on a sectoral basis. 

From the literature reviewed in Chapter 2, in general, firm-specific factors can be 

categorized into two; variables measured based on accounting information only 

(accounting-based) and variables measured based on relations between market data and 

accounting data (market-based). These variables are actually financial ratios which are 

taken from a firm’s income statement, balance sheet, or both. The use of financial ratios 

is popular because they enable interested parties to make relative comparisons of firm 

performance across different firms (cross-section analysis) or over time (time-series 

analysis).  

 

Financial ratios are discussed in almost every basic finance textbooks and are divided 

into five basic categories for convenience. They are debt, activity, liquidity, profitability, 

and market ratios. Debt, activity and liquidity ratios mainly measure the risk factor of a 

firm. For example, debt ratios give indication on the debt position of a firm and the 

ability of the firm to service interest payments. Ratios under “liquidity” are often 

regarded as good leading indications of a firm’s cash flow. Low or declining liquidity 

could be a signal of financial distress and even precursor to bankruptcy. Last but not 

least, activity ratios show the efficiency of a firm in converting its various asset 

accounts, including inventory, into sales or cash. More often, activity ratios are used as 

a yardstick on the efficiency of a firm in allocating its resources.   
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On the other hand, ratios related to profitability are some measure of returns. The 

profitability ratios enable evaluation on a firm’s profits with respect to sales, assets or 

its equity holders’ investment. Appraisers will be able to gauge how well a firm makes 

investment and financing decisions. Market ratios are the only group in the five 

categories which capture both the risk and return factor of a firm. The market ratios also 

differ from the previous four groups of ratio in that they are market-based while the 

others are accounting-based. These market-based ratios provide insights into the 

assessment of investors in the marketplace on the firm performance in terms of risk and 

return. Should the firm’s accounting ratios suggest that the firm has higher risk than its 

industry average, this information ought to be reflected in a lower stock price. 

  

Since each debt, activity, liquidity, profitability, and market categories can be measured 

by few different financial ratios, we choose one ratio to represent each category. The 

selection is based on those previously used in the literature. As the number of potential 

determinants of cost of equity is overwhelming, we only choose the most cited or 

employed variable for each category. A total of seven potential independent variables 

have been identified. The additional two variables are firm size and stock liquidity 

which are shown to have a significant effect on the variations of cost of equity.  

 

We consider seven variables where the first four variables (CR, DE, EPS and TAT as 

explained below) are characterized as accounting-based and the last three variables (MB, 

SIZE and SL as explained below) are characterized as market-based. The determinants 

and the hypothesized relationship of these variables with cost of equity are discussed in 

detail in the sub-sections below.  
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Accounting-based variables: 

a) Current Ratio, CR (positive/negative): Current ratio is normally used as an 

indication of the firm’s ability to fulfil short-term obligations. Higher current 

ratio means the firm has more short-term assets (cash, receivables, and inventory) 

and hence is more capable to pay off its obligations as they are due. High 

liquidity also ensures that the firm is able to take on profitable investment when 

they become available. On the other hand, it could also mean inefficient use of 

funds. So it is debatable whether the sign should be positive or negative. Omran 

and Pointon (2004) found current ratio to be a significant factor in explaining 

cost of equity. Their results showed that higher current ratio is related to lower 

cost of equity. CR is defined as total current assets divided by total current 

liabilities.  

 

b) Debt-to-Equity Ratio, DE (positive): Debt-to-equity ratio measures the amount 

of a firm’s debt financing in relative to its equity financing. Modigliani and 

Miller (1958, 1963) established that cost of equity is a function of leverage 

(debt-to-equity ratio) and taxes (corporate and individual level). Expanding the 

study of Modigliani and Miller, Dhaliwal et al. (2006) provided evidence that 

cost of equity is negatively associated with corporate taxes but positively related 

to personal taxes. Ameer (2007) argued that the advantage provided by interest 

expense deduction diminishes after a certain point, and the additional financial 

risk associated with higher debt level outweighs the lower nominal cost of debt, 

thereby increasing the cost of equity. When a firm’s financial risk increases, cost 

of equity also increases. DE is defined as total debt divided by common equity. 
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c) Earnings per Share, EPS (positive): Earnings per share have similar effect as 

dividend yield according to Fama and French (1988). The notion of using 

dividend yield to forecast returns is not new. Evidence to support the notion can 

be found in the study of Rozeff (1984), Campbell and Shiller (1988), Fama and 

French (1988) and Campbell (1991), among many others. Their findings are in 

accord with the intuition that stock prices are low relative to dividends when 

discount rates (cost of equity) and expected returns are high. Therefore, a 

positive relationship between earnings per share and cost of equity is expected. 

