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Computational chemistry is the discipline of computing the physical and chemical 

properties of atoms and molecules using the fundamentals of quantum mechanics. 

The expense of computational chemistry calculations is significant and limited by 

available computational capabilities. The use of high-performance computing 

clusters alleviates such calculations. However, high-performance computing (HPC) 

clusters have always required a balance between four major factors: raw compute 

power, memory size, I/O capacity, and communication capacity. In this chapter, we 

present the results of standard HPC benchmarks in order to help assess the 

performance characteristics of the various hardware and software components of an 

own built commodity-class Linux cluster.  

 

 

1.1 Introduction 

Distributed computing is usually used to describe computing that spans multiple 

machines or multiple locations. Entries in the distributed computing taxonomy 

include cluster computing, grid computing, peer-to-peer computing, federated 

clusters and constellations. The primary distinction between cluster computing and 

other forms of distributed computing is the scope of the interconnecting network and 

the degree of coupling among the individual machines [1]. 

Initially, the terms cluster computing and high-performance computing were 

synonymous. Nowadays, the term cluster computing has expanded beyond high-

performance to include high-availability (failover) clusters and load-balancing 

clusters. In practice, there is great overlap among these [1,2]. 

Commercial clusters often use proprietary computers and software, while 

commodity clusters, including Beowulf clusters, are constructed using commodity 

off-the-shelf computers and hardware, and freely available, open source software. 
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Unlike commodity clusters, in proprietary clusters, the software is often highly 

integrated into the system, and the CPU performance and network performance are 

well matched. The main disadvantage of commercial clusters, however, is their cost 

[1]. 

Parallel programming models for such clusters include shared-memory (e.g., 

POSIX threads (Pthreads) and OpenMP), message-passing (e.g., theoretical 

chemistry group message-passing (TCGMSG), message-passing interface (MPI), 

and parallel virtual machine (PVM)), virtual shared-memory (e.g., global arrays 

(GA) and distributed data interface (DDI)), and remote memory access (RMA) (e.g., 

aggregate remote memory copy interface (ARMCI)).  

Over the past decade, high-performance computing clusters built from low cost 

computers have been used in diverse fields to help provide a cost-effective solution 

(i.e., a good price/performance ratio) and to handle large problem sizes beyond the 

capability of a single computer. Interest in high-performance computing clusters has 

been driven by the increase performance of commodity off-the-shelf computers, and 

high-speed, low-latency network technologies.  

The high-performance cluster components are generally broken down into 

multiple categories: the cluster nodes (head node and compute nodes), cluster 

network, operating system, cluster middleware and cluster parallel applications [2].  

Each node may have different characteristics such as single processor or 

symmetric multiprocessor (SMP) design, and access to various types of storage 

devices. In determining the performance of a node, the most important factors are 

processor clock rate, cache size, bus speed, memory capacity, disk access speed, and 

network latency. The first four are determined by CPU and motherboard [1,2].  
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The choice of network technology depends on price, performance (bandwidth 

and latency), compatibility with other cluster hardware and system software, as well 

as communication characteristics of the application that will use the cluster. There 

are a number of choices including Ethernet, Myrinet, Infiniband or Quadrics [1,2].  

Linux provides the most flexible operating system environment for clusters and 

is being widely used as cluster’s operating system. This is due to its wide hardware 

support, stability, manageability, flexibility, scalability, openness, availability and 

low cost [3]. 

Allocating the resources necessary for a cluster’s parallel applications, 

scheduling the application components, providing the necessary communication 

paths over the network, and monitoring the performance and health of the cluster is 

the concern of the cluster’s middleware. There are hundreds of choices available, 

many of which are open source. Examples include the MPICH library that allows 

parallel application components to communicate with each other, the Ganglia 

package, which is a very powerful collection and visualization tool for internal 

system performance parameters, and the Maui scheduler software that manages and 

schedules parallel MPI jobs over network [1,3].  The installation and configuration 

of cluster’s middleware can be simplified by installing cluster management software 

[4] such as OSCAR [5] and NPACI Rocks [6-8]. These clustering toolkits simplify 

cluster deployment, maintenance, and management; and include everything that is 

likely needed for a dedicated high-performance computing cluster. 

Cluster parallel applications fall into three primary categories: compute 

intensive, data or input/output (I/O) intensive, and transaction intensive. Each of 

these has its own characteristics, and network and I/O subsystem requirements [2]. 
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The Northwest Chemistry (NWChem) [9] represents a typical cluster parallel 

application. It is an open source computational chemistry package developed by the 

Molecular Sciences Software group of the Environmental Molecular Sciences 

Laboratory (EMSL) at the Pacific Northwest National Laboratory (PNNL). It is 

designed to run on high-performance parallel computing systems. The package 

includes: (1) high-performance parallel-programming tools and libraries (known as 

ParSoft) such as global arrays (GA), aggregate remote memory copy interface 

(ARMCI), theoretical chemistry group message-passing (TCGMSG), parallel I/O 

(ParIO), memory allocator (MA), parallel linear algebra (PeIGS), and runtime 

database (RTDB), (2) chemistry based objects and application programming 

interfaces (APIs) (e.g., integral API, geometry and basis set objects, symmetry API, 

property module, and python), and (3) NWChem modules that spans the range of 

computational chemistry methods such as Hartree-Fock (HF) or self-consistent field 

(SCF), multiconfiguration SCF (MCSCF), density functional theory (DFT), 

pseudopotential plane-wave (PSPW), coupled cluster singles and doubles (CCSD), 

second-order Møller-Plesset (MP2), configuration interaction (CI), molecular 

mechanics, and molecular dynamics [10]. 

GAMESS-UK [11] is another computational chemistry package that has the 

capability to run on parallel machines. It uses a number of the high-performance 

parallel-programming tools and libraries used by the NWChem package. In contrast 

to NWChem, both SCF and DFT modules are parallelized in a replicated data 

fashion, with each node maintaining a copy of all data structures present in the serial 

version.    

Computational chemistry problems have insatiable appetite for computer 

resources and typically take several days or even weeks on a single processor to 
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produce a final result. Cluster computing solutions from commercial vendors are 

very expensive and are often beyond the capabilities of small to medium-sized 

research groups.  

In order to achieve better computing speed and performance, we have built a 

commodity-class cluster of 8 Pentium® PCs already available at our department. In 

addition, this cluster can act as a prototype system and future implementations of 

Linux clusters at our department can benefit from the benchmarks and suggestions 

made in this study. We present performance evaluations of the CPU, memory, disk 

and network. We also consider the effects of some possible configuration and 

software choices on the computational performance, communications bandwidth and 

latency, and I/O performance. We emphasize on the tools that are provided by the 

NWChem and GAMESS-UK computational chemistry packages as well as on the 

software packages that can improve the performance of these two programs. It is 

hoped that the outcome of this study be of assistance to computational chemists 

willing to design and build a commodity-class cluster.                    

1.2 Cluster Software and Hardware 
 
Our test system for the measurements is a Linux cluster running the NPACI Rocks 

4.1 clustering toolkit (using CentOS 4.2 Linux operating system). It consists of one 

head node (frontend) and seven compute nodes. The frontend node contains Intel® 

Pentium® IV 2.6 GHz processor with 800 MHz front side bus (FSB), 512 KB level 2 

(L2) cache, 3 GB of PC3200 DDR400 SDRAM (dual-channel architecture), and 80 

GB 7200 RPM EIDE hard disk. The compute nodes are Intel® Pentium® IV 2.4 GHz 

processor with 533 MHz FSB, 512 KB L2 cache, 2 GB of PC3200 DDR400 

SDRAM (single-channel architecture), and 40 GB 7200 RPM EIDE hard disk. All 

nodes have integrated Intel Gigabit Ethernet adapters that are connected by an 8-port 
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Gigabit Ethernet layer 2 switch using category 6 unshielded twisted pair (UTP) 

copper cables. The nodes are interconnected using the star topology. The frontend 

node has one extra fast Ethernet network interface card (NIC) connecting it to the 

external, public network. 

1.3 Benchmark Results and Analysis 

The performance of a computer is a function of many interrelated quantities. These 

include the application, the algorithm, the size of the problem, the high-level 

language, the implementation, the human level of effort used to optimize the 

program, the compiler's ability to optimize, the age of the compiler, the operating 

system, the architecture of the computer, and the hardware characteristics [12]. 

There are three main reasons to run benchmarks. First, if any changes are made 

to the cluster, a benchmark will provide with a baseline to see if performance is 

really any different. Second, benchmarks are useful when comparing systems or 

cluster configurations and thus can offer a reasonable basis for selecting between 

alternatives. Finally, benchmarks can be helpful with planning such as making better 

estimates of the impact of scaling the cluster [1].  

In this section, we describe the performance of the various components 

(hardware and software) of our test system based on the results obtained from 

available benchmarks. All the software packages used are open source and are thus 

freely available (except the Intel compilers for Linux that were obtained under the 

non-commercial license and the GAMESS-UK package that was obtained under the 

academic parallel license). Compatibility of the various software packages with each 

other, and with the Linux kernel and hardware were checked prior to installing any 

package. Scheme 1.1 depicts the layered structure of the components of our cluster 

which will be discussed in the sections to follow.   
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Scheme 1.1: Layered structure of the test cluster. 

 
 
1.3.1 Compilers, processor, and memory performance 

Compilers offer options to optimize the application code by applying several 

techniques. For example, compilers try to optimize the usage of caches and registers 

and may significantly reduce the application’s demand for memory bandwidth. 

Using the right set of compiler flags while generating the executable code can affect 

the performance of the application. We tested the NWChem and GAMESS-UK 

codes generated by the GNU compiler collection (GCC version 3.4.4) and Intel 

compilers (version 9.1). The default optimization flags in the makefile were used. 

Several computational chemistry methods (HF, DFT and MP2) using various basis 

sets were examined. The Intel compilers generated more optimized code and 

performance gains of 7-30% with respect to GCC were obtained. 

Since scientific applications such as NWChem and GAMESS-UK are floating-

point intensive, we will concentrate on the processor’s double-precision floating 

point performance. The performance of a processor is a combination of both clock 

frequency (GHz) and instructions per clock cycle (IPC). The frequency is a function 

of both the manufacturing process and the microarchitecture. At a given clock 
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frequency, the IPC is a function of processor microarchitecture and how well the 

specific application being executed is optimized for the processor microarchitecture. 

In addition, it is also possible to increase the processor’s performance by reducing 

the number of instructions required to execute the specific task being measured. This 

can be achieved (as in the case of Pentium® processor) by using the SSE2 (streaming 

SIMD (single instruction multiple data) extensions 2) instruction set that enables 

operation on multiple values at once. The use of SSE2 requires the support from 

both the application and the compiler. Moreover, the speed and size of the 

processor’s L2 and L3 caches can help improve the performance [13].  

The High Performance Linpack (HPL) benchmark [14] measures the floating 

point execution rate for solving a dense system of linear equations in double 

precision (64-bit) arithmetic on distributed-memory computers. It provides a testing 

and timing program to quantify the accuracy of the obtained solution as well as the 

time it took to compute it. 

The HPL benchmark depends on the basic linear algebra subprograms (BLAS) 

library for much of the computation. The BLAS correspond to a collection of 

subprograms intended for performing basic linear algebra operations (i.e., vector and 

matrix operations). The Level 1 BLAS perform scalar, vector and vector-vector 

operations, the Level 2 BLAS perform matrix-vector operations, and the Level 3 

BLAS perform matrix-matrix operations. Thus, to get good performance on the HPL 

benchmark, a high-performance implementation of the BLAS must be available. 

Optimized BLAS libraries are available for a variety of computer architectures. In 

the current study, we tested three implementations of the BLAS library, namely, the 

automatically tuned linear algebra software (ATLAS) (version 3.6-0) [15], Goto 

BLAS (version 1.07) [16], and Intel math kernel library (Intel MKL) (version 
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8.1.014) [17]. ATLAS library is installed as part of a standard NPACI Rocks 

installation. However, both Goto BLAS and Intel MKL libraries need to be manually 

installed.  

We used the HPL benchmark that is distributed with the HPC Challenge 

benchmark (version 1.0.0) [18]. The executable binary was generated from Intel 

compilers (version 9.1). Regarding some of the tunable parameters in the HPL input 

file [19,20], we have chosen a problem size (N) of 34500 in order to fit 80% of the 

total amount of memory, that is,  

. ( )
0.80,

8

no of machines memory per node byte
N

×
= ×  (1-1) 

 
a block size (NB) of 80, and a process grid P × Q of 1 × 7.  

Table 1.1 shows the performance data obtained on our test system using the 

three optimized BLAS libraries. The data are obtained after the network has been 

tuned as described in Section 1.3.2. The performance numbers were also given as 

percentages of the theoretical peak performance in order to determine system 

efficiency. The Pentium® IV processor can perform two double precision floating-

point operations per clock cycle. Hence, the theoretical peak performance of the 

Pentium® IV processor running at 2.4 GHz is 4.8 Gflop/s. For our test system (7 

compute nodes), this would give a theoretical peak performance of 33.6 Gflop/s. It 

can be seen from the table that Intel MKL has the best performance followed by 

Goto BLAS and then by ATLAS. 

 

Table 1.1: HPL benchmark results using different BLAS libraries. 

BLAS 
library 

No. of 
processors 

Problem 
size (N) 

Block 
size 
(NB) 

Processor 
grid 

Theoretical 
performance 
(Gflop/s) 

Performance 
(Gflop/s) 

% 

ATLAS 7 34500 80 1×7 33.6 19.2 57 
Goto 
BLAS 

7 34500 80 1×7 33.6 23.7 71 

Intel MKL 7 34500 80 1×7 33.6 24.1 72 
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The NWChem and GAMESS-UK programs rely on the BLAS library for 

performing linear algebra operations. Both programs have their own BLAS. We ran 

some tests to see how this can be compared to the three BLAS libraries mentioned 

above. Table 1.2 shows the CPU times (in seconds). As can be seen, all BLAS 

libraries have comparable performance to the program’s own BLAS. The most 

noticeable observation is the improved performance using the Goto BLAS library 

when running DFT calculations. 

 
Table 1.2: CPU times (in seconds) for NWChem and GAMESS-UK calculations 
using different BLAS libraries. 

Program/BLAS Method 
 HF* DFT§ MP2$ 
NWChem    
NWChem-BLAS 1445 118 183 
ATLAS 1454 132 182 
Goto BLAS 1453 80 179 
Intel MKL 1452 121 179 
    
GAMESS-UK    
GAMESS-UK-BLAS 1194 1943 455 
Goto BLAS 1158 1795 455 
Intel MKL 1172 1928 447 
    
* For NWChem: calculation on arecoline using the 6-311G basis set. For GAMESS-
UK: calculation on cyclosporin using the 6-31G basis set. 
§ For NWChem: calculation on pyrrole using the 6-311G** basis set. For GAMESS-
UK: calculation on cyclosporin using the 6-31G basis set. 
$ For NWChem: calculation on propane using the 6-311G** basis set. For 
GAMESS-UK: calculation on C2H4S using the cc-pVTZ basis set. 

 
 

Memory bandwidth is the rate at which data can be read from or written into the 

memory by the processor. The memory bandwidth might have an influence on the 

performance of scientific applications, and depends on the memory subsystem 

design [21,22]. The STREAM benchmark [23] is designed to measure sustainable 

memory bandwidth (in GB/s) for four simple operations: 

   Copy:  a(i) = b(i) 
   Scale:  a(i) = constant × b(i) 
   Add:  a(i) = b(i) + c(i) 
   Triad:  a(i) = b(i) + constant × c(i) 
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Each of the four tests adds independent information to the results: Copy 

measures transfer rates in the absence of arithmetic, Scale adds a simple arithmetic 

operation, Add adds a third operand to allow multiple load/store, Triad allows 

chained/overlapped/fused multiply/add operations. By measuring these four simple 

kernels, the benchmark measures traffic all the way from registers to main memory 

and vice versa. 

We used the MPI version of STREAM that is part of the HPC Challenge 

benchmark (version 1.0.0) [18]. Each of the above operations is repeated ten times 

(only the best time is reported) on an array of 56678571 (determined automatically at 

run time to be large enough not to fit in the processor’s caches) double precision 

numbers. Total memory required was 1.3 GB. The average performance (per node) 

of the four operations was 1.76 GB/s, 1.13 GB/s, 1.33 GB/s, and 1.33 GB/s, 

respectively (theoretical memory bandwidth is 3.2 GB/s). As can be observed, the 

copy test is faster than the other tests implying the cost for floating-point arithmetic 

operation(s). 

1.3.2 Network performance 

In any cluster, the network is often the greatest determinant of parallel application 

speed and cluster efficiency, and should be interoperable with the selected hardware 

and operating system as well as be capable of efficiently supporting the 

communication protocols that are necessary for the middleware and applications.  

Parallel high-performance computing applications have wide variation in 

communication patterns and impose diverse requirements on the network subsystem. 

Some applications’ workloads are partitioned such that each compute node can work 

with limited interaction with other nodes. These application classes are referred to as 

‘embarrassingly parallel’. Other applications require significant communication 
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between compute nodes. This type of applications can either be sensitive to the 

network bandwidth (i.e., communicate with larger message sizes) or be sensitive to 

the network latency (i.e., communicate with high messaging rates). Many 

applications may fall in between these variations [24,25]. Applications with high 

computation to communication ratio are referred to as ‘coarse-grained’, whilst those 

with low ratio are referred to as ‘fine-grained’. 

Communication performance is affected by a number of factors including 

processor speed, I/O speed, PCI and memory bus architecture, network adaptors, 

device drivers, and protocol stack processing. The two chief characteristics 

establishing the operational properties of a network are bandwidth and latency. Peak 

bandwidth is the maximum amount of data that can be transferred in a single unit of 

time through a single connection and is measured in millions of bits per second 

(Mbps). Latency is the time it takes for a message to be passed from one processor to 

another including the latency of the switch and is measured in microseconds (µs) 

[25]. The communication performance at the application level depends on the 

collaboration of all components in the communication system, and inefficiencies can 

occur at many levels between the application and hardware layers [26-28] (cf. 

Scheme 1.1).  

Gigabit Ethernet (GigE) is a popular interconnection technology used to build 

cluster systems. It is a strong candidate when the cost is considered as an important 

design requirement. TCP/IP is the most popular low-level communication protocol 

for GigE. Since TCP/IP was originally engineered to provide a general transport 

protocol, it is not by default optimized for high-speed communication. Thus, a 

number of TCP parameters need to be optimized in order to tune the TCP/IP protocol 

for GigE [29-35]. 
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For optimizing the performance, we have modified several driver (the Linux 

base driver for the Intel GigE adapter; e1000) and TCP/MPICH parameters: 

(1) Allow the driver to buffer more incoming packets and to queue more transmits 

by increasing the RxDescriptors and TxDescriptors values to 4096, respectively. 

(2) Turning off interrupt coalescence (IC) by setting the InterruptThrottleRate value 

to zero. The InterruptThrottleRate value represents the maximum number of 

interrupts per second the controller generates. Increasing this value reduces the 

number of context switches made by the kernel to process the packets, but adds 

to the latency.  

To make the changes in 1 and 2 permanently, one can edit the 

/etc/modprobe.conf file and add the following line: 

options e1000 InterruptThrottleRate=0 RxDescriptors=4096 \ 

TxDescriptors=4096  

(3) Turn on TCP segmentation offload (TSO). This can be done by running 

‘ethtool -K eth0 tso on’ command. Turning on TSO significantly reduces 

the work done by the processor. 

(4) Enable jumbo frames by increasing the maximum transmission unit (MTU) to 

8160-byte. Ethernet has used 1500-byte packets. Jumbo frames extend Ethernet 

to 9000 bytes. Smaller packets usually mean more CPU interrupts and more 

processing overhead for a given data transfer size. Thus, jumbo frames provide 

less CPU load than 1500-byte packets and more bandwidth. An 8160-byte MTU 

allows an entire packet to fit in a single 8192-byte block [31]. To make the 

change permanently, the following entry is added to the 

/etc/sysconfig/network-scripts/ifcfg-eth0 file: 

MTU=8160 
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(5) Increase the maximum TCP buffer size (maximum receive/send window size) to 

8 MB. To make the changes permanently, one can edit the /etc/sysctl.conf 

file and add the following two lines: 

net.core.rmem_max = 8388608 

net.core.wmem_max = 8388608 

(6) Increase the socket buffer sizes (memory reserved for TCP receive/send) to 8 

MB. To make the changes permanently, one can edit the /etc/sysctl.conf 

file and add the following two lines: 

net.ipv4.tcp_rmem = 4096 87380 8388608 

net.ipv4.tcp_wmem = 4096 16384 8388608 

A note about 5 and 6 is that when an application does not explicitly request 

buffer sizes by calling setsockopt (), the kernel uses heuristics to choose 

system default values based on net/ipv4/tcp_[rw]mem kernel variables (the 

middle values in 6) and current memory consumption. In this case, the 

‘congestion window’ (a TCP technique to determine how many packets can be 

sent at one time) will start at the default and increase up to the maximum value 

(the third values in 6). This is called ‘Linux TCP autotuning’. The third values 

must be the same as or less than the values specified in 5. When an application 

explicitly request buffer sizes by calling setsockopt (), the default values 

based on net/ipv4/tcp_[rw]mem kernel variables are not chosen. However, 

the maximum sizes for socket buffers declared via the SO_SNDBUF and 

SO_RCVBUF mechanisms are limited by the global net/core/[rw]mem_max 

kernel parameters (the values in 5). 

(7) Increase the amount of allowed unprocessed packets to 1000 to avoid losing 

(dropping) packets at the receiver side. This can be done by adding the following 

line to the /etc/sysctl.conf file: 
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net.core.netdev_max_backlog = 1000 

(8) Clear TCP cache between connections by adding the following line to the 

/etc/sysctl.conf file: 

net.ipv4.tcp_no_metrics_save = 1 

(9) Increase the P4_SOCKBUFSIZE to 512 KB. This value must be less than the 

maximum TCP buffer size. To set it, the following entry can be added to the 

~/.bashrc file: 

export P4_SOCKBUFSIZE = 512000 

(10) Stop the IPTables (firewall) by running ‘/etc/init.d/iptables stop’ 

command. 

Detailed descriptions about these parameters and their impacts can be found in 

references 36 – 42. Below we outline the performance results obtained on our test 

system. 

The benchmark used to test the communication performance is NetPIPE 

(version 3.6.2) [43]. It performs simple ping-pong tests, bouncing messages of 

increasing sizes (1 to 8 MB) between two processors. It directly tests message-

passing libraries and the native communication layers they run upon (e.g., TCP/IP). 

Different socket buffer sizes (128 KB to 16 MB) against different sizes of MTU 

(1500, 3000, 4500, 6000, 7500, 9000 and 8160) have been tested. The best value for 

socket buffer size was found to be 8 MB. Figure 1.1 shows the obtained throughput 

(bandwidth) for MTU sizes of 1500, 8160 and 9000 at this socket buffer size. The 

non-standard 8160-byte MTU yielded the best peak throughput (816 Mbps) 

compared to 754 Mbps for 9000-byte MTU and 626 Mbps for the conventional 

1500-byte MTU. The enhanced throughput in the case of jumbo frames is apparent 

for messages larger than 128 KB. For messages in the range of 2 KB to 128 KB, the 

conventional 1500-byte MTU showed better performance, while for messages 
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smaller than 2 KB all MTU sizes exhibited the same performance. Turning on 

interrupt coalescence (IC) increased the peak throughput for the 1500-byte MTU 

from 626 Mbps to 796 Mbps but no influence of IC on the 8160-byte MTU is 

observed. However, turning on interrupt coalescence will increase the latency for 

shorter messages. 

 

 
Figure 1.1: Bandwidths for MTU 1500, 8160, and 9000 with and without interrupt 

coalescence (IC) at 8 MB socket buffer size. 

 

Figures 1.2-1.4 illustrate the latency for different message size ranges. It can be 

seen that (1) for messages less than 2 KB, all MTU sizes showed comparable 

latencies, (2) for messages in the range of 2 KB – 128 KB, the 1500-byte MTU had 

lower latency, and (3) for messages greater than 128 KB, the 8160-byte gave lower 

latencies. To see the effect of IC on latency, Figures 1.2-1.4 show the case for 8160-

byte MTU with and without IC. Disabling interrupt coalescence significantly 

reduced the latency from 62.5 µs (the latency for 8-byte message) to 46.5 µs. For 

messages larger than 12 KB, the effect was not apparent and both cases showed 

comparable latencies. 
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Figure 1.2: Latencies for MTU 1500, 8160, and 9000 for message sizes less than 2 KB. 

 
 
 
 
 

 
Figure 1.3: Latencies for MTU 1500, 8160, and 9000 for message sizes in the range of 2 KB 

to 128 KB. 
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Figure 1.4: Latencies for MTU 1500, 8160, and 9000 for message sizes greater than 128 

KB. 

 
 

 

To estimate the CPU load, we read the output of ‘cat /proc/loadavg’ 

command before and after each run. At the server side, the load averages for 1500-
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The message-passing programming model is based on the concept of distributed 

address space in which data exchange is achieved through explicit message passing. 

The message-passing interface MPI-1 is a message-passing standard that allows data 

to be moved between the cluster’s nodes by sending and receiving the data as 

messages. MPI-1 functions include primitives for point-to-point communications 

(i.e., communication between two nodes) and collective operations (i.e., global 

communications between groups of nodes). MPI-2 introduces enhancements to the 

MPI-1 specifications such as one-sided communication operations and MPI-IO 

(specification for parallel I/O). MPI over GigE uses TCP as its transport; similarly, 

MPI-based applications use MPI as their transport [1,44].  

