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Abstract 
 

 

This thesis is divided into six chapters. In the first chapter, the results of standard 

high-performance computing (HPC) benchmarks are presented in order to assess the 

performance characteristics of the various hardware and software components of an 

own built commodity-class Linux cluster. Introductions to enantioselective synthesis 

and quantum mechanical methods are provided in the second chapter. The third 

chapter gives insights into the enantioselectivity and mechanism of the 

organocatalytic Diels-Alder reaction using density functional theory (DFT) at the 

B3LYP/6-31G(d) level of theory. The fourth chapter attempts to rationalize the 

enantioselectivity and mechanism of the organocatalytic Diels-Alder reaction using 

various aspects of DFT. The organocatalytic solid-phase Diels-Alder reaction in 

terms of enantioselectivity and mechanism is theoretically investigated in the fifth 

chapter using the hybrid method ONIOM(QM:MM). The sixth chapter deals with the 

same organocatalyst but as applied to cyanosilylation of aldehydes. The mechanism 

and enantioselectivity of this reaction are also investigated by means of DFT at the 

B3LYP/6-31G(d) level of theory.  
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Abstrak 
 

 

Tesis ini dibahagikan kepada 6 bab. Di dalam bab yang pertama, keputusan tanda 

aras high performance computing (HPC) diberikan untuk menilai karakterisktik 

komponen peralatan dan perisian kluster Linux commodity class yang dibina untuk 

tujuan komputasi. Pengenalan kepada sintesis enantio terpilih dan kaedah-kaedah 

mekanik kuantum diberikan di dalam bab 2. Bab 3 pula menjelaskan isu-isu 

berkaitan pemilihan enantio dan mekanisma pemangkinan organik tindakbalas Diels-

Alder yang dikaji dengan teori density functional (DFT) pada tahap teori B3LYP/6-

31G(d). Di dalam bab 4, perbincangan untuk merasionalisasi pemilihan enantio dan 

mekanisma pemangkinan organik untuk tindakbalas Diel-Alder dari pelbagai aspek 

DFT di ketengahkan. Pemangkinan organik dalam keadaan pepejal bagi tindakbalas 

Diels- Alder yang sama dibincangkan dalam bab 5 menggunakan  kaedah hibrid 

ONIOM(QM:MM). Bab 6 pula membincangkan penggunaan pemangkin organik 

yang sama tetapi tindakbalas yang dikaji adalah pen-sianosililasian aldehid. 

Mekanisma dan pemilihan enantio bagi tindakbalas ini juga dikaji menggunakan 

DFT pada tahap B3LYP/6-31G(d). 
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