EPS is defined as earnings available for common stockholders divided by 

number of shares outstanding. 

 

d) Total Asset Turnover Ratio, TAT (negative): Ang et al. (2000) argued that asset 

turnover ratio measures the efficiency of management in utilizing assets. Firms 

with higher asset turnover ratio have lower cost of equity in the framework of 

Ang et al. (2000) because it is a reflection of lower managerial agency problem. 

Their findings are supported by Singh and Nejadmalayeri (2004) who suggested 

that managerial efficiency in utilization of firm resources has a positive effect on 

cost of equity. TAT is defined as total sales divided by total assets.  

 

Market-based variables: 

e) Market-to-Book Ratio, MB (negative): Fama and French (1993) showed that 

book-to-market ratio is an important valuation measure for explaining average 

stock returns. The ratio may act as a proxy for distress risk factor since 

financially distressed firms are likely to have high book-to-market ratio. Gode 

and Mohanram (2003) also pointed out that higher book-to-market ratio reflects 

higher perceived risk. Ameer (2007) documented that book-to-market ratio is 
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positively correlated to cost of equity. This study uses the market-to-book ratio 

available from Datastream. Following Guedhami and Mishra (2009), a negative 

relation is expected. MB is defined as the market value of the ordinary (common) 

equity divided by the balance sheet value of the ordinary (common) equity.  

 

f) Firm Size, SIZE (negative): The well-known effect of firm size on stock return 

variations is first embedded in Fama and French’s (1993) three-factor model. 

They found small firms have higher average returns than those of the large firms. 

Bloomfield and Michaely (2004) reported that analysts expect large firms to 

have slightly less risk and therefore there should be a negative relationship 

between size and the cost of equity. Hail and Leuz (2006) also found a 

significant negative relationship between firm size and the cost of equity. SIZE 

is defined as the natural logarithm of market value of a firm’s outstanding 

common stock at the end of each year. 

 

g) Stock liquidity, SL (negative): Stock liquidity is an important attribute since 

highly liquid stocks can be bought and sold with minimal impact on stock prices. 

On the contrary, an illiquid stock will increase cost of trading because of the 

difficulty to trade the stocks. The influence of trading costs on investors’ 

required returns was examined by Amihud and Mendelson (1986), Brennan and 

Subrahmanyam (1996) and Jacoby et al. (2000). Their studies indicate a direct 

link between liquidity and cost of equity. Following Brennan et al. (1998) and 

Chordia et al. (2001), the natural logarithm of annual trading volume is used as 

the proxy for SL.  
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Table 3.1: Model Summary for the Study 

 
Model 
 

 
Risk Measure 

LCAPM [equation (3.2)]: 
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Table 3.1, continued. 

 
Model 
 

 
Risk Measure 
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Estrada’s models: 
Standard Deviation [equation (3.8)]: 
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3.4 The Panel Models for Examining the Determinants of Cost of Equity 

To investigate the determinants of cost of equity, a panel regression approach is more 

efficient and informative. A panel regression not only provides spatial and temporal 

dimension of the longitudinal data, it also has the capacity to handle larger sample size 

and therefore gives higher degrees of freedom, more precise estimators, and greater 

statistical test power. The specification in panel regression also allows for greater 

flexibility to account for sophisticated behavioural effects and it imposes less restrictive 

assumptions compared to the usual linear regression. With panel setting, the spatial 

dimension of Malaysian firms as well as the time span dynamics over the sample period 

can be incorporated into a single model. Different panel models are considered and they 

are discussed below. 