Our system uses MPICH1 (version 1.2.7p1), configured with the ch_p4 device, 

as the MPI implementation [45]. MPICH 1.2.7p1 is installed as part of a standard 

NPACI Rocks installation. MPICH 1.2.7p1 has some limits that do not fully utilize 

today’s computing power, and thus source modifications, reconfiguration, and 

recompiling the source code are needed. We followed the modifications 

recommended by He [46]. These include: (1) changing the upper limit for 

P4_GLOBMEMSIZE from 256 MB to 1.5 GB, (2) changing the upper limit for 

P4_SOCKBUFSIZE from 16 KB to 1 MB, and (3) changing the maximum size of 

single message from 256 MB to 1 GB. Linux kernel 2.6 has a default maximum 

segment size (SHMMAX) of 32 MB, a default maximum number of segments of 

4096, and a default maximum shared memory of 8 GB. Shared memory segments 

are not only resources for the MPICH implementation, but also resources for the 

system. In NPACI Rocks, the maximum segment size for a compute node is set by 

default to ¾ the available physical memory (1.5 GB on our test system). The values 

of the two environment variables P4_GLOBMEMSIZE and P4_SOCKBUFSIZE can 
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be set during run-time by adding entries to the ~/.bashrc file but not exceeding the 

upper limits mentioned above. We used the GNU GCC compilers (version 3.4.4) and 

Intel compilers (version 9.1) to compile the MPICH library. There was no clear 

performance difference between the two compilers. 

The primary optimization parameter that is important to maximize the 

performance of MPICH is the P4_SOCKBUFSIZE environment variable. Varying 

this variable from 64 KB to 1 MB, the best result was obtained at 512 KB with peak 

throughput performance of 666 Mbps (Figure 1.5). Figure 1.5 shows that MPICH 

suffers a 5-20% loss as compared to raw TCP performance. The latency increased 

from 46.5 µs for raw TCP to 52 µs for MPICH. Turning off IPTables reduced the 

latency for MPICH from 52 µs to 49 µs. 

 

 

 
Figure 1.5: Bandwidths for raw TCP, MPICH, and TCGMSG-MPICH. 
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The theoretical chemistry group message-passing (TCGMSG) is a toolkit for 

writing portable parallel programs using a message-passing model. It has a small set 

of functions and provides an interface between applications (e.g., NWChem and 

GAMESS-UK) and either TCP or an underlying message-passing library like MPI. 

TCGMSG-MPI is a TCGMSG interface implementation on top of MPI, and the 

library is distributed with the global arrays package [47]. The overhead introduced 

by using the TCGMSG layer on top of MPICH is very minor.  The TCGMSG-

MPICH curve (Figure 1.5) falls to within 1% of the MPICH curve and the latency 

has increased by less than 1 µs. This is not surprising since TCGMSG is only a thin 

layer on top of MPICH. 

For some parallel applications, the use of remote memory access (RMA) 

operations (i.e., one-sided communication operations) offers several advantages over 

message passing in terms of simplicity of use, applicability, and performance. 

Libraries that implement RMA operations include the MPICH2 library (an 

implementation of the MPI-2 standard), the aggregate remote memory copy interface 

(ARMCI) library, and the global arrays (GA) library.  

The ARMCI [48-53] is a portable implementation of RMA. The operations that 

are supported by ARMCI include contiguous and non-contiguous one-sided data 

transfer operations including put, get and accumulate; synchronization operations; 

and memory management and error handling. Unlike MPI-2 that uses ‘active target’ 

operations, ARMCI allows any process of any parallel application to copy data 

between local and remote memory without the explicit cooperation of the remote 

process whose memory is accessed. In this sense, the data transfer operations in 

ARMCI are truly one-sided. This decoupling of synchronization leads to 

performance improvement.   
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The GA programming model [54-58] has been implemented in the GA toolkit as 

a portable virtual shared-memory programming model for distributed memory 

computers. The GA is used to share arrays between processors as if the memory 

were physically shared and combines the better features of message-passing and 

shared-memory models. There are two types of the shared distributed-memory: local 

and remote. Local distributed-memory is defined as the memory a given process uses 

to store its portion of the distributed data, whereas remote distributed-memory is the 

memory reserved by all the remaining parallel processes for their portions of the 

distributed data. Every process can independently, asynchronously, and efficiently 

access logical blocks of the physically distributed arrays with no need for explicit 

cooperation by other processes. The GA model acknowledges that remote data is 

slower to access than local data. The elimination of processor interactions, as 

opposed to the message-passing model, makes the GA model simpler for parallel 

programming. It should be pointed out that the GA model is designed to complement 

rather than replace message-passing libraries and that the two mechanisms are 

completely interoperable (i.e., a single program can contain calls to both libraries). In 

the GA model, the elementary one-sided communication operations (e.g., put and 

get) are crucial to the overall performance of the application that uses it. All RMA 

operations in GA are facilitated by the ARMCI library included in the GA package. 

Unlike ARMCI, GA presents a global view of data. Both programs NWChem and 

GAMESS-UK make use of the GA library.    

Figure 1.6 shows the performance of MPICH, ARMCI and GA. For ARMCI, 

the curve represents the average of remote put and get operations to transfer both 

contiguous and non-contiguous (strided) data. For GA, the curve represents the 

average of remote put and get operations to transfer both 1-D and 2-D array sections. 
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The MPICH results were obtained using the multi-PingPong benchmark available 

from the Intel MPI benchmarks (IMB) suite (version 2.3) [59]. In contrast to the 

NetPIPE benchmark that focuses on a single message transfer between only two 

processes, in multi-PingPong benchmark, N/2, where N is total number of processes, 

disjoint groups of 2 processes each will be formed, all and simultaneously running. It 

is based on MPI_Send and MPI_Recv routines. The GA (version 4.0.1) and ARMCI 

(version 1.1) were used in the tests. The benchmarks used to generate the results are 

available within the GA package.  

 

 
Figure 1.6: Bandwidths for MPICH, ARMCI, and GA libraries. 
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the ARMCI remote put/get, and the GA remote put/get operations. The wide gap 

between the put and get operations may be attributed to the fact that the put 

operation only signals that the data has been copied out of the calling process’ local 

memory and may occur before data is actually transferred to the remote process, 

while the get operation does not complete until the remote data has been written to 

the calling process’ local memory. 

 

Table 1.3: Latency numbers for MPICH, 
ARMCI, and GA operations. 

Interface Latency  (µs) 
MPI 56.6 
 put get 

ARMCI 1.4 50.1 
GA 2.1 55.3 

 

1.3.3 Disk storage and parallel I/O performance 

In out-of-core parallel computations, disk storage is treated as another level in the 

memory hierarchy, below CPU registers, caches (level 1, level 2, and level 3), local 

memory, and remote memories. Each level of this hierarchy owns a larger memory 

capacity and is slower than the higher levels. The latency of accesses to memory can 

be minimized by caching frequently used data in higher hierarchy levels thus 

producing a maximum data supply to the processor. The bandwidth of data transfers 

between main memory and disk storage is the slowest between all levels.  

Most scientific applications need to perform I/O for a number of reasons such as 

reading initial data, writing the results, checkpointing, out-of-core data sets, and 

scratch files for temporary storage. Computational chemistry algorithms [60,61] may 

be generally classified as a combination of in-core, conventional or direct method, 

and sequential or parallel operation. In-core calculations are fastest but often require 

prohibitively large amounts of memory. In contrast to direct method, conventional 
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computation stores in disk many of the intermediate results and thus avoids 

redundant recomputation. Semi-direct calculations are between these extremes with 

some intermediate results being precomputed and stored (memory or disk) while the 

remaining being recomputed as necessary. The size of storage space required 

depends on the computational chemistry method being used, the basis set(s) used, the 

use of symmetry or not, and the number of atoms in the simulation. Computational 

speed as well as memory and secondary storage capacities influence the choice 

between these methods. Either distributed storage or replicated storage can be used 

in parallel calculations with the latter limiting the size of calculations to the same 

size that could be achieved on a single node.  

The two main requirements for I/O-intensive applications are I/O speed (i.e., the 

rate at which the program can read or write data) and storage capacity. I/O 

performance has lagged behind the computation and communication performance of 

high-performance computing clusters. The use of parallel filesystem can help solve 

this problem by typically striping files across multiple I/O nodes thus aggregating the 

moderate I/O capabilities of each node to make up a very fast disk [62]. In small 

clusters, all nodes can act as I/O nodes and compute nodes, whereas large clusters 

have a dedicated set of I/O nodes where no compute jobs are run on them [63]. Each 

I/O node can support a large number of compute nodes, and it is common to deploy 

1 GB/s of I/O aggregate throughput per 1 Tflop/s of compute power. 

Parallel I/O may have a different meaning for different applications. Types of 

parallel I/O operations in computational chemistry applications [60] include: (1) 

collective I/O operations in which multiple processors cooperate in a read or write 

operation to a shared file (used in checkpoint/restart, and RI-SCF and RI-MP2 

methods), (2) noncollective I/O operations in which each processor perform an 
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independent read or write operation to an arbitrary location in a shared file (used in 

MRCI method), and (3) noncollective I/O operations in which each processor carries 

out an independent read or write operation to a private file (used in HF, DFT and 

MP2 methods).    

Applications can access files located in (parallel) filesystems by using an 

interface such as UNIX/POSIX I/O, MPI-IO (e.g., ROMIO), or high-level libraries 

(e.g., ParIO). The UNIX/POSIX I/O was designed mainly to support filesystems on a 

local storage device, and for access patterns commonly found in serial applications. 

However, all parallel filesystems provide a support for such an interface (e.g., 

[64,65]). ROMIO is a high-performance, portable MPI-IO implementation that can 

be configured to operate on top of various filesystems using an abstract I/O device 

(ADIO) layer [66]. It contains features specifically designed for I/O parallelism and 

performance. ParIO [60] is a high-level I/O library that has been designed to meet 

the parallel I/O requirements of computational chemistry applications discussed 

above. It consists of three library modules: (1) disk resident arrays (DRA) library: 

extends the GA model to support explicit transfer between global memory and 

secondary storage, and supports the first form of parallel I/O operations mentioned 

above, (2) shared files (SF) library: supports the second type, and (3) exclusive 

access files (EAF) library: supports the third type of parallel I/O operations. The 

three ParIO library modules are fully independent and are layered upon the ELIO 

(Elementary IO) device library that provides a portable interface to different 

filesystems. The ELIO can take advantage of any system specific performance 

libraries available. Both programs NWChem and GAMESS-UK utilize the ParIO 

library.    
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There are three issues to consider for hard disks: interface type (EIDE, SATA, 

or SCSI), disk latency which is a function of rotational speed, and disk capacity. 

IOZone [67] is a serial filesystem benchmark for the POSIX I/O interface. It tests 

file I/O performance for a variety of file operations. We ran IOZone in order to 

determine the baseline for our storage hardware with its local filesystem ‘third 

extended filesystem’ (ext3). The hardware performance analysis was done by writing 

a 4 GB file, that is, twice the amount of the available RAM in order to avoid any 

caching effects. Disk read and write speeds were 55 MB/s and 49 MB/s, 

respectively.  

The performance of a parallel filesystem depends on the physical network 

interconnect, the type of storage, the amount of storage, the storage interconnect, the 

operating system, the parallel filesystem itself, and the application utilizing the 

filesystem [68]. The performance of three different parallel filesystems (NFS, 

PVFS2, and Lustre) was examined using the ‘common_file’ benchmark that is part 

of the PRIOmark benchmarks collection (version 0.9.1) [69-71]. All performance 

tests were run after the network had been optimized (Section 1.3.2).  

NFS (network file system) was developed to allow machines to mount a disk 

partition on a remote machine as if it were on a local hard disk and thus provides 

sharing of files across a network. A central NFS server is used to store the data and 

hence the server represents a bottleneck and a single point of failure. NFS does not 

scale well across large clusters. NFS is automatically installed with a standard 

NPACI Rocks installation where the frontend node is designated as the NFS server. 

The frontend node exports a directory from a partition to all compute nodes. The 

partition’s local filesystem type is ext3. By default, the NFS is mounted with the 

async option.   
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PVFS2 (parallel virtual file system 2) [72] is an open source, stable, and 

scalable parallel filesystem that can be run on Linux clusters and on various 

computer architectures (e.g., x86, IA-64). PVFS2 is designed as a client-server 

system. The server is split into I/O and metadata servers that can be running on the 

same nodes or on different nodes. I/O servers serve data to the rest of the cluster 

while the metadata servers keep track of information about the data (e.g., file names 

and permissions). The MPI-IO interface has been implemented on top of PVFS2 by 

using the ROMIO implementation of MPI-IO. PVFS2 also supports the standard 

UNIX I/O functions.  

PVFS2 is not included with the NPACI Rocks version we run on our system 

(the recent NPACI Rocks version 4.2.1 includes a PVFS2 roll). We installed PVFS2 

version 1.5.1 which was a relatively easy process. One major problem was the 

incompatibility of this PVFS2 version with the ‘Berkeley DB’ database version 

4.2.52 that comes with NPACI Rocks 4.1. This was solved by building PVFS2 

against a newly built Berkeley DB (version 4.3.29) [73]. Performance tuning of 

PVFS2 [68] is done by:  

(1) Mounting the ext3 filesystem with the noatime and data=writeback options 

in the ‘/etc/fstab’ file.  

(2) Providing the --enable-epoll option to the configure script at compile time 

in order to provide better performance for TCP/IP sockets. 

(3) Providing the --enable-fast option to the configure script at compile time in 

order to disable many of the debugging routines.   

(4) Setting TroveSyncData option to no in the ‘/etc/pvfs2-fs.conf’ file in 

order to disable the server from issuing a sync call after each data update (The 

sync call forces all unwritten data to be written to disk). This is analogous to 
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mounting the NFS with the async option. We note here that setting this option 

to no can lead to data loss if an I/O server is terminated unexpectedly.  

We partitioned our test cluster so as the first compute node acts as the metadata 

server while the remaining compute nodes act as I/O nodes. PVFS2 aggregates the 

storage space created on the servers into one globally accessible namespace that the 

clients mount. The underlying local filesystem is ext3. 

Lustre is an open source, scalable, secure, robust, and highly-available parallel 

filesystem for Linux clusters [74]. Lustre system consists of four types of 

subsystems: (1) clients that access the filesystem, (2) object storage target (OST) that 

handles file data and enforce security for client access, (3) metadata target (MDT) 

that owns and manages information about the files in the Lustre filesystem (e.g., 

namespace operations such as file creation, which file is located on which OST, how 

the blocks of files are striped across the OSTs, date and time the file was modified, 

etc) but it does not contain any file data, and (4) MGS, which is a management 

configuration server that compiles configuration information about all Lustre 

filesystems running at a site. Client nodes mount the Lustre filesystem over the 

network and access files with POSIX filesystem semantics. Lustre also supports 

parallel I/O libraries (e.g., MPI-IO) but does not require them. Each client mounts 

Lustre, uses the MDT to access metadata, and performs file I/O directly through the 

OSTs. Each OST contributes to the total capacity and the aggregate throughput. 

Lustre can use any physical device that can be formatted as an ext3 filesystem.  

We tested Lustre version 1.5.95. This version of Lustre does not require the 

Linux kernel of the client node to be patched. However, Lustre kernel patches need 

to be applied to the source of the kernel running in the server node. This can be 

facilitated by using the Quilt package (a patch management tool) provided by Cluster 
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File Systems (CFS). CFS also provides pre-patched, Lustre-enabled Linux kernels as 

well as Lustre RPMs. These RPMs are only available for SMP machines. Hence, for 

our test system that comprises only uniprocessor nodes, we had to build the Linux 

kernel after applying the Lustre kernel patches using Quilt, and then built Lustre 

from the available source code. We partitioned our test cluster so as the first compute 

node acts as the MDT/MGS while the remaining compute nodes act as OSTs. A 

single partition in each compute node was allocated for use by Lustre filesystem.     

The Lustre filesystem provides several /proc filesystem variables that control 

aspects of Lustre performance and provide information. Lustre will always attempt 

to pack an optimal amount of data into each I/O RPC (remote procedure call) and 

will attempt to keep a consistent number of issued RPCs in progress at a time. Lustre 

offers several tuning variables to adjust behavior according to network conditions 

and cluster size [75,76]. The files related to tuning the RPC stream are: (1) 

/proc/fs/lustre/osc/<object name>/max_dirty_mb that controls how 

many megabytes of dirty data can be written and queued up in the OSC (object 

storage client), (2) /proc/fs/lustre/osc/<object 

name>/cur_dirty_bytes which is a read-only value that returns the current 

amount of bytes written and cached on this OSC, (3) 

/proc/fs/lustre/osc/<object name>/max_pages_per_rpc that represents 

the maximum number of pages that will undergo I/O in a single RPC to the OST, 

and (4) /proc/fs/lustre/osc/<object name>/max_rpcs_in_flight that 

represents the maximum number of concurrent RPCs that the OSC will issue at a 

time to its OST. We chose to change the /proc/fs/lustre/osc/<object 

name>/max_dirty_mb value from the default of 32 to 128, and the 

/proc/fs/lustre/osc/<object name>/max_rpcs_in_flight value from 
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the default of 8 to 32. These can be changed while the server is running using the 

“lctl” utility.  

The /proc/sys/portals/debug can be used to delimit the debugging 

information written out to the kernel debug logs. Running the command “echo 0 > 

/proc/sys/portals/debug” for all clients and servers turns off the Lustre 

debugging completely and enhances the performance [77].  

Lustre stores files in one or more objects on OSTs. When a file is comprised of 

more than one object, Lustre will stripe the file data across them in a round-robin 

fashion. Lustre can be configured with a custom stripe size which determines the 

amount of data from a particular file that is written to each OST. The number of 

OSTs to stripe a single file across can also be set to a single OST, all OSTs, or any 

number in between. The choice depends on the application that utilizes the Lustre 

filesystem [75]. The changes can be done using the “lfs” tool. 

Our system uses MPICH version 1.2.7p1 with ROMIO version 2005-06-09. It is 

compiled with support for NFS, PVFS2, and general support for all UNIX like 

filesystems (UFS).  ROMIO’s ‘UFS’ works fine with Lustre. We ran the 

‘common_file’ benchmark for 7 processes. Each MPI process has its own data block 

in a common file. The file size is set to 4 GB and the size of the I/O-request is set to 

64 KB. The I/O-request size of 64 KB is chosen as to resemble that for the NWChem 

program [78,79]. Both POSIX I/O and MPI-IO interfaces were tested. Access 

patterns tested are ‘write’, ‘read/write’, and ‘random read/write’. All measurements 

used the collective and noncollective blocking (synchronous) MPI-IO access 

methods ‘individual file pointer’ (i.e., allowing every process to work on its own part 

of the file thus having its own file pointer) and ‘explicit offset’ (i.e., a process 

specifies the position of any operation within the file).  
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As shown in Figure 1.7, Lustre (with striping across all OSTs) outperformed 

NFS and PVFS2 using the POSIX I/O interface. For the MPI-IO interface, Lustre 

provided the best bandwidth for noncollective operations, whereas PVFS2 slightly 

outperformed Lustre for collective operations.  

                        
Figure 1.7: Bandwidths for NFS, PVFS2, and Lustre using the POSIX IO and MPI-IO 

interfaces. Shown is the average of access patterns ‘write’, ‘read/write’, and ‘random 

read/write’. In the case of MPI-IO, this includes access methods ‘individual file pointer’ and 

‘explicit offset’.   
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closer to the size of the available memory on the node (Linux allocates all free 

memory for disk cache). The reason for this is that PVFS2 does not cache file data 

on the client node and is not affected by any buffering/caching effects since data is 

always transferred over the network [64]. We note here that NFS is not 

recommended for writing such large files because of the increased overhead on the 

frontend node which may affect some running programs (e.g., the Ganglia 

monitoring tool). For our test cluster, the direct algorithm (i.e., recomputing the 

integrals for each iteration) outperforms the semi-direct algorithm for runs that 

involve writing/reading an integral file larger than 100 MB per each compute node 

(Table 1.4).  

Table 1.4: Wall times (in seconds) for NWChem direct and semi-direct algorithms using different 
filesystems. 

Method Filesystem 
 NFS PVFS2 Lustre-no stripe Lustre-stripe Local$ 
HF-arecoline-6-311G 
(100 MB)‡ 

395 
[60] 

- - 
243 
[97] 

235 

dHF-arecoline-6-311G 
(100 MB) 

- - - 258 - 

HF-arecoline-6-311G* 
(275 MB) 

- - - 469 - 

dHF-arecoline-6-311G* 
(275 MB) 

- - - 400 - 

HF-arecoline-6-311G** 
(600 MB) 

2570 
[26] 

4042 
[17] 

902 
 

716§ 

[94] 
673 

dHF-arecoline-6-311G** 
(600 MB) 

- - - 571 - 

HF-atropine-6-31G* 
(1.2 GB) 

5364 
[21] 

6655 
[17] 

- 
1216 
[91] 

1108 

dHF-atropine-6-31G* 
(1.2 GB) 

- - - 853 - 

HF-morphine-6-31G* 
(1.6 GB) 

4509 
[19] 

4639 
[19] 

- 
936 
[93] 

872 

dHF-morphine-6-31G* 
(1.6 GB) 

- - - 653 - 

HF-morphine-6-31G** 
(2.2 GB) 

- - 1666 
1200 
[93] 

1120 

dHF-morphine-6-31G** 
(2.2 GB) 

- - - 807 799 

MP2-propane-6-311G** 
(8 MB) 

427 
[83] 

- - 
386 
[92] 

356 

dMP2-propane-6-311G** 520 1865 701 460 415 
$ Files that need to be shared (e.g., the runtime database file that is similar to the GAMESS-UK 
dumpfile and is needed for checkpointing) were read from/written to Lustre filesystem. ‡ Integral 
file size per compute node. § Three stripe sizes were compared: 0.5, 1, and 2 MB (no difference 
was observed). [ ] Percentage of raw local filesystem. Note: the ‘d’ before the method name 
denotes ‘direct’. 
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1.4 Conclusion 

A critical issue in the design of computer cluster is the understanding of the 

applications that it will be supporting. The application’s requirements for computing 

power, memory, I/O and communication must be balanced. Benchmarks, though not 

real applications, capture essential measurable characteristics that reflect real 

applications. In the current work, a commodity-class Linux cluster was built and 

tested in order to achieve better computing speed and performance. The performance 

analysis of the CPU, memory, disk and network was achieved using open source 

benchmarks. Various TCP/MPICH parameters were optimized and a maximum 

bandwidth of 666 Mbps for MPICH was achieved. The GA put/get operations 

outperformed the corresponding MPICH send/receive operations in terms of both 

bandwidth and latency. Three different parallel filesystems (NFS, PVFS2, and 

Lustre) were examined. In most cases, Lustre provided the best performance 

achieving greater than 90% of the local filesystem read/write bandwidths. 
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2 
Enantioselective Synthesis and 

Theoretical Backgrounds 
 

 

 

 

 

In this chapter, an introduction to enantioselective synthesis is first provided. 

Quantum mechanical methods including density functional theory are then briefly 

introduced. Description of the ONIOM method is also provided.   

 

 

2.1 Enantioselective Synthesis  

2.1.1 Stereochemistry and stereoisomerism  

Stereochemistry is concerned with the three-dimensional aspects of molecules and 

provided the basis for understanding the relationship between structure and 

reactivity. Isomers are molecules having the same molecular formula but with 

different connectivity between the atoms (constitutional (structural) isomers) or 

arrangement of atoms in space (stereoisomers) [1]. 

A chiral molecule is non-superimposable on its mirror image and has the ability 

to rotate the plane of polarized light while an achiral one does not possess such 

properties [2]. Another practical but not always accurate method to determine 

whether a molecule is chiral or achiral is the evaluation of its symmetry elements 

(axis of symmetry (Cn), plane of symmetry (σ), center of symmetry (i), and axis of 

rotation-reflection (Sn)). A molecule with an Sn, i or σ symmetry elements is achiral. 

A molecule, however, can have a symmetry element and be chiral if a Cn axis is 

present but does not have an Sn axis [3,4]. 

The most common reason for chirality in organic molecules is the existence of a 

tetrahedral sp3-hybridized carbon atom connected to four different substituents 

(commonly referred to as chiral or asymmetric carbon). The presence of such carbon 
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atom is not a necessary condition for chirality. For example, the biphenyls 1 and 2 

are chiral molecules with no tetrahedral carbon bonded to four different groups 

whereas molecules 3 and 4 are achiral even though they possess tetrahedral carbons 

having four distinct groups (Figure 2.1) [3,5]. Hence, the term ‘stereogenic carbon’ 

is introduced to eliminate the confusion and, in a sense, is broader than the term 

‘chiral carbon’ since it implies nothing about the chirality of the molecule [1]. An 

atom is considered to be a ‘stereogenic atom’ if the interchange of two groups 

connected to it produces a stereoisomer. This new stereoisomer can be an enantiomer 

or a diastereomer of the original molecule [1,3]. 

     

 
 
 

 
 

Figure 2.1: Chiral molecules with no asymmetric carbon atoms (1 and 2) vs. achiral 

molecules with asymmetric carbon atoms (3 and 4). 

 

 
Conformers are stereoisomers characterized by different spatial orientation of 

atoms as a result of rotation around single bonds while rotamers are conformers 

differing by rotation around only one single bond. Enantiomers are non-
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superimposable mirror image stereoisomers with identical physical and chemical 

properties except for the direction in which they rotate plane-polarized light. In 

addition, the rates at which they react with other chiral molecules are different [2,5]. 

The difference in these rates can be negligible or can be so large that one enantiomer 

conveniently undergoes a reaction while the other does not react at all. This is one 

reason why many molecules are biologically active whereas their enantiomers are 

not [2]. However, enantiomers react at the same rate with achiral molecules except in 

the presence of optically active catalyst or solvent (i.e. a chiral environment) though 

in most cases the difference is too small to be measured [2]. Diastereomers, on the 

other hand, are non-superimposable, non-mirror-image stereoisomers differing in all 

physical, chemical and spectral properties, and are distinguishable under any 

environment (chiral or achiral).  

The stereochemical configuration of a stereogenic carbon atom can be 

determined using the Cahn-Ingold-Prelog system in which the four groups bonded to 

the stereogenic carbon are ranked according to a set of priority rules as follows: (1) 

the atom(s) with the highest atomic number is (are) given the highest priority, (2) in 

the case when more than one atom in the different groups are the same, the atomic 

number of the next atom determines the priority, (3) double and triple bonds are 

counted as two or three single bonds, respectively, and (4) for isotopes, the one with 

the highest atomic mass is assigned higher priority. The molecule is then oriented 

with the lowest priority group pointing away from the viewer and the stereogenic 

carbon is closer. The three remaining substituents are then ranked from highest to 

lowest priority. The stereogenic carbon is in the R configuration if the path traced 

from the highest group to the lowest group is clockwise or in the S configuration if it 

is counterclockwise (Figure 2.2). Enantiomers possess opposite configuration at all 
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stereogenic carbons while diastereomers have the same configuration in at least one 

stereogenic carbon but opposite configurations at the others. A molecule with n 

stereogenic carbons can have up to 2n stereoisomers (2n-1 pairs of enantiomers). In 

some cases, the actual number is less than 2n due to the existence of meso molecules 

(i.e. molecules having stereogenic carbons but achiral owing to the presence of a 

plane of symmetry (e.g., 3 and 4)). 

   

 
 

Figure 2.2: R vs. S stereochemical assignments. 

 

 

2.1.2 Selective synthesis of enantiomers 

The two major forms of selectivity in chemistry are substrate selectivity, in which a 

reagent transforms different substrates under the same conditions to different 

products at different rates, and product selectivity where one of the reaction products 

is formed preferentially [6]. When the products are diastereomers or enantiomers the 

terms diastereoselectivity and enantioselectivity are used, respectively. The most 

commonly used measure of the extent of enantioselectivity is the enantiomeric 

excess (ee) defined as 

R See F F= −  (2-1) 

where RF  and SF  are the mole fractions of the R and S enantiomers, respectively and 

 
1.R SF F+ =  (2-2) 
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An ee value of one corresponds to an enantiomerically pure molecule and a 

reaction that has such value is said to be enantiospecific. On the other hand, an ee 

value of zero corresponds to a 50:50 mixture of enantiomers (i.e. a racemic mixture).     

The building-blocks of biological systems (carbohydrates, α-amino acids and 

nucleotides) are chiral and present in enantiomerically pure forms. Thus, molecules 

synthesized by humankind to interact with biological systems must be produced in 

enantiomerically pure (or enriched) forms. For instance, (S)-propranolol 5 is used to 

treat heart and circularity conditions whereas the (R)-enantiomer 6 acts as a 

contraceptive [7]. 

             

 

 

The main approaches to enantioselective syntheses include [8,9]: (1) chiral 

starting materials of natural origin, (2) chiral auxiliaries, (3) chiral reagents, and (4) 

chiral catalysts. The latter two methods have the advantages that the choice of 

starting materials are far wider since they need not come from the natural chiral pool 

as well as the elimination of the extra two steps of attaching and removing the chiral 

auxiliary [9]. 

2.1.3 Enantioselective organocatalysis 

In general, three main classes of chiral catalysts have been utilized in 

enantioselective synthesis. They are: (1) transition-metal complexes with chiral 
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ligands, (2) biocatalysts (enzymes), and (3) chiral organocatalysts [10-13]. 

Organocatalysts are low-molecular-weight organic molecules that do not contain 

metals. Compared to organometallic and enzymatic catalysts, they have the 

advantages of being readily available, less expensive, more stable, and, due to their 

insensitivity towards moisture and oxygen, can be applied in less-demanding 

reaction conditions [10,11]. The absence of metals in this class of catalysts renders it 

attractive for the synthesis of pharmaceutical and agrochemical products that do not 

tolerate metal contamination [10,11]. Moreover, organocatalysts can often be 

immobilized on solid supports and be reused more easily than organometallic and 

biocatalysts [10,11]. Consequently, the last few years have seen a substantial and 

rapid growth in the field of enantioselective organocatalysis. Some typical examples 

of chiral organocatalysts are shown in Scheme 2.1.    

Organocatalysis can be broadly classified into two main groups; covalent and 

non-covalent organocatalysis. The majority of organocatalytic reactions proceeds 

through the formation of covalent catalyst–substrate adduct that can take place by 

single step Lewis-acid–Lewis-base interaction or by multi-step reactions where 

reactive intermediates such as enamine, iminium, and acyl ammonium among others 

are formed [10,12]. On the other hand, non-covalent catalysis depends on the 

formation of hydrogen-bonded adducts between substrate and catalyst or on the 

protonation/deprotonation processes [10,12]. Phase-transfer catalysis (PTC) by 

organic phase-transfer catalysts belongs to the non-covalent catalysis category [10]. 
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Scheme 2.1: Typical chiral organocatalysts.  

 

2.1.4 Enantioselective organocatalytic Diels-Alder reactions 

The Diels-Alder cycloaddition reaction is extremely powerful in organic synthesis as 

it introduces two carbon-carbon bonds in a single step and is one of few methods for 

forming cyclic compounds. It had been used, in its original form, as a key step in 

many important syntheses of complex natural products which converted achiral 

components to racemic adducts. The conversion of these classical syntheses to the 
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enantioselective versions has been made possible by the introduction of chiral 

organocatalysts [14-16]. Chiral organocatalysts that have been used in 

enantioselective Diels-Alder cycloaddition reactions include α-amino acid 

derivatives such as imidazolidinone 8 [10], C2-symmetric organocatalysts (e.g., 

TADDOL 9) [10], cinchona alkaloids like quinidine 10 [10], and oxazaborolidinium 

cation 13 [14,16-24]. 

2.2 Theoretical Backgrounds1 

2.2.1 The Schrödinger equation and the potential energy surface 

Nonrelativistic quantum mechanics in the form of Schrödinger equation has been 

shown to offer accurate description of the nature of organic molecules in terms of 

energetics, structures, properties, and reactions. The nonrelativistic time-independent 

Schrödinger equation for a molecule consisting of N nuclei and n electrons (cf. 

Figure 2.3) is given by 

1 2 1 2 1 2 1 2
ˆ ( , ,..., , , ,..., ) ( , ,..., , , ,..., )N n N nH EΨ = ΨR R R x x x R R R x x x . (2-3) 

The Ĥ  is the Hamiltonian operator, Ψ is the wavefunction of all nuclei and 

electrons, and E is the energy of the molecule. The Hamiltonian operator contains 

the operations associated with the kinetic and potential energies and can be written in 

atomic units as  

2 2

1 1 1 1 1 1

n e ne nn ee

1 1 1 1ˆ
2 2

ˆ ˆ ˆ ˆ ˆ

N n n N N N n n
I JI

I i

I i i I I J I i j iI iI IJ ij

Z ZZ
H

m r R r

T T V V V

= = = = = > = >

= − ∇ − ∇ − + +

= + + + +

∑ ∑ ∑∑ ∑∑ ∑∑
 (2-4) 

Z is the atomic number, mI is the ratio of the mass of nucleus I to the mass of an 

electron, and ∇2 is the Laplacian operator 

                                                 
1 For a detailed description of the theories and methods discussed in this section cf. references 4, 25 – 
124.      
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2 2 2
2

2 2 2x y z

∂ ∂ ∂
∇ ≡ + +

∂ ∂ ∂
. (2-5) 

 

 

 

 
 

Figure 2.3: A simple molecular coordinate system showing position vectors (R and r) and 
their magnitudes (R and r). 

 

 

The first and second terms in Eq. 2-4 are the operators for the kinetic energies of 

the nuclei and the electrons, respectively. The remaining three terms define the 

potential part of the Hamiltonian and correspond to the electrostatic attraction 

between nuclei and electrons, and the coulombic repulsions between nuclei and 

between electrons, respectively. The restriction J > I (or j > i) avoids counting the 

same internuclear (or interelectronic) repulsion twice and avoids terms like 

 (or 1 ).I I II iiZ Z R r  The total molecular wavefunction depends on the 3n spatial 

coordinates (r) and the n spin coordinates (s) of the electrons (collectively termed as 

electronic coordinates x), and the 3N spatial coordinates of the nuclei (R). 
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Because nuclei are much heavier than electrons, and hence move much more 

slowly, electrons, to a very good approximation, can be considered as moving in the 

field of fixed nuclei (Born-Oppenheimer approximation). This approximation 

renders the kinetic energy of the nuclei (the first term in Eq. 2-4) zero (neglected) 

and causes the potential energy due to internuclear repulsion (the fourth term in Eq. 

2-4) to be constant. Thus, the Schrödinger equation (2-3) for a molecule can be 

decoupled into an electronic and a nuclear equation (Eqs. 2-6 and 2-8, respectively), 

e e e e
ˆ ( ; ) ( ) ( ; )H EΨ = Ψx R R x R  (2-6) 

e e e
ˆ( ) ( ; ) ( ) ( ; )nnH V U+ Ψ = Ψx R R x R  (2-7) 

n n n
ˆ( ( )) ( ) ( )T U E+ Ψ = ΨR R R . (2-8) 

eĤ  is the electronic Hamiltonian describing the motion of n electrons in the 

field of N point charges and is given by    

2
e e ne ee

1 1 1 1

1 1ˆ ˆ ˆ ˆ
2

n n N n n
I

i

i i I i j iiI ij

Z
H T V V

r r= = = = >

= − ∇ − + = + +∑ ∑∑ ∑∑ . (2-9) 

The solution of the electronic Schrödinger equation (2-6) involving eĤ  is the 

electronic wavefunction Ψe and the electronic energy Ee. The electronic 

wavefunction Ψe depends explicitly on the electronic coordinates (x) and 

parametrically on the nuclear coordinates (R). The energy of the molecule U is then 

the sum of the electronic energy, Ee and the constant due to internuclear repulsion, 

Vnn.  

Solving the electronic Schrödinger equation for different sets of fixed nuclear 

coordinates (R) allows the construction of the molecular potential energy surface 

(PES) [25]. There are 3N nuclear coordinates that define the structure of a molecule 

and the PES is thus a hypersurface with 3N dimensionality. Three of these 



 

coordinates describe the overall translation of the molecule, and another three (two 

for linear molecules) describe the overall rotation of the molecule with respect to the 

three axes. The remaining 3

the internal motion of the nuclei

vibrations of the molecule

structure, properties, reactivit

PES (cf. Figure 2.4) include minima that correspond to 

first-order saddle points that 

 

Figure 2.4: A model potential energy surface showing important stationary points
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of the molecule. The PES is important since it helps one understand the

structure, properties, reactivities, and spectra of molecules. Points of interest on the 

include minima that correspond to equilibrium 

that are often called transition structures (Section 2.2.5)

 

 
 

A model potential energy surface showing important stationary points
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The solution of the nuclear Schrödinger equation (2-8) describe the translation, 

rotation and vibration of the molecule where E in Eq. 2-8 is the Born-
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e trans rot vibΨ = Ψ Ψ Ψ Ψ . (2-10) 

The main approaches to finding approximate solutions to the electronic 

Schrödinger equation are ab initio (first principles) calculations and semiempirical 

methods. In contrast to ab initio calculations, semiempirical methods use a 

simplified form for the Hamiltonian and use parameters with values adjusted to fit 

experimental data. Ab initio computational methods include Hartree-Fock (HF) 

method and post-Hartree-Fock methods such as configuration interaction (CI), 

coupled cluster (CC), and Møller-Plesset (MP) perturbation theories. The major 

sources of error in ab initio calculations include: (1) the Born-Oppenheimer 

approximation, (2) the elimination of relativistic effects, (3) the use of incomplete 

basis set, and (4) the (partial) omission of electron correlation. 

2.2.2 The Hartree-Fock method 

The presence of the interelectronic potential energy that depends on the electron-

electron separations rij as given by the third term in Eq. 2-9 makes molecular 

electronic structure calculations extremely complicated.  

Hartree introduced the idea that the electronic wavefunction can be written as a 

product of one-electron wavefunctions (spatial orbitals), 

HP 1 2 1 1 2 2( , ,..., ) ( ) ( )... ( )n n nψ ψ ψΨ =r r r r r r  (2-11) 

where ΨHP is called the ‘Hartree-product’ wavefunction and 

HP HP
1

ˆ
n

i

i

H ε
=

 
Ψ = Ψ 

 
∑  (2-12) 

where εi is the one-electron orbital energy and the Hamiltonian Ĥ  is the sum of one-

electron core Hamiltonians defined by 

core 2
1 1

1 1

1ˆ ( )
2

N
I

I I

Z
H

r=

= − ∇ −∑r . (2-13) 
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 The Hamiltonian of Eq. 2-13 does not include interelectronic repulsion term (i.e. 

the Hamiltonian corresponds to a non-interacting system of electrons). Hartree 

introduced this term into the Hamiltonian as an expression that describes the average 

repulsion (
effV ) experienced by an electron due to the charge distribution associated 

with other electrons. Replacing the exact interelectronic repulsion by the effective 

potential (
effV ) completely neglects the ability of the electron to instantaneously 

respond to the position of other electrons (i.e. there is no electron correlation). The 

effective one-electron Hamiltonian is then given by 

eff 2
1 1

1 11 1

1ˆ ( )
2

N
jI

j

I jI j

Z
H d

r r

ρ

= ≠

= − ∇ − +∑ ∑∫r r  (2-14) 

where the final term is the 
effV  described above and ρj is the charge (probability) 

density of electron j given by 
2

( )j jψ r . The integral in the final term is called the 

Coulomb operator.  

The energy of the system is no longer given by the 
1

n

i

i

ε
=
∑  since this double-

counts the interelectronic repulsion and is given by 

1 2 1 2 1 2
1 1 12

1 1

1
( ) ( ) ( ) ( )

n n n

i i j i j nn

i i j i

n n n

i ij nn

i i j i

U d d V
r

J V

ε ψ ψ ψ ψ

ε

∗ ∗

= = >

= = >

= − +

= − +

∑ ∑∑∫∫

∑ ∑∑

r r r r r r

 (2-15) 

where εi is the energy of spatial orbital i obtained from the solution of the one-

electron Schrödinger equation ( eff
1 1 1

ˆ ( ) ( ) ( )i i iH ψ εψ=r r r ) using the effective one-

electron Hamiltonian of Eq. 2-14 and Jij is the Coulomb integral. 

 The Hartree product wavefunction does not satisfy the Pauli Exclusion Principle 

and any approximation to the exact wavefunction must explicitly include spin and 
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must be antisymmetric (change sign) with respect to interchange of any two electron 

coordinates. To represent the wavefunction, Fock suggested the use of Slater 

determinant which automatically satisfies the Pauli Exclusion Principle and is always 

antisymmetric. The molecular Hartree-Fock (HF) wavefunction represented by 

Slater determinant is given by 

1 1 1 1 1 1 /2 1 1

/2 2 21 2 2 1 2 2
HF

1 n 1 n /2 n

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )1

!

( ) ( ) ( ) ( ) ( ) ( )

n

n

n n n n

s s s

ss s

n

s s s

ψ α ψ β ψ β
ψ βψ α ψ β

ψ α ψ β ψ β

Ψ =

r r r

rr r

r r r

…

…

� � � �

…

 (2-16) 

where ψi(ri)α(si) and ψi(ri)β(si) are spin-orbitals defined as the product of the spatial 

orbital (molecular orbital) ψi(ri) and the spin function α(si) or β(si), and 1 !n  is a 

normalization factor. 

The energy of the molecule is then given by 

/2 /2 /2

HF
1 1 1

2 (2 )
n n n

i ij ij nn

i i j

U J K Vε
= = =

= − − +∑ ∑∑  (2-17) 

where Jij is the same Coulomb integral defined in Eq. 2-15, Kij is the exchange 

integral defined by 

1 2 2 1 1 2
12

1
( ) ( ) ( ) ( )ij i j i jK d d

r
ψ ψ ψ ψ∗ ∗= ∫∫ r r r r r r , (2-18) 

and εi is the energy of molecular orbital (Hartree-Fock orbital) i obtained from the 

solution of the one-electron Hartree-Fock equation given by 

1 1 1
ˆ ( ) ( ) ( ) 1, 2,..., 2i i iF i nψ εψ= =r r r  (2-19) 

where the Fock operator F̂  is defined as 

/2
core

1 1 1 1
1

ˆ ˆ ˆ ˆ( ) ( ) [2 ( ) ( )]
n

j j

j

F H J K
=

= + −∑r r r r  (2-20) 
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where core
1

ˆ ( )H r  is the one-electron core Hamiltonian given by Eq. 2-13, and the 

Coulomb operator ˆ jJ  and the exchange operator ˆ jK  are defined by 

1 1 1 2 2 2
12

1ˆ ( ) ( ) ( ) ( ) ( )j i i j jJ d
r

ψ ψ ψ ψ∗= ∫r r r r r r  (2-21) 

1 1 1 2 2 2
12

1ˆ ( ) ( ) ( ) ( ) ( )j i j j iK d
r

ψ ψ ψ ψ∗= ∫r r r r r r . (2-22) 

 The Coulomb operator is the potential energy due to the repulsion between 

electron i and the charge distribution associated with electron j. The exchange 

operator, on the contrary, has no classical analog and arises from the required 

antisymmetry of the wavefunction. However, it can be thought of as a correction to 

the Coulomb operator since it represents the interaction between electrons of the 

same spin that tend to avoid each other more than electrons of different spin. 

Equations 2-16 through 2-22 are for closed-shell molecules having even number 

of electrons and the method is called the restricted Hartree-Fock (RHF) method in 

which every spatial orbital is used to accommodate two electrons having opposite 

spin function (α and β). For open-shell molecular systems, the unrestricted Hartree-

Fock (UHF) method is used where the α and β electrons are allowed to occupy two 

different spatial orbitals. Though the UHF method accounts for spin polarization, the 

final UHF wavefunction has some degree of contamination from higher spin states 

(i.e. spin contamination) derived from the flipping of one or more electrons [26].  

The Hartree-Fock equation (2-19) corresponds to a set of n/2 coupled non-linear 

integro-differential equations that can be solved by the self-consistent field (SCF) 

procedure. In this procedure an initial guess for the molecular orbitals is made 

(usually by using a semiempirical method) and used to calculate an initial set of Fock 

operators. Solution of Eq. 2-19 is then possible and produces a new set of molecular 
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orbitals that can be used to calculate an improved set of Fock operators which in turn 

are used to calculate an improved set of molecular orbitals. This iterative procedure 

is repeated until the molecular orbitals obtained from one cycle are essentially the 

same as those obtained from the previous cycle to within a numerical convergence 

threshold (i.e. self-consistent).   

2.2.3 Basis sets and the Roothaan-Hall equations 

For molecules of interest in chemistry, the solution of the Hartree-Fock equations (2-

19) by numerical methods is unfeasible. It is practical to transform these equations 

into a set of algebraic equations that are independent of the size and geometry of the 

molecule and provide a more systematic procedure of solution. Roothaan and Hall, 

independently, introduced the method of using a basis set that converts the Hartree-

Fock equations into a matrix equation [27]. In this method, the unknown molecular 

orbitals are approximated as linear combinations of a set of known one-electron basis 

functions ϕr          

1

b

i ri r

r

cψ ϕ
=

=∑  (2-23) 

where the coefficients cri are the molecular orbital expansion coefficients to be 

determined.   

To accurately represent the molecular orbital ψi, a complete (infinite) set of 

basis functions ϕr is required though practically a finite number b of basis functions 

is used. Basis sets used in electronic structure calculations include plane and 

augmented waves, Slater-type orbitals (STOs), and Gaussian-type orbitals (GTOs). 

Plane and augmented waves are completely delocalized functions and are thus 

suitable for solid-state calculations such as studies on metallic crystalline materials. 

STOs and GTOs, on the other hand, are centered (localized) on the atomic nuclei and 
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hence bear some resemblance to atomic orbitals. Although STOs closely resemble 

hydrogenic atomic orbitals, the presence of more than four atoms in a molecule 

causes difficulties since there are no analytical solutions available for the two-

electron multi-center integrals when the basis functions are STOs. GTOs instead are 

more computationally convenient and are therefore being the most widely used basis 

functions for molecular orbital calculations.  

A normalized Cartesian GTO centered on an atom has the general form  

2 2 2

1 23 4
( )2 (8 ) ! ! !

(2 )!(2 )!(2 )!

k l m
k l m x y zk l m

g x y z e
k l m

αα α
π

+ +
− + +  =    

   
 (2-24) 

where α is a positive exponent determining the radial extent of the GTO, and k, l, and 

m are non-negative integers that establish the nature of the orbital (e.g., when k + l + 

m = 2, the orbital is called a d-type Gaussian). There are six d-type and ten f-type 

Cartesian Gaussians in contrast to the five 3d and seven 4f atomic orbitals. However, 

different Gaussian basis sets adopt different conventions regarding their d and f 

functions where some use all the six d and ten f Cartesian Gaussians and others use 

linear combinations to have the same angular behavior as the pure five 3d and seven 

4f atomic orbitals [28].  

As shown in Figure 2.5, Gaussian functions do not have cusps at the nucleus (r 

= 0) that the Slater functions do and hence they poorly represent an atomic orbital for 

small values of r. In addition, they decay faster at larger r and thus have less ability 

to represent diffused electron density distribution. Therefore, a linear combination of 

GTOs is used to approximate an STO, that is, 

r pr p

p

d gϕ =∑  (2-25) 

where ϕr is called contracted GTO and the gp’s are called primitive Gaussians having 

the same k, l, m values as one another but different α’s. For a given basis set, the 
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exponents α’s and the contraction coefficients dpr have predetermined values and 

remain constant during the calculation. 

The expansion for molecular orbital ψi defined by Eq. 2-23 is then given by          

1

b

i ri pr p

r p

c d gψ
=

 
=  

 
∑ ∑ . (2-26) 

 
 

 
 

Figure 2.5: Radial behavior of STO and GTO.  

 

  

A commonly used family of GTO basis sets for calculations on organic 

molecules is the Pople basis sets. An example of such basis sets is the basis set 

indicated by the notation 6-31G. This notation means that each core atomic orbital is 

expanded by a contraction of six primitive Gaussians and each valence shell atomic 

orbital is represented by two contractions, one with three primitive Gaussians and the 

other with one primitive Gaussian. Additional polarization functions can be added in 

order to give the wavefunction more flexibility to change its shape upon molecule 

formation. For example, the 6-31G(d) adds a set of six d-type Cartesian Gaussians 

on each atom other than hydrogen. Moreover, diffuse functions that describe the 

shape of the wavefunction far distant from the nucleus can be added for example for 
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anionic systems that have large electron density distribution and for van der Waal 

complexes to describe long range interactions. The 6-31+G(d) basis set adds diffuse 

functions to all atoms with the exception of hydrogen. 

 The method of using basis set proposed by Roothaan and Hall transforms the set 

of Hartree-Fock equations (2-19) into the matrix form 

=FC SCε  (2-27) 

where εεεε is a b b×  diagonal matrix of orbital energies with each of its elements εi 

representing the one-electron orbital energy of molecular orbital ψi, C is the b b×  

matrix of the molecular orbital expansion coefficients cri, S is the b b×  overlap 

matrix indicating the overlap between basis functions the elements of which are 

given by 

1 1 1( ) ( )
rs r s

S dϕ ϕ= ∫ r r r , (2-28) 

and F is a b b×  matrix called the Fock matrix whose elements are given by 

core

rs rs rs rsF H J K= + −  (2-29) 

where core

rsH , Jrs and Krs are given by 

core core
1 1 1 1

ˆ( ) ( ) ( )
rs r s

H H dϕ ϕ= ∫ r r r r  (2-30) 
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In Eqs. 2-28 through 2-32, the basis functions are indexed by r,s,t, and u and are 

real functions. The integral in Eq. 2-30 is called the one-electron integral whereas 

integrals in Eqs. 2-31 and 2-32 are called the two-electron repulsion integrals (multi-

center integrals) whose number can go up to b4/8 different integrals depending on the 

use of symmetry and integral accuracy cutoffs. The P in Eqs.2-31 and 2-32 is called 

the density matrix whose elements are 

/2

1

2
n

tu ti ui

i

P c c
=

= ∑  (2-33) 

where the summation is over occupied molecular orbitals. 

The energy of the molecule can be written in terms of the density matrix 

elements as 

( )

/2

HF
1 1 1

1 1

1

2

1
.

2

n b b
core

i rs rs nn

i r s

b b
core

rs rs rs nn

r s

U P H V

P H F V

ε
= = =

= =

= + +

= + +

∑ ∑∑

∑∑
 (2-34) 

Eq. 2-27 is solved iteratively by the self-consistent field (SCF) method as 

illustrated in Scheme 2.2. 

2.2.4 Density functional theory and the Kohn-Sham equations 

The performance of density functional theory (DFT) in terms of energetics, 

molecular structures, vibrational frequencies, and other chemical and physical 

properties is comparable and competitive with post-HF methods such as MP2 and 

CC methods. Meanwhile, DFT is less computationally intensive than these methods 

and as a result DFT is one of the most popular methods for electronic structure 

calculations in chemistry and materials science. 
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Scheme 2.2: The direct SCF method for the solution of the Roothaan-Hall equations for a 

closed-shell molecular system. The one-electron integrals need only to be evaluated once 

since they remain constant throughout the iterative calculation.  