 

3.4.1 The Fixed Effect Model 

We can express our model for determinants of cost of equity in a panel structure as 

follows: 

itititit XY     Ni ,...,1  and Tt ,...,1    (3.11) 

where itY  denotes the cost of equity for firm i and year t,   is a vector of kx1 

coefficients and itX  is a vector of kx1 determinant variables. The term it  is referred to 

as idiosyncratic or time varying error and it is assumed to capture all the unobserved 

factors that change over time and affect itY . The panel series in the above equation are 

stacked by firm as a unit of panel containing all the T observations. Pooling (stacking) 

the time series and cross-section data only raises little statistical complications to 

applying Ordinary Least Squares (OLS) estimators if the regression relationship is 

assumed to remain constant over space and time. OLS provides consistent and efficient 

scalar estimates of the common intercept and slope coefficient. This means we can run a 

simple regression on the panel dataset, preserving all the linear regression assumptions. 
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However, in setting the panel determinant model for cost of equity, it is only fair to 

assume that firms are behaving differently. The unobservable characteristics, such as 

brand name, patent rights, monopoly power, managerial competency and worker quality 

which are all constant over time, or at least in the short run, are likely to differ across 

firms. These time-invariant firm heterogeneity factors are likely to affect the cost of 

equity when we stack many firms as a panel series. They can be modelled as follows: 

itiititit XY          (3.12) 

where i  is the unobserved heterogeneity across firm i but invariant over time t. In 

panel regression, these are called the fixed effects or unobserved effects. If these factors 

are uncorrelated with the explanatory variables then we can safely apply the pooling 

method with OLS estimator on the above equation. However, if these factors are 

correlated with the explanatory variables, pooled OLS is biased and inconsistent. One 

way of getting rid of these fixed effects is to difference the data across years, as follows: 

)()()()()( 1111   ititiiitititititit XXYY   (3.13) 

We can then apply the OLS to estimate the following model: 

itititit XY                         (3.13a) 

The OLS estimator on the above equation is called the first-differenced estimator and in 

this setting we allow the explanatory variables to correlate with the unobserved firm 

heterogeneity. Two consequences arise with this estimator; we will lose one period of 

data point in taking the first difference, and the variation in the series is greatly reduced 

and hence a larger coefficient standard error is expected.  

 

Another way to eliminate the fixed effect is to use the fixed effect transformation, where 

the following transformation is done: 

)()()()()( iitiiiitiitiit XXYY     (3.14) 
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or alternatively: 

 itititit XY                           (3.14a) 

where )( iitit YYY  is the time demeaned data on Y, and similarly for itX and it . With 

this transformation, the unobserved effect has been moved out.  

 

As we are transforming the series with deviation from the mean within each cross-

section (firm) observation, this transformation is also called the within transformation. 

The transformation basically applies the within sum of squares as in the analysis of 

variance framework. Applying OLS on this transformed equation is called the within 

estimator or more popularly known as the fixed effect estimator. The within estimator is 

unbiased if the idiosyncratic error is uncorrelated with the explanatory variables but it 

also allows for arbitrary correlation between i  and the explanatory variables, as the 

first-differenced estimator. The error term it  follows the classical IID assumptions with 

mean zero and constant variance. Note that under this setting, the fixed effect model 

cannot accommodate any other time-invariant explanatory variable, as they will be 

swept away by the fixed effect transformation. 

 

Another way to estimate the fixed-effect estimator is using a dummy variable approach. 

This approach assumes that the firm effects can be captured by introducing multiple 

intercept to capture the time-invariant firm effect. We can introduce i-1 number of 
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intercepts if the model has a constant term to avoid the dummy variable trap as in the 

following: 

itiiititit DXY          (3.15) 

where iD  is the vector of dummy variables assigned to each firm. The OLS estimator 

from this setting is called the Least Squares Dummy Variable (LSDV) estimator. The 

problem with LSDV estimator is with the large number of dummy variables needed 

when firm number increases. The degrees of freedom of the regression will fall sharply 

with increasing number of parameters to be estimated.  

 

Both first-differenced estimator and fixed-effect estimator are unbiased and also 

consistent as N increases to infinity. So the only criterion we can use to compare them is 

on the relative efficiency of these estimators, and this can be determined by the serial 

correlation test on the idiosyncratic errors. If the idiosyncratic error is correlated, then 

the fixed-effect estimator is more efficient. As whether a fixed effect model is needed, 

basically an F-test can be conducted. 