 

 

 

DFT is aimed at calculating the molecular ground-state electron (probability) 

density 0ρ  not the molecular wavefunction as in HF based methods. The 

Hohenberg-Kohn existence theorem [29] assures that the ground-state molecular 

energy and other ground-state properties can be uniquely determined from the 

ground-state electron density, which is a function of only three spatial variables, 

without the need to find the molecular wavefunction. The energy is then said to be a 

functional (i.e. a function of a function) of the electron density, that is 

[ ]0 0 0 ( )E E ρ= r . (2-35) 
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The individual components of the electronic energy are as well functionals of 

the electron density and hence 

[ ] [ ] [ ] [ ]0 0 0 0 0ne eeE T V Vρ ρ ρ ρ= + +  (2-36) 

where Vne is the expectation value of the n̂eV  operator (cf. Eq. 2-9) and is given by  

[ ]0 0 ( ) ( )neV dρ ρ υ= ∫ r r r  (2-37) 

where υ(ri) is the ‘external’ potential acting on electron i and is defined as  

1

( )
N

I
i

I iI

Z

r
υ

=

= −∑r . (2-38) 

The first and the third functionals in Eq. 2-36 are universal functionals 

completely independent of the system whereas the middle functional is system 

dependant. The Hohenberg-Kohn variational theorem [29] proves that the exact 

ground-state electron density minimizes the energy functional and any trial electron 

density cannot give a lower ground-state energy than the exact ground-state electron 

density. However, the universal functionals are unknown and the Hohenberg-Kohn 

theorems lack any information on how to find the electron density without finding 

the wavefunction. 

 The Kohn and Sham (KS) approach [30] to DFT calculations is to reintroduce 

orbitals, which in fact increases the complexity from 3 to 3n variables, and is thus 

analogous to the HF method. The Kohn-Sham DFT electronic energy of a molecule 

can be expressed as 

[ ] [ ] [ ] [ ] [ ]0 0 0 0 0 0r ne xcE T V J Eρ ρ ρ ρ ρ= + + +  (2-39) 

where Tr is the electronic kinetic energy of a reference system of non-interacting 

electrons given by 
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[ ] 2
0 1 1 1 1

1

1
( ) ( )

2

n

r i i

i

T dρ ψ ψ∗

=

 = − ∇  
∑∫ r r r , (2-40) 

J is the classical Coulombic electron-electron repulsion energy defined as 

[ ] 0 1 0 2
0 1 2

12

( ) ( )1

2
J d d

r

ρ ρ
ρ = ∫∫

r r
r r , (2-41) 

and Exc is the exchange-correlation energy which is the sum of the kinetic energy 

deviation from the reference system and the electron-electron repulsion energy 

deviation from the classical system, that is, 

[ ] [ ] [ ]( ) [ ] [ ]( )0 0 0 0 0xc r eeE T T V Jρ ρ ρ ρ ρ= − + − . (2-42) 

In Eq. 2-40, the ψi’s are the KS spatial orbitals of the reference system 

analogous to the HF spatial orbitals and the KS wavefunction of the reference system 

can be represented by a Slater determinant similar to that of Eq. 2-16.  Using the 

electron density of the reference system 

2

1 0
1

( )
n

r i

i

ρ ψ ρ
=

= =∑ r  (2-43) 

in Eq. 2-39 and applying the variational principle to minimize E0 with respect to KS 

orbitals lead to the Kohn-Sham equations 

KS
1 1 1

ˆ ( ) ( ) ( )i i iF ψ εψ=r r r  (2-44) 

where the Kohn-Sham one-electron operator KSF̂  is defined as    

KS 2 2
1 2 1

1 1 12

( )1ˆ ( )
2

N
I

xc

I I

Z
F d V

r r

ρ

=

= − ∇ − + +∑ ∫
r

r r  (2-45) 

and  

[ ]( )
( )

( )
xc

xc

E
V

δ ρ
δρ

≡
r

r
r

 (2-46) 

is the exchange-correlation potential (the functional derivative of the exchange-

correlation energy Exc with respect to the electron density function). 
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In analogy to the Roothaan-Hall procedure for solving the Hartree-Fock 

equations, the Kohn-Sham equations (2-44) can be represented in the matrix form 

KS =F C SCε  (2-47) 

where εεεε is a b b×  diagonal matrix of orbital energies with each of its elements εi 

representing the one-electron orbital energy of KS spatial orbital ψi, C is the b b×  

matrix of the spatial orbital expansion coefficients cri, S is the b b×  overlap matrix 

indicating the overlap between basis functions the elements of which are given by 

Eq. 2-28, and FKS is a b b×  matrix called the Kohn-Sham matrix whose elements are 

given by 

KS core xc

rs rs rs rsF H J V= + +  (2-48) 

where core

rsH and Jrs are given by Eqs. 2-30 and 2-31, respectively, and xc

rsV  is given 

by 

1 1 1 1( ) ( ) ( )xc

rs r xc sV V dϕ ϕ= ∫ r r r r . (2-49) 

The energy of a closed-shell molecule can be written in terms of the density 

matrix elements as 

( )KS
1 1

1

2

b b
core KS

rs rs rs nn

r s

U P H F V
= =

= + +∑∑ . (2-50) 

Eq. 2-47 is solved iteratively by the self-consistent field (SCF) method 

analogous to that depicted in Scheme 2.2 for the Hartree-Fock method. 

In Eq. 2-39, the exact exchange-correlation energy functional Exc is unknown 

and actual DFT calculations use approximate functionals and are hence not 

variational (i.e., they can give an energy lower than the exact energy). The 

approximate exchange-correlation energy functional includes the non-classical part 

of the electron-electron interaction (i.e. the exchange energy and the Coulombic 

correlation energy), the correction to the electron self-interaction that arises from the 
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classical electrostatic repulsion (Eq. 2-41), and the kinetic correlation energy (i.e., 

the kinetic energy not covered by the non-interacting reference system). The types of 

approximate exchange-correlation functionals exist are: (1) local (spin) density 

approximation (L(S)DA), (2) generalized gradient approximation (GGA), (3) meta-

GGA, (4) hybrid-GGA, and (5) hybrid meta-GGA. Scheme 2.3 illustrates the 

physical ingredients included in these functionals.            

 
 
 
 
 
 
 
 
 
 
 

Scheme 2.3: DFT exchange-correlation energy functionals with their corresponding 

physical ingredients. 

 

 

The most popular DFT functional used in electronic structure calculations on 

organic molecules is the B3LYP functional (Becke 3 parameter exchange functional 

and Lee-Yang-Parr correlation functional) [31-34], which is a hybrid-GGA 

functional defined as 

3 88 3(1 ) (1 )B LYP LSDA HF B VWN LYP

xc x x x c cE a E aE b E c E cE= − + + ∆ + − +  (2-51) 

where the parameters a, b, and c have the values of 0.20, 0.72, and 0.81, 

respectively, and were determined by fitting to experimental data. The first three 

terms are the exchange energy functionals, namely, the local (spin) density 

approximation ( LSDA

xE ), Becke’s 1988 gradient correction (to the LSDA) for 

exchange ( 88B

xE∆ ) [31], and the exact exchange as defined in the Hartree-Fock 

method ( HF

xE ). The last two terms are the local spin density correlation functional of 
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Vosko, Wilk and Nusair ( 3VWN

cE ) [32] and the Lee, Yang and Parr correlation 

functional ( LYP

cE ) [33] that includes both local and gradient terms.   

 The exchange-correlation part (Eq. 2-49) of the Kohn-Sham matrix comprises 

integrals over complicated mathematical forms of the exchange-correlation potential 

Vxc that cannot be solved analytically. The practical procedure to evaluate such 

integrals is to employ numerical techniques where the integral is approximated by 

summing the integrand in steps determined by a grid [35]. Hence, the finer the grid 

the more accurate will be the DFT results. 

2.2.5 Geometry optimization and vibrational frequencies 

The molecular energy U (the molecular electronic energy including nucleus-nucleus 

repulsion) described thus far is for a point on the Born-Oppenheimer potential 

energy surface (single point energy). The equilibrium and transition structures that 

are of interest in chemistry correspond to stationary points on the PES (i.e. points 

where the first partial derivatives of the energy (the gradient) with respect to nuclear 

coordinates are zero) (cf. Figure 2.4). A geometry optimization of the molecule is 

therefore necessary to locate the desired stationary point on the PES. However, the 

energy of the molecule at a stationary point on the PES is not the true ground-state 

energy since it does not include the zero-point vibrational energy (ZPVE) due to 

molecular vibrations. The ZPVE is always positive even at temperatures close to 

absolute zero and the lowest energy a molecule can possess corresponds to the 

energy of the lowest vibrational state. Hence, the calculation of molecular vibrations 

is as well of importance. 

Generally, in a geometry optimization, a starting geometry of the molecule is 

chosen and the energy is calculated as described in Sections 2.2.2 – 2.2.4. The 

energy is then differentiated with respect to nuclear coordinates to yield the forces 
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acting on the nuclei (the negative of the gradient). The positions of the nuclei are 

then systematically displaced to get a new molecular geometry and the above steps 

repeated until the forces are essentially zero (below a preset value) and the 

displacement for the next step is very small.  

Geometry optimization algorithms [36-42] for finding minima fall into non-

derivative and derivative methods where the latter can be further categorized into 

first-order (the first partial derivative of the energy is used) and second-order (the 

first and second partial derivatives of the energy are used) techniques. The first-order 

methods include the steepest descents and conjugate gradient methods. The second 

order optimization algorithms include the Newton-Raphson and quasi-Newton 

methods. In quasi-Newton methods, estimates of the second partial derivatives of the 

energy (the Hessian) are used. Quasi-Newton methods are considered one of the best 

approaches to optimizing molecular geometries. 

Locating transition structures on the PES is often more difficult than minima. 

The algorithms used can be generally grouped into two categories; methods based on 

interpolation between two minima and methods that use only local information [36-

41]. Common interpolation methods include linear synchronous transit (LST) 

method, quadratic synchronous transit (QST) method, and nudged elastic band 

(NEB) method. Methods based on the updated Hessian Newton-Raphson approach 

are the most popular local methods. 

At both the minimum equilibrium structure and transition structure the first 

partial derivates of the energy with respect to nuclear coordinates are all zero. The 

number of negative eigenvalues (imaginary frequencies) in the Hessian matrix is 

thus used to distinguish the structure of being a minimum (no negative eigenvalues) 

or a transition structure (one and only one negative eigenvalue).    



67 
 

The characterization of the complete PES is difficult and it is adequate for most 

chemical applications to obtain the energies and molecular properties at stationary 

points on the PES (Figure 2.4). The molecule energy U can be expanded in a Taylor 

series about a stationary structure as  
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where U0 is set equal to zero, qα’s are the mass-weighted Cartesian displacement 

coordinates of the nuclei ( ( )1 1 1 1 1 1, , ,..., N Nm x m y m z m z∆ ∆ ∆ ∆ ), the first 

derivates are all zero for the stationary structure, and the third and higher derivatives 

(the anharmonic components of the energy) are neglected for small displacements 

(i.e. harmonic oscillator approximation to the energy). 

Using the mass-weighted Cartesian coordinates in addition to the introduction 

of a normal coordinate Qγ that is defined as a linear combination of qα’s transform 

the 3N-dimensional nuclear Schrödinger equation (2-8) into a sum of 3N one-

dimensional independent equations of the form  

2
2

2

1 1
λ ( ) ( ) 1, 2,...,3

2 2
Q Q E Q N

Q
γ γ γ γ γ γ γ

γ

ψ ψ γ
 ∂
− + = = 

∂  
 (2-53) 

where λγ  (the mass-weighted force constant) is given by 

2

2

0

λ
U

Q
γ

γ

 ∂
=   ∂ 

. (2-54) 
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Six (five for linear molecules) of the λγ values are (close to) zero and 

correspond to the translation and rotation modes [43-46]. The remaining 3N – 6 (5) 

values are nonzero and correspond to the normal modes of vibration. The total 

energy of the ground vibrational state is given by 

3 6

1

1

2

N

vibE ZPVEγ
γ

ω
−

=

= =∑  (2-55) 

where ωγ is the harmonic oscillator natural frequency defined as 

γ γω λ= . (2-56) 

The harmonic vibrational frequency (wavenumber) of the γth normal mode is 

given by  

1

2 c
γ γν λ

π
= . (2-57) 

Vibrational analysis must be carried out on stationary points where the first 

derivatives of the energy are all essentially zero (below a preset value). Moreover, 

the quantum mechanical method and basis set used for vibrational frequency 

calculation must be the same as those used for geometry optimization. The 

frequencies and ZPVE obtained from the harmonic oscillator approximation are 

systematically higher than the corresponding fundamental frequencies and thus need 

to be scaled. For the B3LYP method using the 6-31G(d) basis set the scaling factors 

of 0.9613 and 0.9804 are used for the frequencies and ZPVE, respectively. The total 

internal energy of the molecule is then given by 

0E U ZPVE= + . (2-58) 

The analytical computation of energy derivatives [41,47-59] has the advantages 

of being more computationally efficient and more numerically accurate than 
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numerical procedures. For DFT, the analytic first partial derivative of the energy 

with respect to a nuclear displacement coordinate xα is given by        

( )
1 1 1 1 1 1

1 1 1 1

|1

2

1

2

coreb b b b b b
rs

rs rs tu

r s r s t u

xcb b b b
rs rs nn

rs rs

r s r s

rs tuHU
P P P

x x x

S V V
W P

x x x

α α α

α α α

= = = = = =

= = = =

∂∂∂
= +

∂ ∂ ∂

∂ ∂ ∂
− + +

∂ ∂ ∂

∑∑ ∑∑∑∑

∑∑ ∑∑
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where Wrs’s are the elements of the energy-weighted density matrix W given by     

/2

1

2
n
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i

W c cε
=

= ∑ . (2-60) 

The analytic second partial derivative is given by 
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 (2-61) 

The first partial derivatives of the molecular orbital coefficients in the last four 

terms of Eq. 2-61 are required and can be computed by solving the coupled 

perturbed Kohn-Sham (CPKS) equations [41,53,60-64]. 

2.2.6 Thermochemical quantities 

Of importance to the study of relating structure and reactivity are the 

thermochemical quantities of the reaction. Relative Gibbs free energies (∆G) are 

often more meaningful with respect to the experiment than are relative energies at 

zero Kelvin (∆E0) (cf. Eq. 2-58). Hence, the results reported in this thesis are in 

terms of Gibbs free energies.  
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For the study of a chemical reaction at a given temperature, a thermal energy 

correction must be added to the energy defined by Eq. 2-58. The thermal correction 

includes the effects of molecular translation, rotation and vibration at the specified 

temperature and pressure [65-67]. 

The total internal thermal energy of the molecule is then given by 

298 0 elect V r tE E E E E E= + + + +  (2-62) 

where 298 denotes that the thermal correction to the internal energy E0 (Eq. 2-58) is 

at 298.15 K and the last four terms constitute the thermal correction as follows: 

(1) Eelect describes the contribution of electronically excited states to the internal 

thermal energy. In Gaussian, the first and higher excited states are assumed to 

be inaccessible at any temperature and hence there is no contribution to the 

internal thermal energy from this term. 

(2) Ev is the contribution to the internal thermal energy resulting from molecular 

vibration with the ZPVE being the largest contributor to this term. The 

occupation of higher vibrational states comprises the remainder. It should be 

pointed out that the ZPVE contribution is either included in E0 or Ev 

depending on where the zero of energy is set (the bottom of the internuclear 

potential energy well or the first vibrational level). 

(3) Er and Et are the contributions to the internal thermal energy due to rotation 

and translation, respectively. 

The enthalpy is given by 

298 298H E RT= +  (2-63) 

where R is the gas constant and T is the temperature in Kelvin (298.15 in this 

example). The Gibbs free energy is given by 
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298 298 298G H TS= −  (2-64) 

where S298 is the molar entropy of the molecule at 298.15 K, which includes the 

effects of molecular translation, rotation and vibration at the specified temperature 

and pressure. The above equations, in addition to the assumption that the first and 

higher electronic states are totally inaccessible, assume non-interacting molecules 

(ideal gas assumption). 

Relative energies and thermochemical quantities are often reported rather than 

absolute quantities which are difficult to measure accurately. This is illustrated in 

Figure 2.6. 

 

Figure 2.6: Relationship between computed energies and thermochemical quantities along a 

reaction path at 298.15 K and 1 atm pressure. U, E0, E298, H298, and G298 are given by Eqs. 2-

50, 2-58, 2-62, 2-63, and 2-64, respectively. TS = transition state. Note: the “transition state” 

term is used to denote a Boltzmann average on the Gibbs free energy surface while the 

“transition structure” term is used to describe the first-order saddle point on the potential 

energy surface.   
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In chemical reactions yielding more than one product, the products ratio 

(selectivity) is controlled either kinetically or thermodynamically or both. The 

Curtin-Hammett principle states that in stereoselective reactions starting from a 

substrate and giving rise to two or more stereoisomers, the favored reaction is not 

related to the more stable stereoisomer of the substrate. The favored reaction path is 

the one that proceeds through the lowest energy transition state even when the 

transition state is not derived from the more stable stereoisomer of the substrate. The 

extent of stereoselectivity results from the competition between the favored and the 

disfavored reaction paths and it solely depends on the Gibbs free energy difference 

between the competing stereoisomeric transition states [1,6,68,69]. The Curtin-

Hammett principle hence applies to kinetically controlled reactions.       

In most organic reactions, the activation barriers of the selectivity-determining 

steps are greater than the barriers connecting different isomers of the substrate 

[68,69]. Hence, the Curtin-Hammett principle can be applied to these reactions and 

the relative transition state Gibbs free energies correspond to the stereoselectivity of 

such reactions. Indeed, the Curtin-Hammett principle has also been shown applicable 

to (catalyzed) enantioselective Diels-Alder reactions [70,71].  

According to Boltzmann statistics, the fraction X of a molecule M having a 

specific geometry at temperature T can be given by 

M

mM

m

G RT

G RT

e
X

e

−

−=
∑

 (2-65) 

where m runs over all possible states (geometries). In this thesis, Eq. 2-65 is used to 

compute the fraction of an optimized endo or exo transition state structure with 

respect to all optimized endo or exo transition state structures. The average Gibbs 
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free energy of the endo transition state structures is calculated by Eq. 2-66 with the 

calculation for the exo transition state structures being the same.  

all endo

endo m m

m

G X G= ∑  (2-66) 

The endo fraction is then computed by Eq. 2-67 with analogous formula being 

used for the exo fraction.  

 ( )
1

1 exoendo
endo G G RT

X
e

−
=

+
 (2-67) 

The percent enantiomeric excess (% ee) is calculated by 

% 100endo exoee X X= − × . (2-68) 

No attempt to calculate the absolute rate constants of the studied reactions was 

carried out. However, relative reaction rates derived from transition state theory [72-

74] are reported and given by 

( )
:

exo endo
G G RT

endo exok e
∆ − ∆

=
‡‡

. (2-69) 

The percent enantiomeric excess (%ee) and the relative reaction rate as 

functions of the difference in transition state Gibbs free energies are illustrated by 

Figure 2.7. 

2.2.7 Molecular mechanics 

Quantum mechanics is typically employed for modeling molecular systems with 

limited number of atoms and treating large molecular systems quantum mechanically 

is out of the question. Albeit less accurate than quantum mechanics, molecular 

mechanics is the choice for modeling large molecules where the solution of the 

electronic Schrödinger equation is avoided. In molecular mechanics, atoms are the 

building blocks of the system rather than electrons and nuclei used in quantum 
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mechanics. Hence, in molecular mechanics, the bonding in the molecule must be 

defined explicitly. 

 

 
Figure 2.7: The relationship between percent enantiomeric excess, relative reaction rate and 

relative energy at 298.15 K.  

 

 

   

Molecular mechanics is based on classical (Newtonian) mechanics and 

electrostatics [75,76]. Under the Born-Oppenheimer approximation, the set of 

classically formulated equations that are used to describe the potential energy surface 

of a molecule is called a force field [75]. The parameters in these equations are 

determined either by experiment or by quantum mechanical calculations [75]. A 

force field parameterized using a representative ‘training set’ of a specific class of 

molecules is expected to produce reliable results for only that class [41,77-79]. In 

addition, force fields make use of atom types where, for example, the parameters 

used to describe an sp3 carbon are different from those used for an sp2 carbon [41,77-

79]. This allows the transferability of parameters. Widely used force fields include 

AMBER, CHARMM, and UFF. 
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The force field total energy (Utotal) [41,76] is typically defined as 

total bond bend tors vdw elec crossU U U U U U U= + + + + +  (2-70) 

where Ubond, Ubend, Utors, Uvdw, Uelec and Ucross are the energy functions describing 

bonds stretching, angles bending, torsional rotations, van der Waals interactions, 

electrostatic interactions, and coupling interactions, respectively. The mathematical 

form of these energy functions and the parameters associated with them are force 

field dependent [41]. The Uvdw and Uelec terms are often called nonbonded 

interactions. 

2.2.8 Classical molecular dynamics 

The two main computer simulation techniques for understanding the properties of 

ensembles of molecules are Monte Carlo and molecular dynamics. In classical 

molecular dynamics [80-85], Newton’s second equation ( m=F a ) is solved by step-

by-step numerical integration. For an atom k in a molecule consisting of M atoms, 

Newton’s second equation can be written as 

2

2

( )
1,2,...,k

k

k

dU
m k M

dt

∂
− = =

∂
rr

r
 (2-71) 

where the left hand side is the force acting on atom k and r is the vector containing 

the 3M spatial Cartesian coordinates of all the atoms (i.e. 1 2( , ,..., )M≡r r r r ). 

The set of second-order differential equations (Eq. 2-71) is numerically solved 

by several different integration algorithms [41,80-85] including the Verlet algorithm, 

the leap-frog algorithm and the velocity Verlet algorithm. The latter algorithm 

combines the advantages of the Verlet and leap-frog algorithms [41,82,85]. In the 

velocity Verlet algorithm, the equations for propagating an atom k read as follows 
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21
( ) ( ) ( ) ( )

2k k k kt t t t t t t+∆ = + ∆ + ∆r r v a  (2-72a) 

[ ]1
( ) ( ) ( ) ( )

2k k k kt t t t t t t+∆ = + + +∆ ∆v v a a  (2-72b) 

where v, a, t and ∆t are the velocity, the acceleration, the current time and the time 

step, respectively. Hence, the solution of Eq. 2-71 provides the positions and 

velocities of all the atoms at every time step over a total time interval (i.e. a 

trajectory). The time step is typically a femtosecond. The desired total simulation 

time depends on the complexity of the force field used, the size of the molecule and 

the computing power available. However, the simulation time should be long enough 

to represent the physical or chemical phenomena being studied. 

Typically, performing molecular dynamics simulation starts by defining the 

force field, the integration algorithm (the velocity Verlet algorithm in this example), 

and the thermodynamic ensemble to be used. The initial ( 0t = ) positions and 

velocities of the atoms are then chosen. Next, the integration time step (∆t) and the 

number of integration steps (total simulation time) are defined. The forces at 0t =  

are then calculated from the energy expression (the left hand side of Eq. 2-71) to 

determine the acceleration of the atoms. At each subsequent integration step, the 

positions of the atoms are computed using Eq. 2-72a, the forces are calculated (and 

hence the accelerations), and the velocities of the atoms are obtained from Eq. 2-72b. 

In a thermodynamic ensemble, quantities such as temperature (T), pressure (P), 

volume (V), number of moles (N), and energy (E) are controlled. The most important 

thermodynamic ensembles are: (1) the microcanonical (NVE) ensemble where N, V, 

and E are constant, (2) the canonical (NVT) ensemble in which N, V, and T are 

constant, and (3) the isothermal–isobaric (NPT) ensemble where N, P, and T are 

constant. Three of the most widely used methods for controlling the temperature are 
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the Andersen thermostat [83,85,86], the Nosé-Hoover thermostat [83,85], and the 

Berendsen thermostat [85,87]. For controlling the pressure, the Andersen barostat 

[86], the Berendsen barostat [87], and the Parrinello–Rahman [88] barostat are 

commonly used. 

2.2.9 Periodic boundary conditions 

Simulating condensed phases that are macroscopic in nature necessitates the use of 

large number of atoms (or molecules) in order to be able to resemble the behavior of 

the real chemical system. However, computational resources impose a constraint on 

the size of the system to be simulated. Periodic boundary conditions (PBC) are used 

to alleviate this problem by making the chemical system under investigation appear 

as though it is infinite (Figure 2.8). 

 

 

 

Figure 2.8: Periodic boundary conditions in two dimensions. The simulation box (in blue) is 

surrounded by eight periodic images. Arrows indicate that if during the simulation an atom 

(or a molecule) steps outside the boundary of the box, its image simultaneously enters the 

box.     
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To avoid double calculating the interatomic nonbonded interactions, a cutoff 

distance is employed during the simulation. The cutoff distance must be less than 

half the length of the shortest dimension of the simulation box [42,85]. However, 

long-range electrostatic interactions are often significant at distances larger than half 

the box length [42]. Ideally, the dimensions of the simulation box should exceed the 

range of any significant nonbonded interactions. However, this requires the use of a 

large simulation box which is computationally impractical. Several alternative 

methods to the use of a cutoff distance have been devised to handle long-range 

electrostatic interactions. These include the Ewald summation method [41,42,82-

85,89] and the fast multipole moment (FMM) method [41,83-85,89].  

2.2.10 Hybrid quantum mechanics/molecular mechanics 

(QM/MM) methods  

In order to make large molecular systems amenable to electronic structure 

calculations, great advances have been made in developing hybrid QM/MM methods 

[90-93]. Hybrid QM/MM methods are related to the idea of dividing the molecular 

system under investigation into two parts where one part is treated by a high level 

theory (the QM part) and the other is treated by a low level theory (the MM part). 

Unlike QM/MM, the ONIOM (our own n-layered integrated molecular orbital 

molecular mechanics) method is a flexible hybrid method where, in principle, any 

number and any level of theories can be combined (e.g., QM with QM, QM with 

MM, etc…) (Figure 2.9) [94-98]. The ONIOM method has been applied to 

investigate numerous different chemical processes that involve large systems. These 

include heterogeneous catalysts [99-105] and biomolecular systems [106-110]. 
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Figure 2.9: The ONIOM layers and models. (a) ONIOM layers, (b) three-layer ONIOM 

model, and (c) two-layer ONIOM model. Redrawn with modifications from reference 94. 

 

 

 

For a two-layer system, the ONIOM energy is obtained by extrapolation and is 

given by 

ONIOM model,high real,low model,lowE E E E= + −  (2-73a) 

ONIOM model,QM real,MM model,MME E E E= + −  (2-73b) 

where ‘model’ and ‘real’ refer to the part of the system that will be treated with the 

high level computational method and to the full system, respectively, ‘high’ denotes 

a high level computational method, and ‘low’ refers to a lower level method. Hence, 

First Layer: 
Bond formation/breaking region. 
High level theory (‘model’ system). 

Second Layer: 
Electronic effect on the first layer. 
Medium level theory (‘intermediate’ system). 

Third Layer: 
Environmental effects on the first layer. 
Low level theory (‘real’ system). 
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for a two-layer system, three energy computations are carried out for an ONIOM 

single point calculation. Eq. 2-73b is a special case of Eq. 2-73a where the ‘model’ 

system is treated quantum mechanically and the ‘real’ system is treated by molecular 

mechanics. ONIOM can also be applied to more than two layers (cf. Figure 2.9). The 

ONIOM method attempts to reproduce the relative energies at the high level of 

theory rather than the absolute energies (i.e. ONIOM real,highE E∆ ≈ ∆ ). 

In ONIOM method, the dangling bonds that result from dividing the full system 

into regions are saturated by link atoms (usually hydrogens) and incorporated into 

the ‘model’ system [95]. 

As can be seen from Eq. 2-73b, the interaction between the layers is included at 

the MM level and ONIOM method, therefore, defaults to the mechanical embedding 

(ME) scheme [95,96]. In the ME scheme, the electrostatic interaction between the 

‘model’ and ‘real’ systems is either performed at the MM level or omitted. In an 

electronic embedding (EE) scheme [95,96], the QM region is polarized by the partial 

charges of the MM region. The QM Hamiltonian (cf. Eq. 2-9) now includes the 

partial charges of the MM region. The electrostatic interaction operator is defined as 

elec
1 1 1 1

ˆ

MM MM
atoms atomsn N

k I k

i k I kik Ik

q Z q
V

r R= = = =

= − +∑∑ ∑∑ . (2-74) 

A third embedding scheme, which is not implemented in the ONIOM method, is the 

polarized embedding [41,91]. In this embedding scheme, the MM region is polarized 

by the charges of the QM atoms. 
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Enantioselective Organocatalytic Diels-
Alder Reactions: A Density Functional 

Theory and Kinetic Isotope Effects 

Study 
 

 

 

 

 

The quantum mechanical analysis of the energetics and electronic structures of 

molecules at equilibrium and transition states provides an important tool for 

understanding chemical reactions. Density functional methods are increasingly 

being used in investigating a variety of chemical reactions and providing a cost-

effective yet accurate way of including the electron correlation effects. The B3LYP 

functional is one of the most popular functionals for the calculations on organic 

molecules. In this chapter, the application of density functional theory at the 

B3LYP/6-31G(d) level to the enantioselective Diels-Alder reaction is explored. The 

outcomes of the current study are presented with emphasis on relating them to 

theory and experiment.  

 

 

3.1 Introduction 

The Diels-Alder cycloaddition reaction is one of the most powerful reactions for the 

construction of six-membered rings with several stereogenic centers in a regio- and 

stereo-controlled way. In addition, this reaction is seen as the key step in the 

synthesis of many important compounds such as reserpine, cortisone and myrocin C. 

The development of enantioselective Diels-Alder reactions involving the use of 

chiral organocatalysts has been the subject of numerous studies [1-11]. For example, 

the chiral oxazaborolidinium cation 13 has been shown to be a very useful and 

versatile catalyst for the synthesis of many biologically complex molecules such as 

estrone, the oral contraceptive desogestrel, and the antiflu drug oseltamivir [3]. 

In the Diels-Alder reaction, a molecule with a conjugated system of four π 

electrons (the diene) reacts with another molecule with two π electrons (the 

dienophile) to produce a molecule with a six-membered ring by the formation of two 
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new σ bonds. The nature of the formation of these new σ bonds has been the subject 

of long debate [12-16]. Two mechanisms are possible; a concerted mechanism 

involving a partial formation of the two new σ bonds in a single transition structure, 

and a stepwise mechanism having a biradical or zwitterionic intermediate with one 

of the σ bonds formed. In the concerted mechanism, if the two σ bonds are formed to 

the same extent, then the reaction is synchronous. Otherwise, it is asynchronous. 

Although an agreement has been reached in favor of the concerted mechanism, the 

presence of external influences such as a catalyst may change the mechanism from 

concerted to stepwise [17-19]. Furthermore, the existence of both concerted and 

stepwise trajectories has been suggested by femtosecond dynamics investigations of 

the Diels-Alder reaction [20,21]. 

With the use of electronic structure calculations it is possible to gain insights 

into the details of chemical reactions and molecular structures and properties that are 

difficult to achieve experimentally. In addition, electronic structure calculations help 

elucidate experimental results and make predictions that can then be tested 

experimentally. In such calculations, appropriate stationary points on the potential 

energy surface corresponding to equilibrium and transition structures are often 

located and characterized, and a reaction mechanism(s) is then proposed.  

Density functional methods often yield energies within the desired chemical 

accuracy (errors less than 2 kcal/mol) despite their inability to systematically 

improve such accuracy [22]. The inclusion of electron correlation in DFT as well as 

DFT’s high computational efficiency have allowed the computation of many 

chemically interesting systems without imposing serious constraints on the system 

size. Numerous examples of the application of DFT to the Diels-Alder reaction are 

found in the chemical literature. The B3LYP/6-31G(d) has been the method of 
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choice for such application and has proven to produce energies and thermochemical 

quantities comparable with experiment in addition to high quality equilibrium and 

transition structures [19,23-42]. 

The work described in this chapter explores the application of density functional 

theory for better understanding of the Diels-Alder reactions involving chiral 

oxazaborolidinium cation as an organocatalyst. The rules affecting the site selectivity 

and enantioselectivity are computationally investigated, and the mechanistic aspects 

of the Diels-Alder reactions in the presence of the oxazaborolidinium cation are 

described. The understanding of the role of the catalyst is of importance in order to 

improve the catalyst itself or to help design other enantioselective syntheses. 

3.2 Computational Details 

Single-point energy calculations, geometry optimizations, and vibrational 

frequencies of the reactants, transition structures and products were carried out in 

vacuo using density functional theory with the B3LYP functional and the 6-31G(d) 

basis set as implemented in the Gaussian 03 program [43]. 

Prior to B3LYP/6-31G(d) calculations, all equilibrium and transition structures 

were optimized and characterized using the AM1 semiempirical method followed by 

B3LYP/3-21G calculations. This often allows reaching better structures and reduces 

the total number of steps required at the higher level of theory. 

The default SCF algorithm in the Gaussian 03 program is a combination of two 

direct inversion in the iterative subspace (DIIS) [44,45] extrapolation methods, 

namely, EDIIS [46] and CDIIS [47]. In the event of convergence problem, in 

particular for transition structures, the keyword “scf=(maxconventional-

cycles=20,xqc)” was used. Using this keyword, the default algorithm is applied 

for the first 20 cycles then the quadratically convergent (QC) SCF algorithm [48] is 
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used. This algorithm ensures convergence though it is slower than the default 

procedure. 

Geometry optimizations to local minima and transition structures were 

accomplished with the Berny algorithm [49] in redundant internal coordinates [50] 

without any symmetry restriction. The Berny algorithm is a quasi-Newton algorithm 

that uses an estimate of the Hessian constructed from a simple valence force field. 

The estimated Hessian is then updated at each geometry optimization step using the 

computed gradient. For transition structure optimization, the Hessian is computed at 

the first step using the current quantum mechanical method and then improved in 

subsequent steps using the computed gradient. The redundant internal coordinates 

are built from all bonds, all valence angles between bonded atoms, and all dihedral 

angles between bonded atoms. The use of such coordinates significantly reduces the 

number of steps required for geometry optimization as compared to Cartesian 

coordinates or nonredundant internal coordinates (Z-matrix coordinates). 

Vibrational frequency calculations were performed at the optimized geometries 

to verify whether the obtained structures are minima or transition structures as well 

as to determine zero-point vibrational energies and thermochemical quantities 

(enthalpies, entropies, and Gibbs free energies). In Gaussian, an extra geometry 

optimization step is routinely performed after each frequency calculation using the 

accurately computed Hessian in order to confirm that the structure is a stationary 

point. If all the optimization convergence criteria are met then the program will print 

“-- Stationary point found”. In case that the structure was not a stationary 

point, an additional geometry optimization was carried out reading the accurate 

Hessian from the frequency calculation. This was done by including the keywords 

"Opt=ReadFC Geom=Check Guess=Read" in the input file. The obtained 
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structure was then reconfirmed by a frequency calculation. The vibration associated 

with the imaginary frequency was ensured to correspond to a displacement in the 

direction of the reaction coordinate. This was achieved with the graphical user 

interface for Gaussian program (GaussView). The zero-point vibrational energies 

and thermochemical quantities were calculated using frequencies scaled by 0.9804. 

Thermochemical quantities were calculated at both 298.15 K and 178.15 K and at 

1.0 atm pressure.  

The ISOEFF07 program [51] was used for kinetic isotope effects calculations at 

298.15 K. 

3.3 Results and Discussion 

3.3.1 Description of the studied reactions and stereochemical 

nomenclature 

The Diels-Alder reaction of quinones is highly useful in the synthesis of many 

complex natural products. An example of an enantioselective reaction utilizing the 

chiral oxazaborolidinium cation catalyst 13 in a Diels-Alder reaction has been shown 

by Corey in a reaction between 2-methyl-1,3-butadiene (isoprene) 14 and 2,3-

dimethyl-1,4-benzoquinone 15 [3,6] and is illustrated in Figure 3.1.  

 

 
 

Figure 3.1: Corey’s enantioselective Diels-Alder reaction of benzoquinone using chiral 

oxazaborolidinium catalyst (reference 6). 

Reaction 3-A 
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The structure and stereochemical configuration of the major product from this 

reaction can be predicted using the experimentally derived Corey’s predictive 

selection rules and mechanistic model [2,3,8]. These can be summarized as follows: 

(1) At the transition state, the bonding of the diene to carbon β to the carbonyl 

group that coordinates with the catalyst is stronger than bonding to carbon α 

(i.e. a concerted asynchronous reaction pathway) (Figure 3.2). 

  

 
 

Figure 3.2: Asynchronous bond formation at the transition state. 

 

 

(2) The double bond of the benzoquinone bearing two hydrogens is more 

reactive than that bearing substituents (site selectivity).  

(3) The predominant product will result from coordination of the catalyst to the 

oxygen lone pair from the a side (i.e. syn to the HC═CH subunit that 

undergoes the [4 + 2]-cycloaddition) rather than the b side (i.e. anti to the 

HC═CH subunit that undergoes the [4 + 2]-cycloaddition) since a is 

sterically more accessible than b (Figure 3.1). The primary interaction in this 

coordination complex is between the carbonyl oxygen and the boron of the 

catalyst. The secondary interaction is between the Cα–H hydrogen and the 

catalyst oxygen (i.e. a nonconventional hydrogen bond [52,53]).      
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(4) The preferred catalyst coordination is at the more basic of the two 

benzoquinone oxygens. In addition, the coordination of the catalyst to the 

carbonyl persists not only in the transition state but even in the Diels-Alder 

cycloadduct.   

(5) The preferred addition of the diene is to the front face of the α,β double bond 

(i.e. away from the phenyl groups of the catalyst). The other route of addition 

is to the rear face of the α,β double bond. 

(6) The favored 3-dimensional transition state corresponds to the endo 

arrangement of the diene and the catalyst-coordinated benzoquinone (i.e. the 

reactants lie directly on top of one another so that the two hydrogens attached 

to the α and β carbon atoms end up syn to the two-carbon unsaturated bond 

in the product). If the two hydrogens end up anti to the two-carbon 

unsaturated bond in the product, then the transition state corresponds to the 

exo arrangement.  

(7) The s-cis diene is more reactive than the s-trans rotamer. 

In the Diels-Alder Reaction 3-A (Figure 3.1), there is a pair of possible 

enantiomers of the catalyst 13, either the S or the R stereoisomer. In addition, there 

are two rotamers for each configuration resulting from the rotation about the B–o-

tolyl bond. Besides, the diene can adapt the s-cis or the s-trans conformation and 

there are two possible sites (double bonds) on the benzoquinone that the diene can 

attack approaching from either the front or the rear face. Moreover, the catalyst 

coordination to the benzoquinone can be syn or anti to the HC═CH subunit that 

undergoes the [4 + 2]-cycloaddition. Since there are two stereogenic carbons in the 

products, there will be up to four diastereomeric transition states ((S,R), (R,S), (R,R), 

and (S,S)). Fortunately, in this reaction, there is no issue of regioselectivity since 2,3-
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dimethyl-1,4-benzoquinone is C2 symmetric. Also, since the two benzoquinone 

oxygens are equally available for catalyst coordination, Corey’s predictive rule 

number 4 does not apply here. Thus, there would be numerous possible pathways for 

this reaction to proceed.  

To simplify matters, the model catalyst 16 is used throughout this investigation. 

This catalyst eliminates the need for the rotamers mentioned above to be considered 

and reduces the computational cost as it requires smaller number of basis functions 

compared to the catalyst 13. The (S)-enantiomer of the catalyst 16 is used since it is 

the more commonly used enantiomer in experimental studies [4-11,54]. 

 

16

N

B

O

H

CH3

H

H

 
 

  

As for the possible diastereomeric products, only the enantiomeric pair (S,R) 

and (R,S) is considered in the current work since the (S,R)-enantiomer is the major 

product observed experimentally (Figure 3.1) [3,6].     

 To investigate the site selectivity, only the uncatalyzed reaction pathways are 

considered. These are depicted in Figures 3.3 and 3.4. Only the addition of the diene 

to the less substituted double bond of the benzoquinone in the presence of catalyst 16 

as illustrated in Figures 3.5 and 3.6 is studied here (cf. Section 3.3.2).  
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Figure 3.3: Uncatalyzed Diels-Alder reaction with four possible reaction pathways. Diene 

addition to the less substituted double bond. Transition states are as shown in Figure 3.10. 

 
 

 
 

TS
8

 
 

Figure 3.4: Uncatalyzed Diels-Alder reaction with four possible reaction pathways. Diene 

addition to the methyl substituted double bond. Transition states are as shown in Figure 

3.11. 

Reaction 3-B 

Reaction 3-C 
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Figure 3.5: Catalyzed Diels-Alder reaction with eight possible reaction pathways. The 

catalyst is coordinated syn to the HC═CH double bond that undergoes the [4+2]-
cycloaddition. Transition states are as shown in Figure 3.13. In brackets are the transition 

states involving the s-trans diene. 

 
 
 

 
 

Figure 3.6: Catalyzed Diels-Alder reaction with eight possible reaction pathways. The 

catalyst is coordinated anti to the HC═CH double bond that undergoes the [4+2]-
cycloaddition. Transition states are as shown in Figure 3.14. In brackets are the transition 

states involving the s-trans diene. 

Reaction 3-D 

Reaction 3-E 
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3.3.2 Geometries and energetics of stationary points 

The B3LYP/6-31G(d) optimized structures of the reactants are shown in Figure 3.7. 

The s-cis diene R1 is less stable than the s-trans diene R2 by 2.7 kcal/mol and 

represents only 0.05% of the Boltzmann population at 178.15 K.   

The syn R5 and anti R6 coordination complexes between benzoquinone R3 and 

catalyst R4 are also shown in Figure 3.7. A stronger coordination is observed for the 

syn complex having a B–O bond length shorter by 0.06 Å than that of the anti 

complex. Besides, the syn complex exhibits a nonconventional hydrogen bond 

between the Cα–H hydrogen and the catalyst oxygen with 2.27 Å bond length. The 

stronger coordination in addition to the presence of hydrogen bonding in the syn 

complex led to a 7.0 kcal/mol stabilization for the syn complex as compared to the 

anti complex. This corresponds to almost a 100% of the Boltzmann population being 

represented by the syn complex. Furthermore, the Gibbs free energies for the syn and 

anti coordination complexes are lower than those of the separated reactants (R3 + 

R4) by 9.8 and 2.8 kcal/mol at 178.15 K, respectively (Figure 3.8). At 298.15 K, 

however, the anti coordination is unfavored since the complex free energy is 2.7 

kcal/mol higher than the separated reactants (Figure 3.8). The syn coordination is 

still favored but with a stabilization of only 4.4 kcal/mol (Figure 3.8). 

The B3LYP/6-31G(d) optimized structures of the products are displayed in 

Figure 3.9. P1 (endo) and P2 (exo) are the products of Reactions 3-B, 3-D, and 3-E 

whereas P3 (endo) and P4 (exo) are the products of Reaction 3-C. From the relative 

free energies given in Figure 3.9, it is obvious that the diene addition to the double 

bond bearing two hydrogens leads to more stable products (> 11 kcal/mol) than the 

diene addition to the double bond bearing the methyl groups. 
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Figure 3.7: Reactants B3LYP/6-31G(d) optimized structures. Relative free energies are in 

kcal/mol at 178.15 K with relative free energies at 298.15 K given in brackets. Distances are in 

angstroms. For names see text. Color code: carbon in grey, hydrogen in white, oxygen in red, 

nitrogen in blue, and boron in pink.  
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Figure 3.8: Relative Gibbs free energies for the coordination between R3 and catalyst R4 at 

178.15 K and 298.15 K. 
 
 

 

      
 
 
 

        
                       
 
 
 

Figure 3.9: Products B3LYP/6-31G(d) optimized structures. Relative free energies are in 

kcal/mol at 178.15 K with relative free energies at 298.15 K given in brackets. For names see 

text. 
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The optimized transition structures at the B3LYP/6-31G(d) level of theory for 

the uncatalyzed Reactions 3-B and 3-C are given in Figures 3.10 and 3.11, 

respectively. As is shown in the figures, the transition structures involving the attack 

of the diene at the less substituted double bond of the benzoquinone are more stable 

by 7.2 – 13.4 kcal/mol at 178.15 K. This is in agreement with Corey’s predictive rule 

number 2 discussed earlier (Section 3.3.1).      

 

                 
 
 
 
 

  
 
 
 

Figure 3.10: B3LYP/6-31G(d) optimized transition structures for the uncatalyzed Reaction 3-

B. Relative free energies are in kcal/mol at 178.15 K with relative free energies at 298.15 K 

given in brackets. Distances are in angstroms. TS1 = endo transition state involving the s-cis 

diene, TS2 = endo transition state involving the s-trans diene, TS3 = exo transition state 

involving the s-cis diene, and TS4 = exo transition state involving the s-trans diene.  
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TS4 
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Figure 3.11: B3LYP/6-31G(d) optimized transition structures for the uncatalyzed Reaction 3-

C. Relative free energies are in kcal/mol at 178.15 K with relative free energies at 298.15 K 

given in brackets. These energies are relative to TS1. Distances are in angstroms. TS5 = endo 

transition state involving the s-cis diene, TS6 = endo transition state involving the s-trans 

diene, TS7 = exo transition state involving the s-cis diene, and TS8 = exo transition state 

involving the s-trans diene. 

 

 

 

TS6 

∆∆∆∆Grel=+7.2 (7.8) 

TS5 

TS7 TS8 

∆∆∆∆Grel=+30.4 (31.4) 

∆∆∆∆Grel=+9.2 (9.8) ∆∆∆∆Grel=+32.4 (33.4) 



103 
 

The s-cis diene R1 is more reactive than the s-trans diene R2 and transition 

structures involving the s-cis diene are lower by > 18 kcal/mol than those having the 

s-trans diene (Figure 3.10). This is in accord with Corey’s predictive rule number 7 

mentioned earlier (Section 3.3.1). The reaction energy diagram for the uncatalyzed 

Reaction 3-B is shown in Figure 3.12. At 178.15 K, the conversion rate to the endo 

product is 12 times faster than the rate at which the exo product is formed. However, 

this rate is reduced by 4 times at 298.15 K. The endo/exo selectivity is calculated to 

be 84.7% and 52.1% at 178.15 K and 298.15 K, respectively. 

 

  
Figure 3.12: Reaction energy diagram for the uncatalyzed Reaction 3-B at 178.15 K and 

298.15 K showing activation free energies and relative rates. Free energies are in kcal/mol. 

TS1 and TS3 are as shown in Figure 3.10.   

 

 

 

The degree of asynchronicity for transition structures are found to be in the 

range of 0.06 – 0.26 Å (Figure 3.10) and all these transition structures, therefore, 

correspond to concerted asynchronous reaction pathways. This asynchronicity can be 

-30.00

-20.00

-10.00

0.00

10.00

20.00

30.00

40.00

R
e
la

ti
v
e
 G

ib
b
s
 F

re
e
 E

n
e
rg

y
 (
k
c
a
l/
m

o
l)

178K-TS1 178K-TS3 298K-TS1 298K-TS3

Reaction Coordinate 

178 27.6G∆ =‡  
298 33.0G∆ =‡  

kendo:exo = 12.1 (178.15 K) 
                 3.2  (298.15 K) 



104 
 

rationalized by the frontier molecular orbital (FMO) theory [23,55]. For example, in 

TS1, the slight asynchronicity of 0.09 Å is due to the LUMO having slightly larger 

coefficient on the β carbon of the benzoquinone rendering it more electrophilic than 

the α carbon (the β carbon contributes 4.7% of the LUMO while the α carbon 

contributes 4.2% of the LUMO). As a result, a slightly larger overlap between the β 

carbon and the diene HOMO leads to a slightly stronger and shorter bond at the 

transition structure. 

Shown in Figures 3.13 and 3.14 are the B3LYP/6-31G(d) computed transition 

structures for the catalyzed Reactions 3-D and 3-E, respectively. Consistent with the 

results of the uncatalyzed reactions, the transition structures involving the s-cis diene 

are 18 – 23 kcal/mol lower in energy than those having the s-trans diene. This is 

again in accord with Corey’s predictive rule number 7 discussed in Section 3.3.1. 

The syn transition structures (Figure 3.13) are more stable than their anti 

counterparts (Figure 3.14) by about 3.2 to 9.8 kcal/mol. For both syn and anti 

transition structures, the B–O bond length is shorter (on average) than that of the 

reactant by 0.08 Å and 0.11 Å, respectively indicating stronger complexation at the 

transition state. A relatively stronger coordination is observed for the syn transition 

structures with B–O bond lengths shorter by about 0.01 to 0.04 Å than those of the 

anti transition structures. As in the case of the reactants, the syn transition structures 

possess a nonconventional hydrogen bond between the Cα–H hydrogen and the 

catalyst oxygen with bond lengths in the range of 2.28 – 2.53 Å. On these grounds, 

Corey’s predictive rule number 3 of Section 3.3.1 holds valid for the studied 

reactions.  
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Figure 3.13: B3LYP/6-31G(d) optimized transition structures for the catalyzed Reaction 3-D. 

Relative free energies are in kcal/mol at 178.15 K with relative free energies at 298.15 K given in 

brackets. Distances are in angstroms. TS9 = endo transition state involving the s-cis diene attack 

to the front face, TS10 = endo transition state involving the s-trans diene attack to the front face, 

TS11 = exo transition state involving the s-cis diene attack to the front face, and TS12 = endo 

transition state involving the s-cis diene attack to the rear face. The exo transition state involving 

the s-trans diene attack to the front face could not be located. 

TS9 TS10 

TS12 

∆∆∆∆Grel=0.0 

∆∆∆∆Grel=+4.8 (4.3) 

∆∆∆∆Grel=+19.1 (19.6) 

∆∆∆∆Grel=+1.3 (1.3) 

TS11 
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Figure 3.13 (Continued): TS13 = endo transition state involving the s-trans diene attack to the 

rear face, TS14 = exo transition state involving the s-cis diene attack to the rear face, and TS15 

= exo transition state involving the s-trans diene attack to the rear face.  
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∆∆∆∆Grel=+24.4 (24.3) 

∆∆∆∆Grel=+20.6 (21.0) 
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TS15 



107 
 

      
 
 
 
 
 

 
 
 
 
  
 

 

Figure 3.14: B3LYP/6-31G(d) optimized transition structures for the catalyzed Reaction 3-E. 

Relative free energies are in kcal/mol at 178.15 K with relative free energies at 298.15 K given in 

brackets. These energies are relative to TS9. Distances are in angstroms. TS16 = endo transition 

state involving the s-cis diene attack to the front face, TS17 = endo transition state involving the 

s-trans diene attack to the front face, and TS18 = exo transition state involving the s-cis diene 

attack to the front face. The exo transition state involving the s-trans diene attack to the rear face 

could not be located. 
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Figure 3.14 (Continued): TS19 = exo transition state involving the s-trans diene attack to the 

front face, TS20 = endo transition state involving the s-cis diene attack to the rear face, TS21 = 

endo transition state involving the s-trans diene attack to the rear face, and TS22 = exo 

transition state involving the s-cis diene attack to the rear face. 