 

3.4.2 The Random Effect Model 

Similar to the firm effect, the panel cost of equity equation is also likely to change 

across year (time) as the general business condition might be different from year to year. 

We can extend equation (3.12) to incorporate a period-specific effect, specified as: 

 ittiititit XY         (3.16) 

where t  captures the period effects. Adding the period effects is equivalent to adding 

dummy variables ttD  . This model is referred to as a two-way fixed effect model, 

henceforth. A one-way fixed effect model is referring to model with only firm effect or 

period effect. 
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If the unobservable firm heterogeneity is uncorrelated with any of the explanatory 

variables, then using the fixed effect transformation results in inefficient estimators. In 

this case, we can actually apply another type of model called the random effect model. 

Random effect model is basically an error decomposition model that treats firm and 

time heterogeneity i  and t  as part of the error terms. In other words, the random 

effect model assumes the firm and time intercepts as a function of a mean value plus a 

random error, and they must be uncorrelated with the regressors. A two-way error 

component random effect model can be written as:  

 

ititit vXY           (3.17) 

where ittiitv    

,0 itti EEE   
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 0'  ititittiti XEXEXE   

 

Both i  and t  are now random firm and period error terms with a mean value of zero 

and variance of 2
  and 2

 , respectively. They are not directly observable and thus are 

a form of latent variable (Hsiao, 2003). The variance component of the dependent 

variable, 2
C , can be decomposed into: 
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2222
  C         (3.18) 

 

If 2
  and 2

 are both zero, there is no distinction between the random effect model and 

a simple pooled regression. In the above specification, the disturbance terms it  and is  

for st   can be correlated. The correlation coefficient, ),( isitcorr  , is given as: 

22
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isitcorr        (3.19) 

 

The usual OLS estimator becomes inefficient in the presence of autocorrelation. To 

overcome the autoregressive correlation problem, we can use Generalized Least Squares 

(GLS) to estimate the model, provided we have a large N and relatively small T. The 

GLS transformation basically is to run the following model: 

)()()1()( iitiitiit vvXXYY      (3.20) 
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The GLS basically is a quasi-demeaned transformation, which subtracts a fraction of the 

time average, where the fraction depends on 2
 , 2

  and T. The feasible GLS estimator 

is known as the random effect estimator. The random effect estimator is consistent and 

asymptotically normally distributed as N gets large with fixed T. However, under the 

quasi-demeaned transformation )( iit YY   could be correlated with )( iit vv   because 

iv  is correlated with itY , and then the GLS estimator will be biased. There are several 

ways to correct for this bias. The system GMM estimator to be discussed in the coming 

sub-section is one of the best choice. The random effect model basically is a 

generalization of the pooled and fixed effect model. Pooled regression estimator is 
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obtained when 0 and fixed-effect estimator is obtained when 1 . So when   gets 

close to 1, random effect estimator tends to be the fixed-effect estimator. If   gets close 

to zero, we get close to the pooled estimators.  

 

3.4.3 The Dynamic Panel Model with GMM Estimators  

If there is autocorrelation in the cost of equity modeling, then a dynamic panel model is 

necessary to deal with it. Although there are many types of autocorrelation in panel data, 

generally, a temporal autocorrelation on lags of the residuals can be used to infer on the 

autocorrelation problem. As in time series model, we can introduce the lagged 

dependent variable to take care of the autocorrelation problem but in panel setting, the 

autoregressive setting is a bit complicated.  

 

A popular autoregressive panel model or the dynamic panel model is attributed to 

Arellano and Bond (1991). The Arellano-Bond dynamic panel model basically applies 

the GMM estimator with the instrumental variable approach, but one assumption of this 

model is the temporal span must be greater than the number of regressors in the model, 

which is suitable for the setting of the cost of equity equation we use. 

 

Consider a panel model with a lagged dependent variable: 

ititititit vXYY    1       (3.21) 

where itiitv    and         0 jsititiiti EEEE   for ji   and st  . 