 

TS21 TS22 

∆∆∆∆Grel=+24.5 (25.0) 
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TS19 TS20 
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For the endo transition states at 178.15 K, the lowest energy transition state is 

TS9 representing ~ 97.55% of the Boltzmann population of the endo transition 

states. This transition state involves an s-cis diene addition to the front face of the 

α,β double bond of the benzoquinone and the catalyst is coordinated syn to this bond. 

This result supports Corey’s predictive rules 3 and 5 mentioned in Section 3.3.1. The 

next lowest transition state TS12 has ~ 2.45% of the Boltzmann population of the 

endo transition states. It is similar to TS9 but the diene addition is to the rear face of 

the α,β double bond of the benzoquinone. At 298.15 K, TS9 and TS12 contribute ~ 

90.02% and ~ 9.94% of the Boltzmann population, respectively. The remaining 

0.04% is due to TS20, which is similar to TS12 but with the catalyst coordinated 

anti to the α,β double bond that undergoes the cycloaddition.  

As for the exo transition states at 178.15 K, TS14 represents the most stable 

transition state with ~ 99.98% of the Boltzmann population of the exo transition 

states. It is similar to TS12 except that the arrangement is exo. The remaining 0.02% 

is for TS11, which is similar to TS14 but with the diene addition to the front face of 

the α,β double bond of the benzoquinone. The percentages at 298.15 K are ~ 99.18% 

and 0.82% for TS14 and TS11, respectively.                         

The reaction energy diagram for the catalyzed Reaction 3-D is illustrated in 

Figure 3.15. At 178.15 K, the endo pathway is 116 times faster than the exo route but 

it is reduced by ~ 12 times at 298.15 K. In addition, as compared to the uncatalyzed 

reaction (Figure 3.12), the reaction rate is markedly enhanced in the presence of the 

catalyst through lowering the activation free energy barriers by more than 13 

kcal/mol. The catalyst also leads to an enhanced enantioselectivity and the percent 

enantiomeric excess (%ee) is calculated to be 98.3% and 80.5% at 178.15 K and 
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298.15 K, respectively. This is in agreement with Corey’s predictive rule number 6 

that the preferred transition state has an endo arrangement (Section 3.3.1).  

 

  
Figure 3.15: Reaction energy diagram for the catalyzed Reaction 3-D at 178.15 K and 298.15 

K showing activation free energies and relative rates. Free energies are in kcal/mol. TS9 and 

TS14 are as shown in Figure 3.13.   

 

 

 

The enantiomeric excess of the product observed experimentally is 90% (Figure 

3.1). This discrepancy between the experimental and calculated enantioselectivities 

can be attributed to computational errors such as simplification of the catalyst, and 

approximations and inaccuracies associated with the DFT/B3LYP method. In 

addition, reaction conditions are presumably more complex and different from those 

of computation. Moreover, the solvent effects were not included in this study. The 

use of the polarizable continuum model with the integral equation formalism 

(IEFPCM), the self-consistent isodensity polarizable continuum model (SCIPCM), 

and the conductor-like polarizable continuum model (CPCM), together with different 
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topological models/atomic radii that define the solute cavity (UAHF, UAKS, and 

Bondi) [56] failed to meet the default geometry optimization convergence 

thresholds. 

The average degree of asynchronicity for the transition structures involving the 

s-cis diene is calculated to be 0.93 Å (Figures 3.13 and 3.14). Thus, these transition 

structures point to concerted but highly asynchronous reaction pathways where the 

bond between the diene and carbon β of the dienophile is being formed in a larger 

extent than the bond between the diene and carbon α of the dienophile. This result 

reinforces Corey’s predictive rule number 1 discussed in Section 3.3.1. Similar to the 

uncatalyzed case, the asynchronicity can be explained by the frontier molecular 

orbital (FMO) theory [23,55]. For instance, the high degree of asynchronicity (0.99 

Å) found in the transition structure TS9 is due to the LUMO having much larger 

coefficient on the β carbon of the benzoquinone causing it to be much more 

electrophilic than the α carbon (the β carbon possesses 12.9% of the LUMO while 

the α carbon has only 2.0% of the LUMO). This results in a much larger overlap 

between the β carbon and the diene HOMO leading to a much stronger and shorter 

bond at the transition structure. 

As depicted in Figures 3.13 and 3.14, the bond between the s-trans diene and 

carbon β of the dienophile is in the range of 1.61 – 1.69 Å indicating an almost 

formed C–C bond. Attempts to locate earlier transition structures on the potential 

energy surface were not successful implying that the formation of this bond is 

barrierless (or having a very low activation barrier). Hence, the formation of the 

second C–C bond is presumed to be the rate determining step for the s-trans 

pathway. In all cases however, the transition structures with the s-trans diene are 18 
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– 23 kcal/mol higher in energy than those having the s-cis diene rendering reaction 

pathways with s-trans diene less likely to happen. 

3.3.3 Kinetic isotope effects 

Equilibrium isotope effects (EIEs) are the result of bonding and non-bonding 

interactions at minimum stationary points. On the other hand, kinetic isotope effects 

(KIEs) yield information about transition structures and result from isotopic 

substitution that has an effect on the rate of the reaction [57,58]. Comparison of 

experimental KIEs with theoretically calculated ones is useful in elucidating organic 

reaction mechanisms. KIEs can also provide information on the transition structures 

such as the extent of bond formation [14-16,59-64].   

Isotopic substitution does not alter the electronic energy and structure but 

changes the vibration associated with the isotopically substituted bond which in turn 

influences the zero-point vibrational energy (ZPVE). Often, isotopic substitution 

involves replacing hydrogen by deuterium (or tritium) since hydrogen isotopes have 

the largest relative mass differences [57,58]. 

Primary kinetic isotope effects result from isotopic substitution of a hydrogen 

atom directly involved in the reaction while secondary kinetic isotope effects (2º-

KIEs) result from isotopic substitution of a hydrogen atom not directly involved in 

the reaction [65]. 2º-KIEs can be normal ( H D 1k k > ) or inverse ( H D 1k k < ), where 

kH and kD are the reaction rate constants for hydrogen and deuterium, respectively. In 

Diels-Alder reactions, the hybridized state of termini carbons of the diene and 

dienophile change from sp2 to sp3 resulting in an increase of the corresponding C–H 

out-of-plane bending frequency [58,66]. Hence, an inverse 2º-KIE is expected for the 

Diels-Alder reaction. In addition, KIEs for the stepwise mechanism are all normal 

whereas for the concerted mechanism are all inverse [66]. 
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In the ISOEFF07 program, the requirements for the theoretical calculation of 

KIEs are the isotopic frequencies for the reactant and the transition state. Based on 

the transition state theory, the KIE can be computed from the frequencies of the 

normal modes of vibration by [51]  
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 (3-1) 

where L and H represent the light and heavy isotopes, respectively, R and ‡ denote 

the reactant and transition state, respectively, and ν is the isotopic frequency. 

Bu h k Tν=  where h and kB are Planck’s and Boltzmann constants and T is the 

temperature. 

The KIEs can be calculated accurately as long as the vibrational frequencies are 

computed accurately. In this work, the frequencies calculated by the Gaussian 

program at the B3LYP/6-31G(d) level of theory were used as the input for the 

ISOEFF07 KIEs calculations. To account for the anharmonicity of molecular 

vibrations, the frequencies were scaled by 0.9613 during the ISOEFF07 KIEs 

calculations.  

Figures 3.16 and 3.17 show the experimental values for the KIEs for analogous 

uncatalyzed and catalyzed Diels-Alder reactions reported in the literature. Figure 

3.18 shows the theoretically calculated KIEs obtained in this study for TS1, TS3, 

TS9 and TS14.  
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Figure 3.16: Experimental 
2
H and 

13
C (italicized numbers) KIEs at 298 K for the uncatalyzed 

Diels-Alder reaction between isoprene and maleic anhydride (reference 59). 

 

 

 

 

 

 

 

 
 

Figure 3.17: Experimental 
2
H and 

13
C (italicized numbers) KIEs at 298 K for the Lewis acid 

catalyzed Diels-Alder reaction of isoprene and methyl vinyl ketone (reference 61). 
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Figure 3.18: B3LYP/6-31G(d) computed  
2
H and 

13
C (italicized numbers) KIEs at 298 K  for 

the uncatalyzed Reaction 3-B (TS1 and TS3) and the catalyzed Reaction 3-D (TS9 and 

TS14). 

 

  

 

From the figures, there is a good agreement between the calculated and 

experimental KIEs. In Figure 3.18, the different 2H 2º-KIEs at C-1 over C-4 point to 

asynchronicity in bond formation to C-1 versus C-4 at the transition structure [59] 

with the asynchronicity being more pronounced for the catalyzed reaction. In 

addition, for TS1 and TS3, the small difference of 13C KIEs at C-1 and C-4 suggest a 

slightly asynchronous mechanism. For TS9 and TS14, the large 13C KIE at C-1 and 

small 13C KIEs at the other carbons could indicate both stepwise mechanism and 

highly asynchronous concerted mechanism [61]. The 2H 2º-KIEs, however, clearly 

show a concerted mechanism. The large inverse 2H 2º-KIEs at C-4 are indicative of 

bond formation to C-4 at the transition structure [61]. Such inverse 2H 2º-KIEs are 

not characteristic of a stepwise mechanism [61]. Hence, the studied catalyzed 
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reaction is presumed to proceed through a concerted but highly asynchronous 

mechanism.  

3.3.4 Preliminary data and further investigations 

The Danishefsky’s diene (trans-1-methoxy-3-trimethylsilyloxy-1,3-butadiene) is a 

useful diene in the Diels-Alder reaction and has been employed in the synthesis of 

many compounds [67,68]. It is an electron-rich diene and thus shows a high 

reactivity towards dienophiles. The presence of the methoxy group renders the Diels-

Alder reaction regiospecific by connecting the electrophilic carbon attached to the 

methoxy group with the most nucleophilic atom of the dienophile. 

As mentioned in Section 3.1, understanding the role of the catalyst can help in 

the design of other enantioselective syntheses. Hence, in this part of the work, the 

application of the model catalyst 16 to a Diels-Alder reaction involving Danishefsky 

diene is explored. The studied reaction pathways are depicted in Figures 3.19 and 

3.20. The following simplifications are made in the studied reaction: (1) the model 

(S)-catalyst 16 is used, (2) the same dienophile as in Corey’s reaction (Figure 3.1) is 

used considering only the diene addition to the less substituted double bond of the 

dienophile (Section 3.3.2), (3) only the s-cis Danishefsky diene is considered and a 

simpler structure for this diene is used by replacing the trimethylsilyloxy group by a 

methoxy group, (4) the use of the Danishefsky diene introduces one more 

stereogenic center into the product and hence there are 8 possible diastereomeric 

products of which only 4 are considered, and (5) since there is no experimental data, 

the reaction is studied at only 298.15 K. 
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Figure 3.19: Catalyzed Diels-Alder reaction with eight possible reaction pathways. The 

catalyst is coordinated syn to the HC═CH double bond that undergoes the [4+2]-
cycloaddition.  

 

 
 
 

 
 
 
 

 
 

Figure 3.20: Catalyzed Diels-Alder reaction with eight possible reaction pathways. The 

catalyst is coordinated anti to the HC═CH double bond that undergoes the [4+2]-
cycloaddition. 

 

 

 

 

Reaction 3-F 

Reaction 3-G 
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Only four transition structures could be located on the potential energy surface 

for this reaction. These transition structures lead to the two diastereomers endo-R 

and exo-R. The B3LYP/6-31G(d) optimized structures for the model Danishefsky 

diene R7 and the two diastereomers endo-R P5 and exo-R P6 are shown in Figure 

3.21. The four transition structures are given in Figure 3.22. 

 

  

      
 
 
 

            
 
 
 
 
 
 

Figure 3.21: B3LYP/6-31G(d) optimized structures for Danishefsky diene and products. Relative free 

energies are in kcal/mol at 298.15 K. For names see text.  
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Figure 3.22: B3LYP/6-31G(d) optimized transition structures for the catalyzed Reaction 3-F. Relative 

free energies are in kcal/mol at 298.15 K. Distances are in angstroms. TS23 = endo transition state 

involving the s-cis diene attack to the front face, TS24 = exo transition state involving the s-cis diene 

attack to the front face, TS25 = endo transition state involving the s-cis diene attack to the rear face, and 

TS26 = exo transition state involving the s-cis diene attack to the rear face. For all transition structures, 

the carbon atom attached to the OMe group has the R configuration. 

TS23 TS24 

TS26 

∆∆∆∆Grel=+1.5 

∆∆∆∆Grel=+2.4 

∆∆∆∆Grel=0.0 
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The exo transition state TS24 represents the most stable transition state with an 

almost 100% of the Boltzmann population of the exo transition states. It involves the 

s-cis Danishefsky diene addition to the front face of the α,β double bond of the 

dienophile and the catalyst is coordinated syn to this bond. The carbon atom 

connected to the methoxy group possesses the R configuration. The next lowest exo 

transition state is TS26. It is similar to TS24 except that the diene addition is to the 

rear face of the α,β double bond of the benzoquinone.  

The lowest energy endo transition state is TS23 representing ~ 81.28% of the 

Boltzmann population of the endo transition states. It is similar to TS24 but the 

transition state arrangement is endo. The next lowest endo transition state is TS25 

having ~ 18.72% of the Boltzmann population of the endo transition states. It is 

similar to TS23 but with the diene addition to the rear face of the α,β double bond of 

the dienophile. 

The energy diagram for Reaction 3-F is illustrated in Figure 3.23. In contrast to 

Reaction 3-D (Figure 3.15), the exo pathway is 12 times faster than the endo 

channel. However, the endo-R product is 4.3 kcal/mol more stable than the exo-R 

product. Thus, Reaction 3-F can be controlled both kinetically and 

thermodynamically with the exo product being the kinetically favored product and 

the endo product being the thermodynamically favored product. In addition, there is 

a substantial lowering (> 14 kcal/mol) of the free energy of activation upon the use 

of the more reactive Danishefsky diene as compared to isoprene (Figure 3.23 vs. 

Figure 3.15). Moreover, in the presence of the Danishefsky diene, the 

stereoselectivity of the reaction is fairly enhanced. The percent diastereomeric excess 

(%de) is calculated to be 88.2%. Therefore, based on these preliminary data, the use 

of catalyst 16 is recommended for reactions such as Reaction 3-F. 
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Figure 3.23: Reaction energy diagram for the catalyzed Reaction 3-F at 298.15 K showing 

activation free energy (kcal/mol) and relative rate. TS23 and TS24 are as shown in Figure 

3.22. 

 

 

 

The average degree of asynchronicity for the transition structures is found to be 

1.49 Å (Figure 3.22). Thus, the Diels-Alder reaction involving the Danishefsky diene 

is more asynchronous than that involving isoprene (1.49 Å vs. 0.93 Å). To further 

elucidate the mechanism, KIEs are calculated for Reaction 3-F and are given in 

Figure 3.24. At the transition states, the average distance between C-1 of the 

Danishefsky diene and carbon α of the benzoquinone is calculated to be 3.85 Å 

(Figure 3.22). This distance is larger than the van der Waals contact distance (3.40 

Å) of the two carbons and hence there is no hint of bonding between the two carbons 

at these transition states. Despite this fact, the theoretically calculated KIEs (Figure 

3.24) indicate a concerted but highly asynchronous reaction mechanism instead of a 

stepwise mechanism. 
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Figure 3.24: B3LYP/6-31G(d) computed  
2
H and 

13
C (italicized numbers) KIEs at 298 K  for 

Reaction 3-F (TS23 and TS24).  

 

 

 

It should be pointed out that the complete description of a chemical reaction 

mechanism requires more than just locating stationary points along a reaction path.  

The time-evolution of the chemical process (i.e. molecular dynamics) is of 

importance for distinguishing between concerted and stepwise mechanisms. As 

stated in Section 3.1, femtosecond dynamics studies have suggested the presence of 

both concerted and stepwise trajectories for the Diels-Alder reaction [20,21]. Ab 

initio molecular dynamics (AIMD) calculations employing the atom-centered density 

matrix propagation (ADMP) method [69-71] have been used to study important 

chemical reactions such as the Staudinger reaction [72-75]. Compared to other 

AIMD methods, the ADMP method has the fundamental advantage of linear scaling 

of computational time with system size [69-71]. The study of organocatalytic Diels-

Alder reaction using the ADMP method for gaining further insights into the 

mechanism of this vital reaction is thus recommended. 
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3.4 Conclusion 

The enantioselectivity and mechanism of the Diels-Alder reaction between isoprene 

14 and 2,3-dimethyl-1,4-benzoquinone 15 in the presence of the model chiral 

cationic oxazaborolidinium catalyst 16 have been studied by density functional 

theory using the B3LYP functional together with the 6-31G(d) basis set. Both 

uncatalyzed and catalyzed reactions were investigated to explore the effect of the 

catalyst on this reaction in terms of energetics, selectivity, and mechanism. The free 

energy of activation was significantly lowered (> 13 kcal/mol) in the presence of the 

catalyst. In addition, the catalyzed reaction showed an improved endo/exo selectivity 

of greater than 13 percentage points. Moreover, both uncatalyzed and catalyzed 

reactions showed concerted asynchronous reaction mechanism with the degree of 

asynchronicity being more evident in the presence of the catalyst.  

Two different types of dienes were considered in the current work, namely, 

isoprene and Danishefsky diene. In the presence of the catalyst, both dienes showed 

comparable stereoselectivity. The Diels-Alder reaction in the presence of isoprene is 

most likely to go through the endo channel while in the presence of Danishefsky 

diene, the exo route is favored. In both cases, the preferred catalyst coordination is 

syn to the HC═CH double bond of the dienophile that undergoes the [4 + 2]-

cycloaddition and the diene addition is to the front face of this double bond. Based 

on the optimized transition structures and theoretical kinetic isotope effects 

calculations, the Diels-Alder reactions involving both dienes are predicted to proceed 

through concerted but highly asynchronous mechanism. The degree of 

asynchronicity is more pronounced in the presence of Danishefsky diene. The 

theoretical outcome of the current study is in excellent agreement with Corey’s 

experimentally derived predictive selection rules [8]. 
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Density Functional Theory 
Investigation of the Enantioselectivity 
and Mechanism of an Organocatalytic 

Diels-Alder Reaction 
 

 

 

 

 

To provide further information in addition to the energetics and electronic structures 

of the molecules involved in a chemical reaction, the work of the present chapter 

deals with various aspects of density functional theory as applied to the study of the 

selectivity and the mechanism of the Diels-Alder reaction. The theoretical methods 

used include the reaction force profiles, the topological analysis of the electron 

density and the global reactivity descriptors. Theoretical backgrounds of these 

approaches are also introduced.   

 

 

4.1 Introduction  

As in wavefunction based methods, density functional theory (DFT) calculations 

generate numbers that often need to be translated into a language that reveals their 

chemical relevance. As stated by Robert G. Parr [1] “Accurate calculation is not 

synonymous with useful interpretation. To calculate a molecule is not to understand 

it”. 

Conceptual density functional theory provides a means for the prediction and 

interpretation of the chemical reactivity on the basis of the response of the system’s 

energy and of the system’s electron density to changes in the external potential 

and/or the number of electrons [2-4]. This corresponds to conceptually simple and 

chemically meaningful quantities. For example, the electronegativity has been 

identified as the negative of the electronic chemical potential, which is the first 

partial derivative of the total electronic energy of the molecule with respect to its 

number of electrons at constant external potential [5].  
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The Diels-Alder reaction, in terms of the nature of the interaction between the 

diene and the dienophile as well as the selectivity, mechanism, and progress of the 

reaction, has been studied through various theoretical approaches. These include: (1) 

frontier molecular orbital (FMO) analysis [6-11], (2) bond order analysis, natural 

bond orbital (NBO) methods, and topological analysis of the electron localization 

function (ELF) [6-8,12-19], (3) global and local reactivity descriptors [20-24], (4) 

reaction path and reaction forces [25], and (5) aromaticity [26,27]. 

The objective of the present chapter is to examine the applicability of some of 

the abovementioned theoretical approaches to rationalize the mechanism and 

enantioselectivity of the Diels-Alder reaction. The reaction studied is between 2-

methyl-1,3-butadiene 14 and 2,3-dimethyl-1,4-benzoquinone 15 in the presence of 

catalyst 16 (cf. Figures 3.1 and 3.5). Only the most energetically favorable transition 

states for the endo (TS9) and the exo (TS14) channels are considered. It is hopeful 

that the outcome of the current work will aid in deeper understanding of the 

mechanism and enantioselectivity of organocatalytic Diels-Alder reactions.  

4.2 Computational Details 

All DFT calculations were carried out in vacuo at the B3LYP/6-31G(d) level of 

theory as implemented in the Gaussian 03 program [28] (for details cf. Section 3.2). 

All atomic charges were obtained from the natural population analysis (NPA) [29-

31] at the same level of theory using the NBO program (version 3.1) integrated into 

Gaussian 03. The reaction forces were obtained by tracing the intrinsic reaction 

coordinate (IRC) [32-36] as implemented in Gaussian 03 using the same calculation 

level. The initial force constants for the IRC calculation were taken from the 

corresponding previous frequency run used to confirm the transition structure. A 



131 
 

total of 40 points were examined along the reaction path (both the forward and the 

backward directions) with a default step size of 0.1 amu1/2 Bohr. 

Electron localization function (ELF) [17,37-42] calculations were performed for 

the reactants, products, transition structures and critical points along the IRC path 

using the DGrid program [43]. The DGrid program requires only the Gaussian 

formatted checkpoint file and converts it to a special formatted file that contains all 

the necessary information for it to run. 

The Mayer bond orders [44-47] were calculated for the reactants, products, 

transition structures and critical points along the IRC path using the EFF-AO 

program [48]. This was achieved by performing single-point HF/STO-3G 

calculations at the B3LYP/6-31G(d) optimized structures using the Gaussian 03 

program. The Gaussian formatted checkpoint file is then used by the EFF-AO 

program for bond order analysis. The use of the minimal STO-3G basis set is 

recommended for bond order and valence indices analysis and gives the most 

reliable values [49-51]. 

Global reactivity indices including electronic chemical potential (µ), chemical 

hardness (η), and electrophilicity (ω) are calculated as follows [52,53]: 

( )H L

1

2
µ ε ε≈ +  (4-1) 

L Hη ε ε≈ −  (4-2) 

2

2

µ
ω

η
=  (4-3) 

where Hε  and Lε  are the one-electron energies of the HOMO and the LUMO, 

respectively. 
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4.3 Results and Discussion 

4.3.1 Reaction force analysis along the intrinsic reaction 

coordinate 

The path on the potential energy surface connecting the reactants and the products 

through the transition structure is termed the reaction path [35]. The steepest descent 

reaction path from the transition structure to the reactants and to the products is 

called the minimum energy path (MEP) (depicted by red lines in Figure 2.4) [35]. If 

the reaction path is described in terms of mass-weighted coordinates, the MEP is 

referred to as the intrinsic reaction coordinate (IRC) [32]. 

Several reaction path following algorithms have been devised [35,36] with the 

one developed by Gonzalez and Schlegel [33,34] being the most widely used. The 

Gonzalez-Schlegel (GS) algorithm is shown in Figure 4.1. In the GS algorithm, the 

gradient at point qi is first calculated and a step of size ½ s is taken along the 

direction of this gradient in order to find point q`. On the surface of a hypersphere of 

radius ½ s and centered at q`, a constrained minimization is then performed in order 

to locate the next point qi+1[33-36]. The points qi, q` and qi+1 form an isosceles 

triangle. Hence, the path between qi and qi+1 represents an arc of a circle and the 

gradients at these points are tangent to this path [33-36]. The GS algorithm requires 

only first derivatives at points along the path and second derivatives are only needed 

at the transition state. 

During a chemical reaction, the changes in the physical and chemical properties 

of the reaction complex (i.e. the reacting molecules) along the IRC can be 

investigated to gain insights into the reaction mechanism. The motion of the reaction 

complex across the IRC is a direct result of the forces exerted on its atoms. These 

forces can be associated with particular internal coordinates and regions of repulsive 
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(forces > 0) and attractive (forces < 0) interatomic forces can be distinguished 

[25,54-57]. 

                      

 

 

Figure 4.1: Second-order Gonzalez-Schlegel reaction path following algorithm. 

 

 

  

The reaction force (F) is defined as the first partial derivative of the potential 

energy (U) with respect to nuclear coordinates (R), that is 

( )
( )

U∂
= −

∂
R

F R
R

. (4-4) 

The IRC for the Diels-Alder reaction between diene 14 and dienophile 15 in the 

presence of catalyst 16 for both the endo and exo routes is shown in Figure 4.2. As 

observed in the figure, the endo path is more energetically favored over the exo route 

throughout the course of the reaction. For both endo and exo channels, the IRC 

behavior is characterized by a moderate increase in energy towards the transition 

state and a steeper decrease in energy towards the products. This behavior reflects 

the asynchronous nature of the reaction. 

• 
 

• 
 

• 
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½s 
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Figure 4.2: B3LYP/6-31G(d) IRC for the endo (starting from TS9) and the exo (starting from 

TS14) channels of the Diels-Alder reaction between 14 and 15 in the presence of catalyst 16 

(cf. Reaction 3-D, Chapter 3). 

 

 

 

The reaction forces associated with the internal coordinate R1 (i.e. the 

coordinate that corresponds to the forming carbon-carbon bond) along the IRC are 

illustrated in Figure 4.3 for both endo and exo routes. The total reaction forces along 

the IRC for both endo and exo channels are represented in Figure 4.4. 