We can then estimate the following the first-differenced equation to remove the firm 

specific heterogeneity: 

ititititit vXYY    1       (3.22) 
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The transformed error term however is now correlated with the lagged dependent 

variable. Also, there is a problem of dependence of itv and 1 itv , implying OLS 

estimates are inconsistent. A two-stage least square (2SLS) method with instrument 

variables that are both correlated with 1 itY  and orthogonal to itv can produce a 

consistent estimator provided 3T . When we have more than three time series 

observations, additional instruments are available. For example, for t=3, 1iY  can be used 

as the instrument, but when t=4, both  1iY  and 2iY can be used, and so on until t=T, the 

vector of  2,21 ,...,, Tiii YYY  can be used. In other words, the dependent variable of lagged 

two periods or higher are used as instruments in the first-differenced equation with the 

following moment conditions: 

  0 itsit vYE  for t=3,…,T and 2s      (3.23) 

 

To improve the efficiency of the estimator, both past and future explanatory variables 

are also valid instruments if the Xs are strictly exogeneous variables, such that:  

  0  itsit vXE  for t=3,…,T and all s   

 

When 3T  the model is overidentified and the 2SLS is not asymptotically efficient 

even if the complete set of available instruments is used for each equation and the error 

terms are homoskedastic. Arellano and Bond (1991) shows that the Generalized Method 

of Moments (GMM) developed by Hansen (1982) can provide an asymptotically 

efficient estimator in this content. The GMM estimator uses all the past information of 

the dependent variable itY as instruments on the structure of the error term to obtain a 

consistent GLS estimator. GMM is favoured against OLS estimator because the OLS 

estimator suffers from several shortcomings; it has a mean reversion tendency, it is 

inefficient for non-normal distributions and it introduces significant biases when stocks 
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are illiquid. Conversely, the GMM estimator does not rely on the assumptions of 

normality, homoskedasticity and serial correlation as required by the OLS estimator.  

 

In using the GMM estimator, the issue of reverse causality is crucial. We have to deal 

with potential endogeneity of both the lagged dependent variable and the determinant 

variables carefully. If there is endogeneity problem, meaning the explanatory variable, 

is correlated with the current or past realizations of the error term, such that 

  0  itsit vXE  for ts  , and if X is assumed to be weakly exogenous, such that 

  0  itsit vXE  for ts  , then the instruments available for the first differenced 

equations are weak (Blundell and Bond, 1998) when  approaches unity and 

2
 increases relative to 2

 .  

 

Blundell and Bond (1998) shows that first-differenced GMM may be subject to a large 

downward finite-sample bias if the time period is small, making the GMM estimator 

poorly behaved because the lagged levels of the variables are only weak instruments, 

especially when the data is highly persistent in a small T panel setting. According to 

Arellano and Bover (1995) and Blundell and Bond (1998), if we assume the variables 

are mean stationary, then additional moment conditions can be exploited to form a 

system GMM to alleviate the weak-instrument problem. A simple rule of thumb is to 

check if  from the first-differenced GMM lies in between those estimated by the 

pooled estimator and the within estimator. If the GMM   is close to or below the 

within estimator, it is likely the GMM estimator is also biased downwards due possibly 

to weak instruments. 
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3.4.4 The System Dynamic Panel Model with GMM Estimators 

Following Arellano and Bover (1995) and Blundell and Bond (1998), a system GMM 

can provide much superior finite sample properties and thus a more efficient estimator. 

Basically the system GMM makes supplementary moment conditions exist for the 

equation in level. Consider augmentation on the first-differenced GMM with: 

  01  itit YvE  for t=3,…,T       (3.24) 

This allows the use of lagged first-differences of the series as instruments for the 

equations in levels.  

 

For strictly exogenous explanatory variables, the appropriate level moment conditions 

would be:  

  0 sitit XvE  for t=3,…,T and all s     (3.25)

   

While for weakly exogenous explanatory variables, the appropriate level moment 

conditions would be:  

  0 sitit XvE  for t=3,…,T and all 1s      (3.26) 

 

The system GMM basically used these assumptions under a stacked system of (T-2) 

equations in both the first-differences and the levels. In other words, the system GMM 

estimator combines the first-differenced equations with suitably lagged levels as 

instruments, with an additional set of equations in levels with suitably lagged first 

differences as instruments. We can then apply a Sargan test to verify if there is any 

over-identification problem.  
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3.4.5 Specification Tests on Panel Model 

A list of specification tests is available to find out which of the panel regression settings 

is suitable for the dataset employed. From pooled to fixed or random effect, we can rely 

on F-test and LM test, respectively. To compare fixed or random effect, we can refer to 

Hausman test. To see if a dynamic specification is suitable, then the first-order and 

second-order autocorrelation tests are needed. In addition, a Sargan Test can be 

employed to examine the validity of instrumental variables used in estimators. 

 

Fixed Effect Model versus Pooled Model: F Test 

In order to decide whether a fixed effect specification is superior to the pooled 

regression specification, a simple F test is conducted. The hypothesis to be tested is: 

H0: Pooled regression model  

H1: Fixed effect model 

 

The F test statistic is given by: 

)1/()(

)1/()(
0 




kNNTRSS

NRSSRSS
F

Fixed

FixedPooled        (3.27) 

where PooledRSS  and FixedRSS  are the residual sum of squares for the pooled regression 

and the fixed effects model, respectively, and k is the number of regressors in the fixed 

effect model. The F statistic is distributed as 1,1  kNNTNF  under H0. If 0F  is significant, 

the fixed effect model is the preferred model. Alternatively, one can also perform the 

Chi-square test that is equivalent to the F test.  

 

Random Effect Model versus Pooled Model: Breusch-Pagan LM Test 

The Lagrange multiplier (LM) specification test proposed by Breusch and Pagan (1980) 

can be used to test for significance of random effects over the pool regression. The null 
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hypothesis for one-way firm random effect is that the firm variance component is zero, 

with test statistic given as follow:  
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For two-way random effects, the LM test combines both the LM statistics of both firm 

and period variance components and the null hypothesis is that they are zero as given in 

the following equation:  

2
2~  LMLMLM   under H0 

 

Random Effect Model versus Fixed Effect Model: Hausman Test  

If the null hypothesis is rejected in favour of choosing the fixed effect model, the next 

step is to verify whether a random effect model is more superior. The specification test 

proposed by Hausman (1978) is used to test for orthogonality between the random 

effects and the independent variables. If 0)( itit ZE  , the GLS estimator becomes 

biased and inconsistent.  

 

The Hausman test statistics is given by: 

)ˆˆ()]ˆ()ˆ([)ˆˆ( 1
RandomFixedRandomFixedRandomFixed VarVarH      (3.29) 

where Fixed̂  is the estimator for the fixed effect model, Random̂  is the estimator for the 

random effect model, andVar denotes the variance. The hypothesis to be tested is: 

H0: Random effect model 

H1: Fixed effect model  

For the details of the Hausman test, see Baltagi (2002), Hsiao (2003), and Greene 

(2003). In fact, when T is large, both the fixed effect and GLS estimators should not be 

significantly different (Hsiao, 2003, p. 41, 51). 
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GMM Dynamic Panel Specification: Autocorrelation mj Test 

For a first order dynamic panel specification where the lagged dependent variable is 

included as a regressor, if the errors in levels are serially independent, we can expect 

those in first differences will have first order serial correlation. However, in this case, 

second or higher order serial correlation should not occur. The jm statistic proposed by 

Arellano and Bond (1991) is employed. The autocorrelation jm test is asymptotically 

distributed as N(0, 1) under the null of no autocorrelation. It is calculated from residuals 

in the first difference regression model. If the errors in levels are uncorrelated, we 

would expect 1m the autocorrelation test of order one to be significant, but not 2m the 

autocorrelation test for the second order. 

 

In general, the jm statistics are the moment tests of significance of the average j-th order 

autocovariance jc  given by: 


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where jc =  )( jtiit vvE  .  

 

The null hypothesis is H0: 0jc  and the test statistic is given by: 
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ˆ
          (3.30) 

where the denominator represents the standard error of the estimated jĉ . See Arellano 

and Bond (1991) for further detail regarding the test. 
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Validity of GMM Instrumental Regression: Sargan Test 

To test whether an instrumental regression is overidentified, we may test the validity of 

the instruments by checking if the excluded instruments are uncorrelated with the error 

process. The null hypothesis is all instruments are uncorrelated with the error term. A 

strong rejection of the null hypothesis implies that the estimates are invalid, or the 

equation is overidentified. 