As can be seen from Figures 4.3 and 4.4, the reaction force profile possesses 

three key points along the IRC, namely, α, TS and β [55-57]. Initially, the reaction is 

described by an increasing repulsive force that reaches its peak at point α. At this 

point, the repulsive force starts to diminish smoothly due to the presence of an 

attractive force until the point where the repulsive and attractive forces are the same 

(F(R) = 0) is reached. This point corresponds to the transition state (TS). After the 

TS, the attractive force becomes predominant and increases sharply until point β is 

reached. At this point, the attractive force begins to decrease until it reaches zero for 

the product. 
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Figure 4.3: Reaction force profiles associated with the internal coordinate R1 for the endo and 

the exo channels of the Diels-Alder reaction between 14 and 15 in the presence of catalyst 16 

(cf. Reaction 3-D, Chapter 3). Points a, α, TS, β and b are described in the text. 
 

 

 
 
 

  
Figure 4.4: Reaction force profiles associated with all Cartesian coordinates for the endo and 

the exo channels of the Diels-Alder reaction between 14 and 15 in the presence of catalyst 16 

(cf. Reaction 3-D, Chapter 3). Points a, α, TS, β and b are described in the text. 
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For both endo and exo channels, monitoring the internal coordinate R1 along the 

IRC shows that the repulsive force starts to diminish at point α where the R1 value is 

2.38 Å. At this distance, the overlap between π-orbitals is ~ 0.02 Å [25] which marks 

the start of the attractive force. The attractive force persists until point β where the 

R1 value is 1.82 Å. At this point, the final stage for the formation of the carbon-

carbon single bond begins.   

Both Figures 4.3 and 4.4 show the endo route to have less repulsive forces than 

the exo path. This leads to a lowering of the reaction barrier (i.e. the activation 

energy) for the endo channel rendering it the kinetically preferred path for this 

reaction. In addition, after point β towards the products, the attractive forces due to 

carbon-carbon single bond formation become more evident for the endo path. Again, 

this reflects that the formation of the endo product is favored over the exo one. 

4.3.2 Natural population analysis (NPA) 

The wavefunction of a particle has no physical meaning but the square of the 

wavefunction gives the probability of finding this particle in a given volume in 

space. In molecular orbital theory, the electron density for a given molecular orbital 

is defined as 

2
( ) ( )

i i
ρ ψ=r r . (4-5) 

The electron density of a closed-shell molecule is then given by 

/2

( ) 2 ( )
n

i

i

ρ ρ= ∑r r . (4-6) 

The integration of the molecule electron density gives the total number of electrons 

in the molecule, that is 

( )d nρ =∫ r r . (4-7) 
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The electron density by itself does not directly reveal chemically meaningful 

concepts. However, population analysis aims at analyzing the electron density and 

assigning electrons to a particular atom or orbital. Population analysis methods can 

be classified into three groups [58,59]: (1) orbital-based methods such as Mulliken 

population analysis (MPA) and natural population analysis (NPA), (2) methods 

based on the molecular electrostatic potential such as the CHELPG scheme, and (3) 

methods based on the topological analysis of the electron density such as the atoms-

in-molecules (AIM) method and the electron localization function (ELF) model. 

The natural bond orbital (NBO) analysis includes NPA and is aimed at 

describing the n-electron wavefunction in terms of localized orbitals that closely 

resemble the chemist’s view of the chemical bond. 

For closed-shell single-determinant (HF or DFT) wavefunction, the first-order 

density matrix (also called the one-electron density matrix) can be written in terms of 

the canonical molecular orbital coefficients and is identical to the density matrix 

defined by Eq. 2-33 [59-65]. This matrix holds essential information of chemical 

significance such as electron distribution and chemical bonding. The eigenvectors 

and the eigenvalues that result from the diagonalization of the density matrix are 

called ‘natural orbitals’ and ‘occupation numbers’, respectively [58-62,65-67]. These 

natural orbitals are unsuitable for chemical analysis since they are delocalized over 

all atoms (i.e. they are similar to canonical molecular orbitals) [31,66]. Hence, the 

one-electron density matrix is partitioned into atomic sub-blocks [59,68-70] 

according to  

AA AB AC

BCBA BB

CA CB CC

 
 
 =
 
 
 

P P P

PP P
P

P P P

�

�

�

� � � �

 (4-8) 
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where each block on the main diagonal corresponds to basis functions associated 

with a particular atom and every off-diagonal block is related to basis functions 

belonging to a pair of atoms. Independently diagonalizing (with respect to the 

associated overlap matrix) each block on the main diagonal gives orbitals that are 

termed ‘pre-natural atomic orbitals’ (pre-NAOs) [58,59]. These pre-NAOs are 

generally non-orthogonal and need to be orthogonalized (i.e. the interatomic overlap 

between pre-NAOs is removed) so as the sum of their occupation numbers gives the 

total number of electrons [31,58,59,70]. The resultant final orbitals are called NAOs. 

The nuclear charge minus the sum of all occupancies of the NAOs that belong to a 

particular atom gives the natural atomic charge. Core orbitals are defined as those 

NAOs that have high occupation numbers (> 1.999), while lone pairs as those NAOs 

with occupation numbers of > 1.90. The core and lone pair contributions to the 

density matrix are then removed and the 2 2×  sub-blocks of the density matrix 

concerning each pair of atoms are diagonalized [58,59,69,70]. The resulting 

eigenvectors with high occupation numbers (> 1.90) are called ‘natural bond 

orbitals’ (NBOs) and describe the chemical bonds between atoms in a localized 

fashion [59,70]. As compared to MPA, NPA derived atomic charges are less 

dependent on the basis set used [31]. In addition NPA occupation numbers satisfy 

the Pauli Exclusion Principle (i.e. they fall in the range of 0 to 2 for spatial orbitals) 

[31].  

Contrary to the energy, which is an overall quantity integrated over the entire 

molecule, chemical bonds are local in nature [71]. Therefore, the investigation of the 

chemical bond formation during a chemical reaction provides information that 

cannot be described by the energy alone. The natural population analysis offers a 

tool for evaluating the charge transfer (CT) along the reaction path. In normal 
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electron demand Diels-Alder reaction, the donor (i.e. the diene) highest occupied 

molecular orbital (HOMO) loses electrons in two different ways. A portion of the 

charge density is directly transferred from the HOMO of the diene to the lowest 

unoccupied molecular orbital (LUMO) of the dienophile and another portion is 

utilized to form the intermolecular bonds by the overlapping between these 

molecular orbitals [71].  

The charge transferred from diene 14 to dienophile 15 along the IRC is given in 

Table 4.1. 

Table 4.1: Natural population analysis of the 
charge (e) transferred from 14 to 15 along 
the IRC. Points are as illustrated in Figures 
4.3 and 4.4. 

 CT 
Endo Path  
Point (a) 0.293 
Point (α) 0.293 
TS 0.294 
Point (β) 0.294 
Point (b) 0.295 
  
Exo Path  
Point (a) 0.154 
Point (α) 0.189 
TS 0.220 
Point (β) 0.268 
Point (b) 0.278 
  

 

As can be deduced from the table, the charge transfer associated with the more 

favorable endo path is larger than that associated with the exo route. This larger 

charge transfer leads to a lower exchange (or Pauli) repulsion (smaller repulsive 

forces (cf. Figures 4.3 and 4.4)) and hence is responsible for the lower activation 

energy of the endo channel [25].  

The progress of the charge transfer along the IRC is also much faster for the 

endo channel than that of the exo route, and is almost completed at the transition 
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state (Table 4.1). This leads to a lower barrier and more stabilization for the endo 

route. 

For both the endo and exo paths, point b on the IRC marks the end of charge 

transfer. At this point, the total amount of charge transferred from diene 14 to 

dienophile 15 is 0.30 e and 0.28 e for the endo and the exo channels, respectively 

(Table 4.1), indicating a more polar character for the endo route. 

4.3.3 Topological analysis of the electron localization function 

As in the case of NBO analysis, the electron localization function (ELF) aids in 

understanding the concept of electron pair localization (core, lone pair and bonding 

electrons) that corresponds to Lewis structures, which in turn helps in the 

rationalization and understanding of the molecular structure, bonding, chemical 

reactivity, and reaction mechanism [13-16,72-77]. The ELF is different from NBO 

methods in that it is based on the electron density rather than the wavefunction. 

The mathematical form of the ELF [17,37,39-41] for a closed-shell system is 

given by   

12

0

ELF( ) 1
D

D

−
  
 = +     

r  (4-9) 

where D (Eq. 4-10) and D0 (Eq. 4-11) represent the curvature of the electron pair 

density of identical spin electrons for the real system and a uniform electron gas with 

the same density, respectively. 
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The first term on the right hand side of Eq. 4-10 is the kinetic energy density of 

the non-interacting system while the second term is the von Weizsäcker kinetic 

energy density. The function D measures the local excess of kinetic energy density 

due to Pauli repulsion [17]. For regions of space occupied by unlike spin electron 

pair, the Pauli repulsion is negligible, the first and second terms of Eq. 4-10 are 

almost identical, the value of the function D is near zero, and the value of the ELF is 

close to one [17,37]. On the other extreme, an ELF value close to zero represents a 

completely delocalized situation. The ELF shows only little dependence on the 

theoretical level used to obtain the electron density and the molecular orbitals 

[17,41]. 

The topological analysis of the ELF gradient field (∇ ELF(r)) allows 

partitioning of the molecular space into basins of attractors (maxima) that correspond 

to the bonds and lone pairs in the Lewis structure model [17,40]. There are two types 

of basins [17,40]: a core basin (C) that contains a nucleus (except a proton) and a 

valence basin (V) that lacks nucleus and is always connected with one or more core 

basins. A monosynaptic basin is connected with only one core basin and corresponds 

to a lone pair. A disynaptic basin is connected with two core basins and represents a 

two-center covalent bond. Higher synaptic orders are also possible. Integrating the 

electron density over the basin volume produces the basin population. 

The topology of the ELF of the reacting complex (the diene 14, the dienophile 

15, and the catalyst 16) is analyzed in order to gain insights into the electron density 

evolution along the IRC. This corresponds to the breaking and formation of the 

carbon-carbon double bonds along the IRC. The ELF method differentiates between 

the carbon-carbon single and double bonds in accordance with the Lewis model. 



142 
 

Double bonds are characterized by two disynaptic basins whilst single bonds are 

represented by only one disynaptic basin. 

The electron populations of the more relevant valence basins are listed in Table 

4.2. In the case of carbon-carbon double bonds, the electron population is given as 

the sum of the two individual electron populations associated with the two disynaptic 

basins used to describe the double bond. 

 

Table 4.2: Electron populations for the valence ELF basins of the reacting complex (14-
15-16) along the IRC. Points and carbon numbers are as illustrated in Figure 4.3. 

 V1+2(C1,C2) V1(C2,C3) V1+2(C3,C4) V1+2(C5,C6) V1(C1,C6) 
Endo Path      
Point (a) 3.64 1.89 3.55 3.66 - 
Point (α) 3.63 1.89 3.55 3.66 - 
TS 3.58 1.89 3.55 3.63 - 
Point (β) 1.86 1.90 3.54 1.80 1.73 

Point (b) 1.86 1.90 3.55 1.81 1.77 

      
Exo Path      
Point (a) 3.64 1.90 3.56 3.66 - 
Point (α) 3.63 1.90 3.55 3.65 - 
TS 3.59 1.90 3.56 3.64 - 
Point (β) 1.86 1.89 3.57 1.79 1.74 

Point (b) 1.86 1.89 3.58 1.80 1.78 

      
 

For both endo and exo channels, the most noticeable changes in the electron 

population along the IRC are observed at point β (Table 4.2). At this point, the two 

disynaptic basins Vi=1,2(C1,C2) found at the preceding points are merged into one 

disynaptic basin V1(C1,C2) with an electron population of 1.86 e. This indicates the 

transformation of C1═C2 double bond of the diene into C1—C2 single bond. 

Similarly, the two disynaptic basins Vi=1,2(C5,C6) found at the preceding points are 

fused into one disynaptic basin V1(C5,C6) with an electron population of 1.80 e 

pointing out to the transformation of C5═C6 double bond of the dienophile into C5—

C6 single bond. In addition, one new disynaptic basin V1(C1,C6) with an electron 

population of 1.73 e is created which indicates that the formation of C1—C6 single 
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bond is in its final stage (the electron population of the disynaptic basin V1(C1,C6) is 

1.82 e for the products). The flow of the electron density to the newly created basin 

is continued and the formation of C1—C6 single bond is complete after point b.   

The topological analysis of the ELF, however, did not provide any sign 

regarding the formation of C4—C5 single bond and the formation of C2═C3 double 

bond. This might be due to the high asynchronous nature of the studied reaction. 

As observed in Table 4.2, both endo and exo channels show the same trend with 

almost identical basin populations. Hence, it was not possible to investigate the 

endo/exo selectivity based on the topological analysis of the ELF. 

4.3.4 Bond order analysis 

Changes in chemical bonds during a chemical reaction influence the energy of the 

system. The extent of changes in bonding between the atoms of the system can be 

measured by the bond order. The bond order and valence indices obtained from 

quantum chemical calculations possess excellent interpretive power and are useful in 

systematically comparing the results attained for related molecules. One of the 

methods for calculating the bond order and valence indices is that developed by 

Mayer [44-47]. For closed-shell systems, the Mayer bond order (BO) between atoms 

A and B is defined as 

( ) ( )A B rs sr
r A s B

BO −
∈ ∈

=∑∑ PS PS  (4-12) 

where P and S are the density and overlap matrices whose elements are similar to 

those defined by Eqs. 2-33 and 2-28, respectively. And the valence of the atom is the 

sum of its bond orders, that is 

A A B

B A

V BO −
≠

=∑ . (4-13) 
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The diatomic interaction energy can be partitioned into individual components 

that are of different physical origins and are chemically meaningful such as 

electrostatic (or Coulomb) energy and exchange (or Pauli) repulsion energy [78-82]. 

The electrostatic contribution to the diatomic interaction energy in the energy 

decomposition scheme proposed by Mayer [45,47,80] provides a link between the 

bond order and the diatomic energy. In a point-charge approximation, the 

electrostatic interaction energy is given by [45,47,80] 

point 1 1

2
A B A B A B

A B

E q q BO
R

− −
−

 = − 
 

 (4-14) 

where RA–B is the distance between atoms A and B, and q is the Mulliken atomic 

charge. In addition to the classical electrostatic interaction, Eq. 4-14 includes a non-

classical exchange repulsion energy contribution that is related to the bond order 

[45,47,80]. 

The extent of the bond breaking/forming along the IRC for both endo and exo 

channels as assessed by the use of Mayer bond order is given in Table 4.3. The 

associated bond lengths are also provided in the table. As is displayed in Table 4.3, 

the transformation of C1═C2 and C5═C6 double bonds into the corresponding single 

bonds is more evident and is more advanced than the transformation of C3═C4 

double bond consistent with the results obtained from the topological analysis of the 

ELF (Section 4.3.3). Moreover, the bond order analysis shows that the formation of 

C2═C3 double bond is progressing despite at a slower rate than the break of the 

C1═C2 and C5═C6 double bonds. 

The formation of C1—C6 single bond is observed to progress faster than the 

formation of C4—C5 single bond indicating a highly asynchronous bond formation. 

This is consistent with the topological analysis of the ELF (Section 4.3.3). Besides, 
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at point b on the IRC, the bond order analysis revealed the formation of C1—C6 

single bond to be at a very advanced stage. 

 

Table 4.3: Computed Mayer bond orders, BO, for the reacting complex (14-15-16) along the IRC. 
The corresponding bond lengths (Å) are given in brackets. Points and carbon numbers are as 
illustrated in Figure 4.3. 

 BO1-2 BO2-3 BO3-4 BO4-5 BO5-6 BO1-6 
Endo Path       
Point (a) 1.787 

[1.368] 
1.079 

[1.456] 
1.887 

[1.350] 
0.012 

[3.210] 
1.701 

[1.365] 
0.073 

[2.449] 
Point (α) 1.734 

[1.375] 
1.093 

[1.451] 
1.870 

[1.351] 
0.018 

[3.165] 
1.645 

[1.373] 
0.118 

[2.334] 
TS 1.535 

[1.399] 
1.149 

[1.437] 
1.807 

[1.357] 
0.040 

[3.085] 
1.446 

[1.399] 
0.309 

[2.096] 
Point (β) 1.222 

[1.443] 
1.265 

[1.418] 
1.683 

[1.366] 
0.074 

[3.010] 
1.169 

[1.442] 
0.663 

[1.820] 
Point (b) 1.138 

[1.462] 
1.311 

[1.411] 
1.635 

[1.370] 
0.087 

[2.960] 
1.103 

[1.459] 
0.770 

[1.714] 
       
Exo Path       
Point (a) 1.790 

[1.366] 
1.076 

[1.456] 
1.893 

[1.349] 
0.014 

[3.164] 
1.683 

[1.369] 
0.076 

[2.455] 
Point (α) 1.740 

[1.372] 
1.089 

[1.451] 
1.878 

[1.350] 
0.019 

[3.127] 
1.628 

[1.377] 
0.119 

[2.347] 
TS 1.528 

[1.395] 
1.146 

[1.437] 
1.812 

[1.356] 
0.040 

[3.054] 
1.414 

[1.404] 
0.324 

[2.095] 
Point (β) 1.217 

[1.437] 
1.261 

[1.418] 
1.688 

[1.366] 
0.065 

[2.980] 
1.147 

[1.448] 
0.674 

[1.812] 
Point (b) 1.136 

[1.454] 
1.307 

[1.410] 
1.639 

[1.371] 
0.074 

[2.930] 
1.087 

[1.465] 
0.778 

[1.704] 
       

 

To investigate the influence of the bond breaking/forming on the diatomic 

energy in terms of the electrostatic and exchange interactions, Eq. 4-14 is applied for 

each atomic pair involved in the reaction. The results are tabulated in Table 4.4. The 

Mulliken atomic charges used for these calculations are those obtained at the same 

level of theory (HF/STO-3G) used to calculate the bond orders. The relative energy 

in units of kcal/mol for each point along the IRC is also listed in the table. 

From Table 4.4, in terms of the electrostatic and exchange interactions, the 

break of C1═C2, C3═C4, and C5═C6 double bonds is repulsive and destabilizing 

while the formation of C1—C6 and C4—C5 single bonds, and C2═C3 double bond is 
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attractive and stabilizing. Based on the total energy of these interactions, the endo 

channel is more stable than the exo path at points α, TS, and β with the stabilization 

in the energy being more evident at point α and at the transition state (2.13 and 1.11 

kcal/mol, respectively, Table 4.4). These results describe, in part, the preference of 

the endo channel over the exo route in the studied reaction. However, it should be 

pointed out that the exo route is slightly more stable than the endo path at points a 

and b (Table 4.4). 

 

Table 4.4: Computed electrostatic (and exchange) interaction energies (eV) for atomic pairs 
involved in the reaction between diene 14 and dienophile 15 in the presence of catalyst 16 along 
the IRC. Points and carbon numbers are as illustrated in Figure 4.3. 

 C1-C2 C2-C3 C3-C4 C4-C5 C5-C6 C1-C6 
Total 

Energy 
(eV) 

Erel 
Eexo–Eendo 
(kcal/mol) 

Endo Path         
Point (a) –9.43 –5.35 –9.97   0.03 –8.98 –0.22 –33.92 –0.19 
Point (α) –9.12 –5.44 –9.95 –0.03 –8.64 –0.37 –33.56   2.13 
TS –8.01 –5.81 –9.52 –0.04 –7.45 –1.07 –31.89   1.11 
Point (β) –6.30 –6.55 –8.85 –0.16 –5.80 –2.60 –30.25   0.26 
Point (b) –5.82 –6.84 –8.58 –0.21 –5.39 –3.19 –30.03 –0.41 
         
Exo Path         
Point (a) –9.49 –5.34 –10.02   0.02 –8.86 –0.24 –33.93  
Point (α) –9.20 –5.43 –9.94   0.01 –8.53 –0.38 –33.47  
TS –8.03 –5.81 –9.56 –0.05 –7.27 –1.13 –31.84  
Point (β) –6.33 –6.54 –8.89 –0.15 –5.67 –2.66 –30.24  
Point (b) –5.87 –6.83 –8.62 –0.19 –5.29 –3.25 –30.05  
         

 

The Hammond postulate [83] relates the rate of the chemical reaction to the 

geometrical parameters of the transition state structure as compared to those of the 

reactants and the products. The transition state structure resembles either the 

reactants or the products depending on which of these are closer to it in energy [84-

86]. 

The reaction studied in the present work is an exergonic reaction (cf. Figure 

3.15) and the transition state structure is, therefore, similar to the reactants. In 

addition, based on the Hammond postulate, the endo transition state structure should 
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resemble the reactants more than the exo transition state structure since it possesses 

the lower activation energy. To examine the applicability of the Hammond postulate 

to the studied reaction, the deviation of some of the structural parameters of the 

transition state structure from those of the reactants are calculated and are given in 

Table 4.5. 

 

Table 4.5: Calculated deviations in bond lengths, B, (Å) and dihedral angle, D, 
(degrees) from the reactants for the endo and exo transition state structures of the 
reaction between diene 14 and dienophile 15 in the presence of catalyst 16. 
Carbon numbers are as illustrated in Figure 4.3. 

 B1-2 B2-3 B3-4 B5-6 D1234 
Endo Path      
TS 0.057 0.042 0.019 0.055 38.096 
      
Exo Path      
TS 0.053 0.042 0.018 0.060 38.272 
      

 

The net deviation in bond lengths is identical for both endo and exo channels 

(Table 4.5). The deviation in the dihedral angle, however, is slightly more (~ 0.2°, 

Table 4.5) for the exo transition state structure as compared to the endo transition 

state structure. In addition, the use of bond orders as a measure of the Hammond 

postulate has been suggested [87]. Despite being a rather crude measure, its 

application to similar reactions for the qualitative evaluation of the chemical 

reactivity has been proven useful [6-8,88]. In terms of bond order, the Hammond 

postulate states that the transition state structure with the smallest bond order for the 

forming bond should have the lowest activation energy [6]. For the endo transition 

state structure, the bond order values of the forming bonds C1—C6 and C4—C5 are 

0.309 and 0.040, respectively (Table 4.3). The corresponding exo transition state 

structure bond order values are 0.324 and 0.040, respectively (Table 4.3). Thus, the 

bond order of the forming C4—C5 is identical for both transition state structures 

whereas the bond order of the forming C1—C6 is slightly smaller for the endo 
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transition state structure. This indicates that it is a slightly earlier transition state 

structure and hence has lower activation energy. Therefore, the applicability of the 

Hammond postulate is fairly suitable for the studied reaction.  

The final issue regarding the structural parameters to comment about is the 

boron-oxygen bond length along the IRC. It is observed that the length of this bond 

is not only shortened in going from the reactants to the transition state structure 

(from 1.63 Å to 1.56 Å) but also from the transition state structure to the final point 

examined on the IRC (i.e. point b) (from 1.56 Å to 1.55 Å). This is in line with 

Corey’s prediction (cf. Section 3.3.1) who stated [89], “It is important to note in this 

context that the coordination of catalyst to the carbonyl persists not only in the 

transition state but even in the Diels–Alder adduct”.  

4.3.5 Analysis of the global and local reactivity indices 

The chemical reactivity indices obtained by differentiation of the energy or the 

electron density with respect to the number of electrons and/or the external potential 

are often classified based on the dependence on position [3,90]. Global reactivity 

indices have the same value everywhere in the molecule and provide general 

information about its reactivity. These include electronegativity, electrophilicity, and 

chemical potential, hardness and softness. Local reactivity indices such as Fukui 

function, electron density, and local hardness and softness change throughout the 

molecule and offer information on site- and regioselectivities [3,90]. 

The reactivity indices provide useful tools to examine the polar character of the 

Diels-Alder reaction [18-24]. In this section, the role of the chiral oxazaborolidinium 

cation catalyst 16 is investigated using the static global and local reactivity indices, 

namely, the electronic chemical potential (µ), the chemical hardness (η), the global 

electrophilicity (ω), and the local electrophilicity (ωk). The calculated values for 
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these indices for diene 14, dienophile 15 and the coordination complex 15-16 (the 

syn coordination) are given in Table 4.6.  

 

Table 4.6: Computed electronic chemical potential, µ, chemical hardness, η, global 
electrophilicity, ω, and local electrophilicity, ωk, for 14, 15, and complex 15-16. All values 
are in eV. Local electrophilicities are calculated for only 15 and complex 15-16. Carbon 
numbers are as illustrated in Figure 4.3. 

 
µ η ω 

ωk 
 C5 C6 C7 C8 

System        
14 –3.30 5.77 0.94     
15 –5.21 3.84 3.53 0.13 0.13 0.09 0.09 
15-16 (syn) –8.28 2.02 17.01 0.57 0.85 0.64 0.08 
        
 

The electron transfer is derived from the chemical potential difference between 

the reactants and electrons tend to flow from molecules of high chemical potential 

(low electronegativity) to molecules of low chemical potential (high 

electronegativity) [90]. The electronic chemical potential of diene 14 is higher than 

that of dienophile 15 (Table 4.6) indicating that the charge is transferred from the 

diene to the dienophile along the studied Diels-Alder reaction. In addition, the 

electronic chemical potential difference is increased upon the coordination between 

dienophile 15 and catalyst 16 from 1.91 eV in the reaction between 14 and 15 to 4.98 

eV in the reaction between 14 and complex 15-16. Moreover, the chemical hardness 

is lowered for the coordination complex 15-16 (Table 4.6) (i.e. complex 15-16 is less 

resistant to charge transfer than dienophile 15). Hence, the charge transfer is 

enhanced for the catalyzed reaction. The flow of charge from the diene to the 

dienophile is in agreement with the charge transfer analysis carried out at the 

transition state structures (Section 4.3.2). 