 

The Sargan test statistic is given as: 
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       (3.31) 

Basically 2
IVnRS   where n is the number of observations and 2

IVR  is the 2R obtained 

from the regression of the residuals saved from the instrumental variable regression on 

all the exogenous variables, which include both instrumental and the control variables. S 

is distributed as 2
rm  under the null hypothesis where m-r is the number of instruments 

or moment condition minus the number of endogenous variables or the parameters. 

Under GMM, the statistic will be identically zero for any exactly-identified equation, 

and will be positive for overidentified equations.  

 

3.5 Data and Procedure 

3.5.1 Data Description  

The sample for this study covers the period from 3 January 2001 to 31 December 2008. 

All data were collected from DataStream, which include the weekly prices of stocks 

listed on the Main Board of Bursa Malaysia as well as the market indices. The KLCI 

was used as proxy for Malaysian market index and the MSCI US price index was used 

as proxy for the global market index.7 Weekly data were used in the estimation of all 

                                                 
7 The MSCI US market index is used due to the unavailability of global market risk premiums for the calculation of cost of equity. 
All data on market risk premiums were collected from Damodaran’s website for consistency.   
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risk measures. Weekly frequency is preferable because daily series has more noise that 

may affect the quality of the cost of equity estimates.8 The annual averages of the 

weekly 3-month Treasury bill rates of Malaysia and the U.S. were used to represent the 

local and global risk-free rate, respectively. The variables used for exploring the 

determinants of firm’s cost of equity were also obtained from the DataStream database. 

Annual observations were collected from DataStream that compiles the information 

from the annual report of each individual firm listed in Bursa Malaysia. 

 

The calculation of cost of equity in equations (3.2), (3.3) (3.4), (3.5), (3.6), (3.7) (3.8) 

and (3.9) involves the expected value or ex-ante local and global market risk premiums. 

However, as different researchers used different approach and assumption in risk 

premium calculation, there is no consensus on the value of these ex-ante local and 

global market risk premiums (Fernández, 2009). We decided to adopt the approach and 

estimates provided by Damodaran (http://pages.stern.nyu.edu/~adamodar/) as they are 

most widely used in the industry thus far (Fernández, 2009). In the estimation of the 

long-term country risk premium, Damodaran started by referring to the country ratings 

by Moody’s (www.moodys.com). A default spread for a country is computed by 

comparing the country’s dollar-denominated bond9 with the U.S. Treasury bond rate. 

This default rate becomes a measure of added country risk premium for that country and 

is then multiplied with a global average of equity to bond market volatility of 1.5 to 

obtain the country equity risk premium. The total (market) risk premium for a country is 

obtained by adding the country equity risk premium to the historical risk premium of a 

mature market, in this case, the U.S. market. 

 

                                                 
8 For the weekly series, Wednesday closing prices were collected to avoid the Monday and Friday effects. 
9 Bonds denominated in other currencies such as the Euro or Yen can also be used as long as there is a risk-free rate (from a mature 
market) for comparison. 
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Following Damodaran (2010), the sovereign bond premium approach was used to 

overcome the problem associated with the estimation of market risk premium for 

emerging markets. Accordingly, the Malaysian equity risk premium was computed as 

the sum of the premium of a developed market (that is, the U.S. for this study) and 

Malaysia’s country risk premium, which is available from Damodaran’s website on 

annual basis from year 2001 to 2008. Since global market risk premium is not available, 

the U.S. market risk premium was taken as the proxy. Given that only annual risk 

premiums are available, the costs of equity were calculated on annual basis. 

 

We included firms from seven sectors of the Main Board in Bursa Malaysia. After 

filtering out new firms which were listed after 2001 because they do not have a 

complete series of data for the full sample period, we have a total of 354 firms available 

for analysis. They are from Construction (28 firms), Consumer Products (54 firms), 

Industrial Products (129 firms), Plantation (21 firms), Properties (33 firms), Technology 

(12 firms) and Trading/Services (77 firms). Finance sector is excluded from the study 

because not all firm ratios will apply similarly to financial institutions. For example, a 

bank’s strength is not gauged so much by its cash flow and debt-to-equity ratio but its 

tier 1 capital ratio10 and loan-to-deposit ratio. Mining is also excluded because only two 

firms passed the filtering process.  

 

3.5.2 Cost of Equity Measurement 

The risk measure for each firm was estimated using weekly data based on regression 

models (3.2a), (3.3a) (3.4a), (3.5a), (3.6a) and (3.7a). The estimates were obtained for 

every year in the sample period. The total risk and the semi standard deviation were 

calculated based on equations (3.8a) and (3.9a). After obtaining the annual risk 

                                                 
10 Tier 1 capital ratio is the core measure of a bank’s strength from the viewpoint of a regulator. In layman’s term, it is a measure of 
the bank’s sustainability to future losses. For example, a 10% tier 1 capital measure means that for every RM10 deposited by 
customer, the bank is holding RM1 in its vaults or likewise locations. 
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measures for 2001 to 2008, we calculated the cost of equity of the firms following 

models (3.2), (3.3) (3.4), (3.5), (3.6), (3.7) (3.8) and (3.9) by employing the various 

annual risk free rates and annual risk premiums provided by Damodaran 

(http://pages.stern.nyu.edu/~adamodar/).  

 

With 354 sample firms, eight years of sample period and eight variations of cost of 

equity measures, where two variations are from the two-factor models with two risk 

measures each, we calculated a total of: (354 firms) x (8 years) x (10 risk measures) = 

28,320 observations of annual risk measures. A total of: (354 firms) x (10 risk measures) 

= 3,540 series of firm level risk measures were obtained.  

 

For model selection purposes, the 3,540 calculated annual firm risk series were stacked 

into ten pooled risk series for the regression with the stacked series of firms’ actual 

returns (ex-post) according to equation (3.10). The adjusted R2 of the models were 

recorded and used as the selection criterion to find out which of the risk measures has 

the highest explanatory power to be used subsequently for the panel regression analysis 

of the determinants of cost of equity. 

 

3.5.3 Cost of Equity Determinants   

For each variable that is to be used in the panel determinant regression, the eight-year 

time series (2001-2008) for the 354 firms were stacked to construct pooled series. For 

the full sample, each of the pooled series contains 354 firms x 8 years = 2,832 

observations. A similar procedure was used to stack the dependent variable, that is, the 

pooled cost of equity series.  
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Besides conducting panel regression analysis for the full sample, we also conduct the 

same analysis for all the seven sub-sectors. So we need to reconstruct a different set of 

pooled series. The length of the pooled series for each sector depends on the number of 

firms available. The following are the number of observations for the pooled series of 

each of the seven sectors for the panel regression analysis over 2001-2008: 

1. Construction: 28 firms x 8 years = 224 observations 

2. Consumer Products: 54 firms x 8 years = 432 observations 

3. Industrial Products: 129 firms x 8 years = 1032 observations 

4. Plantation: 21 firms x 8 years = 168 observations 

5. Properties: 33 firms x 8 years = 264 observations 

6. Technology: 12 firms x 8 years = 96 observations 

7. Trading/Services: 77 firms x 8 years = 616 observations 

 

All these pooled series were used for panel regression of both the static and dynamic 

models. There are three settings for the static panel model, that is, pooled model, fixed 

effect model, and random effect model. There are two settings for the dynamic panel 

regression, that is, GMM model and system GMM model. With eight sets of panel to be 

estimated, that is, for the full sample and for the seven sub-sectors, a total of 40 panel 

regression models were produced.  

 

Finally, after obtaining the results, the full sample estimates were compared with the 

estimates for the seven sub-sectors to examine the sectoral effects of the cost of equity 

determinants. The estimates produced at the sectoral level can also serve as a robustness 

check for the full sample panel estimates. If the coefficient of a determinant variable is 

statistically significant for more than two sub-sectors with the condition it is also 
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statistically significant for the full sample, it can be concluded that the variable is an 

important determinant of the cost of equity of Malaysian firms. 

 