The use of Parr-Pearson static charge transfer equation (Eq. 4-15) [90,91] 

estimates the amount of charge transferred (∆n) from the diene to the dienophile. The 

associated energy stabilization (∆E) is defined by Eq. 4-16 [90,91]. 



150 
 

diene dienophile

diene dienophile

n
µ µ

η η

−
∆ =

+
 (4-15) 

( )
( )

2

2

diene dienophile

diene dienophile

E
µ µ

η η

− −
∆ =

+
. (4-16) 

Applying these equations, the amount of charge transferred from diene 14 to 

dienophile 15 is 0.20 e while that from diene 14 to complex 15-16 is 0.64 e. The 

associated energy stabilization is 4.9 kcal/mol for the reaction between 14 and 15 

and is 24.7 kcal/mol for the reaction between 14 and complex 15-16. For the 

catalyzed reaction, the amount of charge transferred is larger than that obtained from 

the charge transfer analysis discussed in Section 4.3.2 (0.64 e vs. 0.29 e). This 

discrepancy might be attributed to the use of static global quantities to define the 

charge transfer in Eq. 4-15. These global quantities are for the isolated reactants. The 

larger charge transfer is also accompanied by an overstabilization of the energy (19.8 

kcal/mol (i.e. 24.7 – 4.9 kcal/mol) vs. 14.6 kcal/mol (calculated as the difference 

between the activation energies of the catalyzed and uncatalyzed reactions using the 

electronic energy)). However, in charge transfer analysis using different theoretical 

models, the emphasis is usually on trends that are consistent with chemical intuition 

rather than absolute values [92-94]. Both results obtained are in qualitative 

agreement and the role of the catalyst in enhancing the charge transfer from the diene 

to the dienophile which in turn leads to stabilization in energy is reproduced in both 

approaches. 

As observed in Table 4.6, the coordination of catalyst 16 to dienophile 15 

increases the electrophilicity from 3.53 eV to 17.01 eV rendering the coordination 

complex 15-16 a much stronger electrophile than dienophile 15. The large increase 

in electrophilicity also indicates that the catalyzed Diels-Alder reaction possesses a 
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more polar character than the uncatalyzed reaction. This is consistent with the results 

obtained for charge transfer using Eq. 4-15. 

Local reactivity descriptors are important in order to better understand the site- 

and regioselectivities of chemical reactions. One of the most commonly used local 

reactivity index is the Fukui function (f(r)) [95-97]. The Fukui function is defined as 

the first partial derivative of the electron density (ρ(r)) with respect to the number of 

electrons at constant external potential. It is important to condense the values of the 

Fukui function to the atoms of the molecule to describe the site- and 

regioselectivities. The local electrophilicity index (ωk) describes the electrophilic 

character of a reactive atom (k) in a molecule and is defined as [53,98] 

k kfω ω +=  (4-17) 

where ω is the global electrophilicity index and 
kf
+  is the condensed Fukui function 

for nucleophilic attack given by 

1n n

k k kf Q Q+ += −  (4-18) 

where Qk is Mulliken’s gross atomic population associated with atom k (or 

alternatively, gross atomic population from any population analysis scheme) for 

molecules with 1n+  and n number of electrons. The Mulliken’s gross atomic 

population for the 1n+  molecule was obtained by running single point calculations 

(B3LYP/6-31G(d)) at the geometries optimized at the B3LYP/6-31G(d) level of 

theory and adding an extra electron. 

Analysis of the local electrophilicity indices (Table 4.6) shows that for 

dienophile 15, the site bearing two hydrogens (C5 and C6) is more electrophilic than 

the site bearing the two methyl groups (C7 and C8) which is consistent with the 

results obtained in Section 3.3.2. The coordination of dienophile 15 to catalyst 16 

increases the electrophilic character of the carbon atoms with C6 being the most 
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electrophilic position of the molecule. This is in line with the findings based on the 

frontier molecular orbital (FMO) analysis discussed in Section 3.3.2.  

For the catalyzed reaction, the electrophilicity for C6 is higher than that for C5 

and the high asynchronicity of the catalyzed reaction can be described on the basis of 

the local electrophilicity values. By the same argument used to explain the 

asynchronicity in terms of the FMO theory (Section 3.3.2), the high degree of 

asynchronicity for the catalyzed reaction can be attributed to the larger overlap 

between the diene and the dienophile at C6 which leads to a stronger and shorter 

bond. 

4.4 Conclusion 

The mechanism and enantioselectivity of the Diels-Alder reaction between 2-methyl-

1,3-butadiene 14 and 2,3-dimethyl-1,4-benzoquinone 15 in the presence of 

organocatalyst 16 have been studied using the DFT method at the B3LYP/6-31G(d) 

level of theory. The focus of this study is mainly on the rationalization of the 

mechanism and the enantioselectivity of the Diels-Alder reaction using various DFT 

based theoretical models. These included the reaction force analysis, the natural 

population analysis of the charge transfer, the topological analysis of the electron 

localization function (ELF), the bond order analysis, and analysis based on the global 

and local reactivity descriptors. 

The reaction force analysis and natural population analysis of the charge 

transfer pointed out to the preference of the endo channel to the exo route for the 

studied Diels-Alder reaction since the former exhibited a larger charge transfer at the 

transition state structure which led to smaller repulsive forces that eventually 

resulted in activation energy lowering.  
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The topological analysis of the electron localization function (ELF) did not 

allow the differentiation between the endo and the exo routes. However, it provided a 

way for describing the breaking and formation of the bonds along the intrinsic 

reaction coordinate (IRC). These could be described by the disappearance and 

appearance of basins of attractors along the IRC. Moreover, the analysis of these 

basins along the IRC indicated a highly asynchronous nature of the studied Diels-

Alder reaction. 

The bond order and bond length analyses along the IRC also provided a tool to 

study the mechanism of the Diels-Alder reaction and, in agreement with the 

topological analysis of the ELF, indicated a highly asynchronous mechanism. 

The influence of the bond breaking/forming on the diatomic energy in terms of 

the electrostatic and exchange interactions was also investigated. At the transition 

state structures, these interactions led to a more energetically stable endo transition 

state structure as compared to the exo transition state structure which partly 

described the endo selectivity of the studied reaction. Subsequently, the applicability 

of the bond order as a measure of the Hammond postulate was examined and the 

findings fairly suggested a preference of the endo transition state structure to the exo 

transition state structure since the former showed a smaller bond order for one of the 

two forming bonds.  

Based on the analysis of the global reactivity indices, the catalyzed Diels-Alder 

reaction possessed a more polar character than the uncatalyzed reaction owing to the 

increase in the electronic chemical potential difference between diene 14 and 

coordination complex 15-16 and the decrease in the chemical hardness of the 

coordination complex 15-16. The electrophilicity of dienophile 15 was as well 

enhanced upon the coordination with catalyst 16. 
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The analysis of the local electrophilicity index offered a tool to rationalize the 

site selectivity and proved the less substituted double bond of dienophile 15 to be the 

most preferred site for diene 14 nucleophilic attack. Moreover, the local 

electrophilicity index helped to explain the high asynchronicity encountered in the 

catalyzed reaction and attributed it to the relatively large difference between the 

electrophilicity of the dienophile carbons involved in the cycloaddition reaction. The 

extent of the overlap between the termini carbons of the diene and the carbons of the 

dienophile is therefore unequal and the bond formation is asynchronous. 
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An ONIOM Study on the 
Enantioselectivity of Diels-Alder 

Reaction Catalyzed by SiO2–

Immobilized Chiral Oxazaborolidinium 
Cation 
 

 

 

 

 

Heterogeneous catalysis is essential in various fields of chemistry. Anchoring a 

homogeneous catalyst to a solid support is a strategy that combines the advantages 

of both homogeneous and heterogeneous catalyses. Modeling large molecular 

systems accurately and reliably by quantum mechanical methods is a challenge that 

entails the use of hybrid quantum mechanics/molecular mechanics (QM/MM) 

methods. In the current chapter, the hybrid method ‘ONIOM’ is applied to examine 

the mechanism and enantioselectivity of Diels-Alder reaction in the presence of a 

silica-supported organocatalyst.    

 

 

5.1 Introduction  

Organic synthesis on solid-phase has been receiving an increasing attention in the 

community of synthetic organic chemists as a method for carrying out chemical 

reactions with high regio- and/or stereoselectivity under environmentally benign, 

solvent-free conditions. The solid-phase approach to enantioselective synthesis has 

proven suitable for a number of enantioselective reactions [1]. Various support 

materials have been used for solid-phase organic synthesis including polystyrene, 

polysaccharides, and silica [2]. 

Heterogeneous catalysis is important in many industrial processes for fine 

chemicals synthesis [3]. Heterogenization by immobilizing a homogeneous catalyst 

on a solid support is a strategy that attempts to combine the advantages of 

homogeneous catalysis (e.g., high enantioselectivity) with the advantages of 

heterogeneous catalysis such as the ease of separation of the catalyst from the 
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product, the reusability of the catalyst and the reduction in cost [3-5]. Catalyst 

immobilization methods [3,5-10] can be classified mainly into two groups, namely, 

covalent and non-covalent immobilization. Solid supports used include organic 

polymeric materials (e.g., polystyrene resins) and inorganic solids such as silica and 

zeolites. 

 Silica- and organic polymer-immobilized catalysts such as transition-metal 

complexes with chiral ligands and chiral organocatalysts are now commonplace in 

enantioselective organic synthesis involving numerous types of organic reactions 

[11-35]. The enantioselective Diels-Alder reaction is a versatile tool for the synthesis 

of pharmaceutical and natural products. An important class of heterogeneous 

catalysts for enantioselective Diels-Alder reaction is concerned with chiral Lewis 

acids (both organic and inorganic) anchored to organic polymeric or inorganic solid 

materials [11-20]. 

Oxazaborolidines attached to polystyrene resin [26,27,29] and to silica [34,36] 

are among numerous chiral organocatalysts that have been used in enantioselective 

heterogeneous catalysis. Their main use was the enantioselective reduction of 

ketones. However, the use of solid-supported oxazaborolidine catalysts for the Diels-

Alder reaction has not been reported.   

In the current chapter, the Diels-Alder reaction between 2-methyl-1,3-butadiene 

14 and 2,3-dimethyl-1,4-benzoquinone 15 in the presence of amino silica-

immobilized catalyst 16 is computationally investigated. The emphasis is mainly to 

gain an understanding of the enantioselectivity and mechanism of this reaction which 

can be later tested experimentally.  
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5.2 Methods and Computational Details 

5.2.1 Preparation of amorphous silica bulk and surface 

Classical molecular dynamics simulations were carried out using the SageMD2 

software package [37]. The model of bulk amorphous silica was generated by 

classical molecular dynamics using the well-established melt-quench method (see 

below) [38-55]. The building of amorphous silica bulk and surface is illustrated in 

Figure 5.1. 

All simulations were carried out using the velocity Verlet integration algorithm 

with an integration time step of 1.6 fs and employing periodic boundary conditions. 

The Berendsen thermostat and barostat were used for controlling the temperature and 

the pressure. The potential used for these simulations is a two-body interatomic 

potential [44-46] of the form 

( ) ( )0 0

0

2
( ) 2k l r r r rq q

U r U e e
r

α α− − − − = + −
 

 (5-1) 

where qk and ql are the charges on atoms k and l; r is the distance between atoms k 

and l; and U0 (the potential well depth), α (the potential width control parameter) and 

r0 (the equilibrium interatomic distance) are the adjustable Morse potential 

parameters. These parameters were taken from the literature [44-46] and are listed in 

Table 5.1. Cutoff distances for Morse interactions were set to 9 Å. Electrostatic 

interactions were calculated by Ewald summation method with a real space cutoff 

distance of 7 Å. The charges used are +1.30 and –0.65 for the Si and O atoms, 

respectively [45,46].  

 
Table 5.1: Morse potential parameters for silica. 

 U0 (eV) α (1/Å) r0 (Å) 
    
Si–Si 0.007695 2.0446 3.7598 
Si–O 1.99597 2.6518 1.6280 
O–O 0.023272 1.3731 3.791 
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Figure 5.1: Building amorphous silica bulk and surface. (a) β-Cristobalite unit cell, (b) β-

cristobalite supercell, (c) created bulk amorphous silica, (d) final amorphous silica surface, 

and (e) final amorphous silica surface with silanol groups (top view). The two hydrogen 

atoms with the ‘+’ sign indicate where the functionalization of the surface will take place. 

Silicon, oxygen and hydrogen atoms are displayed in yellow, red and white, respectively. 

 

 

 

 

 

(a) 

(c) 

(d) 

(e) 

(b) 

+ 

+ 



165 
 

To construct bulk amorphous silica, a β-cristobalite unit cell (Si8O16) was 

replicated 4 ×  4 ×  4 times to produce a cubic supercell (28.6 Å ×  28.6 Å ×  28.6 Å) 

of 1536 atoms (Si512O1024). The cooling cycle 1-I suggested by Huff et al. [43] was 

then followed. It started with an NVT simulation at 8000 K for 20 ps to remove any 

memory of the initial atomic configuration followed by NVT simulations at 4000 K, 

2000 K and 1000 K. At each temperature step, the simulation was run for 20 ps. A 

10 ps of NVT dynamics at 300 K and then a 30 ps of NPT simulation at 300 K and 1 

atm pressure completed the cycle. 

To create the amorphous silica surface, the bulk amorphous silica was cleaved 

in the middle along the Y-direction. The resultant slab (~ 14 Å in thickness) was 

taken to produce the amorphous silica surface. A few atoms were taken out from the 

system to keep its electroneutrality and the final slab consisted of 246 SiO2 units. 

The system was made periodic in three dimensions by placing a vacuum of 42 Å (i.e. 

~ 3 times the slab thickness) on top of the silica surface. This enables the use of 

Ewald summation method and the long vacuum gap usually reduces the unwanted 

interactions between the silica surface and the periodic images. Atoms situated 

within 3 Å from the bottom of the slab in the Y-direction were fixed during the 

simulation. The slab was then annealed using the same potential used for creating the 

bulk amorphous silica. A 10 ps NVT dynamics at 1500 K followed by an NVT 

simulation at 300 K for 10 ps resulted in the desired amorphous silica surface. 

It should be pointed out that the choice of the initial temperature and the 

thickness of the immobilized atoms influence the final amorphous silica surface in 

terms of the surface defects (undercoordinated or overcoordinated atoms) [38,41]. 

The higher the temperature and the thinner the layer of fixed atoms usually result in 

a lower surface defects. A key for choosing the temperature would be the glass 
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transition temperature below which all structural changes in silica are arrested [53]. 

In simulations, this temperature is different from experimental and depends on the 

potential used. Using the same potential employed in the current work, Takada et al. 

[45] estimated the glass transition temperature to be 1400 K. Hence, in the present 

work, the initial temperature of 1500 K was selected and yielded the desired 

amorphous silica surface (Section 5.3.1). As for the simulation time, it has been 

shown that the surface defect density becomes stable with little or no changes after 

10 ps [42]. In another study, a simulation time of ~1 ps was reported adequate to 

produce the surface defects [55]. 

5.2.2 ONIOM models and details of the calculations                      

Modeling heterogeneous catalytic systems is typically performed using one of three 

different representations of the catalyst: clusters, embedded clusters or slabs [56]. In 

the present work, the slab model was used. 3-Aminopropyltrimethoxysilane (a 

commonly used grafting molecule) was attached to the generated amorphous silica 

surface (Figure 5.1e) to produce an aminopropyl-functionalized silica surface (Figure 

5.2). The chiral oxazaborolidinium cation catalyst 16 was then covalently 

immobilized on the amino silica surface (Figure 5.3). 

All ONIOM (QM:MM) calculations were performed in vacuo using the 

Gaussian 03 program [58]. Density functional theory with the B3LYP functional and 

the 6-31G(d) basis set was chosen as the QM method while the ‘universal force 

field’ (UFF) [59] was selected as the MM method. The UFF atom types for the Si 

and O atoms that are part of the silica slab were specified explicitly with Si3 for Si 

and O_3_z for O. For the remaining atoms in the system, the UFF atom types 

automatically assigned by the Gaussian 03 program were accepted. The molecular 

connectivity was also explicitly specified (keyword “geom=connectivity”). 



 

                          

Figure 5.2: Amino silica surface. (a) 

silica surface, (b) UFF optimized amino silica surface (top view), and (c) UFF optimized 

amino silica surface (side view).

from removing the periodic boundary conditions.

 

(b) 

(c) 

(a) 

 

 

 
 
 

 
 

 

Amino silica surface. (a) 3-Aminopropyltrimethoxysilane to be attached to the 

, (b) UFF optimized amino silica surface (top view), and (c) UFF optimized 

(side view). Hydrogens were used to fill out the valence that resulted 

from removing the periodic boundary conditions. Hydrogens were added using 

HyperChem program [57].     
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, (b) UFF optimized amino silica surface (top view), and (c) UFF optimized 

the valence that resulted 

ogens were added using the 
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Figure 5.3: ONIOM(B3LYP/6-31G(d):UFF) optimized amino silica-immobilized catalyst 

16. (a) Top view and (b) side view. The QM layer is in the ball-and-stick representation and 

the MM layer is in the wireframe representation.  

(b) 

(a) 
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No charges were assigned to the MM atoms and the electrostatic interactions at 

both the MM and QM levels are, thus, ignored in the current study. The UFF does 

not include default values for partial charges. For determining the partial charges, the 

use of the charge equilibration procedure (QEq) might be suitable [60]. In this 

procedure, the computed charges are allowed to adjust to geometrical changes. 

However, it has been shown that the performance of the UFF without charges is 

better than the UFF combined with QEq [61]. In addition, in the Gaussian program, 

the QEq partial charges are calculated only at the initial geometry and are not 

updated during the course of geometry optimization [62]. Since charges depend on 

structural parameters, the electrostatic interactions will not be calculated accurately 

using charges derived from the initial structure. In an embedded cluster 

ONIOM(QM:MM) study on the cyclization of C6 diene in zeolites, Joshi and 

Thomson [63] concluded that the MM partial charges caused nearly constant shifts in 

the energetics, and not necessarily in a stabilizing manner. Furthermore, since the 

ONIOM method neglects the polarization of the MM region, the effect of the MM 

charges will be overestimated [64]. The ONIOM-ME method is therefore used for all 

calculations. 

In the Gaussian 03 program, the default algorithm used for ONIOM(QM:MM) 

geometry optimization to a minimum is different than the algorithm used for 

optimization to a transition structure. In the geometry optimization to a minimum, 

ONIOM(QM:MM) takes advantage of the microiterations procedure [65] that allows 

the use of a fast MM optimizer so that the entire MM layer is fully minimized at 

each geometry optimization step of the QM layer. This is a computationally efficient 

procedure that allows faster geometry optimization than the ‘normal’ procedure 

which includes all atoms in the geometry optimization similar to a regular non-



170 
 

ONIOM calculation. In the Gaussian 03 program, the ‘normal’ procedure is the only 

procedure available for optimization to a transition structure. Therefore, 

ONIOM(QM:MM) transition structure searches are computationally demanding.  

Vibrational frequency calculations were carried out at the optimized geometries 

to verify whether the obtained structures are minima or transition structures as well 

as to determine zero-point vibrational energies and thermodynamic quantities. The 

vibration associated with the imaginary frequency was ensured to correspond to a 

displacement in the direction of the reaction coordinate. The zero-point vibrational 

energies and thermodynamic quantities were computed using frequencies scaled by 

0.9804. Thermodynamic quantities were calculated at 298.15 K and at 1.0 atm 

pressure. 

5.3 Results and Discussion 

5.3.1 Characterization of the amorphous silica bulk and surface 

In this section, the amorphous silica bulk and surface are characterized. The 

characterization approach followed is simple rather than exhaustive. The density of 

the bulk amorphous silica obtained in this study is 2.25 g/cm3, a value close to the 

experimental density of 2.20 g/cm3 [66,67]. 

On the silica surface (Figure 5.1d), the non-bridging oxygens (i.e. oxygen atoms 

bonded to less than two silicon atoms) density is 1.9/nm2. The tricoordinated silicon 

atoms density is 0.9/nm2. To obtain a hydroxylated surface, hydrogens were added to 

non-bridging oxygens and hydroxyl groups to tricoordinated silicons. This resulted 

in a surface (Figure 5.1e) having a silanol number (i.e. the number of hydroxyl 

groups per square nanometer) of 2.8 OH/nm2. This silanol number is close to the 

silanol number obtained for thermally treated silica at 673 K (~ 3 OH/nm2) [66-68]. 
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Silica calcined at 673 K has been used as a solid support for organometallic catalysts 

[17,20]. 

The surface chemistry of silica is dominated by the surface silanol groups that 

participate in adsorption of molecules (e.g., water) as well as chemical modification 

of silica surfaces [68]. Types of silanol groups on the surface of silica include 

isolated, geminal and vicinal (or H-bonded) silanols (Figure 5.4). At low 

temperatures, vicinal silanols almost entirely cover the surface [69]. 

Dehydroxylation of the silica surface begins at temperatures above 473 K and the 

silanol number decreases with increasing temperature. Vicinal silanols may remain 

on the silica surface up to ~ 723 K, geminal silanols up to ~ 1073 K, and isolated 

silanols up to ~ 1273 K [66]. The ratio of the isolated silanols to geminal silanol 

groups on the silica surface is estimated to be ~ 85/15 at temperatures in the range of 

723 K to 1073 K [66]. In the current work, the percentages of isolated, geminal and 

vicinal silanols are found to be 73%, 18% and 9%, respectively. This indicates that 

the simulated silica obtained in the present work corresponds to silica obtained by 

thermal treatment at temperatures close to 723 K, in line with the conclusion reached 

by using the silanol number. 

 

Figure 5.4: Silanol groups on the surface of silica. 
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In their experiment regarding the enantioselectivity of Diels-Alder reactions on 

SiO2-immobilized Cu-bis(oxazoline) catalyst, Tanaka et al. [17] recommended that 

the loading of the catalyst is controlled to be at 0.1 molecule/nm2. This would allow 

the organofunctionalization of the silica surface surrounding the catalyst. As 

mentioned in Section 5.2.2, one molecule of catalyst 16 was covalently attached to 

the amino silica surface (Figure 5.3). The loading of catalyst 16 on the silica surface 

is therefore 0.12 molecule/nm2. Furthermore, as stated in the ‘specification sheet’ for 

3-aminopropyl-functionalized silica [70], 9% of the surface active groups are 

functionalized. This corresponds to two silanol groups for the silica surface obtained 

in this study. Hence, only one molecule of 3-aminopropyltrimethoxysilane was 

attached to the silica surface and the silica surface obtained in the current work is 

considered to be a good representative model and attachment of additional molecules 

of catalyst 16 to the silica surface was not necessary.             

5.3.2 Diels-Alder reaction on the silica surface      

The Diels-Alder reaction studied on the silica surface is between isoprene 14 and 

2,3-dimethyl-1,4-benzoquinone 15 in the presence of amino silica-supported catalyst 

16 as shown in Figure 5.5. Since optimization to a transition structure in 

ONIOM(QM:MM) is computationally demanding, only the syn transition structures 

are considered in this study. This choice is based on the results obtained in Chapter 3 

(Section 3.3.2, Figure 3.13 vs. Figure 3.14) which indicated the syn transition 

structures to be more stable than the anti transition structures. In addition, the syn 

coordination between benzoquinone 15 and amino silica-immobilized catalyst 16 is 

stronger than the anti coordination and the B–O bond length for the syn coordination 

complex is shorter by 0.03 Å than that of the anti complex. The syn complex also has 

a nonconventional hydrogen bond between the Cα–H hydrogen and the oxygen of the 
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catalyst with 2.66 Å bond length. This stronger coordination combined with the 

presence of hydrogen bonding in the syn coordination complex resulted in an 11.6 

kcal/mol stabilization for the syn complex as compared to the anti complex which 

corresponds to a 100% of the Boltzmann population being represented by the syn 

complex. Furthermore, the anti coordination is unfavored since the complex Gibbs 

free energy is 6.2 kcal/mol higher than that of the separated reactants. On the other 

hand, the free energy for the syn coordination complex is lower than that of the 

separated reactants by 5.4 kcal/mol and is therefore strongly favored over the anti 

coordination complex. 

 

 

  
 

 
 

Figure 5.5: Catalyzed Diels-Alder reaction with catalyst immobilized on amino SiO2 surface 

having four possible reaction pathways. The catalyst is coordinated syn to the HC═CH double 

bond that undergoes the [4+2]-cycloaddition. The dotted line indicates the partitioning into MM 

and QM regions. 

 

 

 

 

 

Reaction 5-A 
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The ONIOM(B3LYP/6-31G(d):UFF) optimized transition structures are shown 

in Figure 5.6. The B–O bond length (on average) at the transition structures is shorter 

than that of the reactant by 0.02 Å indicating a slightly stronger complexation at the 

transition state. Similar to the reactant, the transition structures possess a 

nonconventional hydrogen bond between the Cα–H hydrogen and the oxygen of the 

catalyst with bond lengths ranging from 2.15 Å to 2.61 Å. 

TS28 possesses the lowest free energy representing almost a 100% of the 

Boltzmann population of the endo transition states. This transition state corresponds 

to an s-cis diene addition to the rear face of the α,β double bond of the 

benzoquinone. For the exo transition states, TS29 is the most stable transition state 

and represents 99.92% of the Boltzmann population of the exo transition states. The 

endo path is preferred to the exo route and the percent enantiomeric excess (%ee) is 

calculated to be 86.5%. The results are in agreement with those obtained for the 

homogeneous catalyst (Chapter 3) with the exception that the endo transition 

structure has a preference for the rear face addition and the exo transition structure 

favors the front face addition. 

The average degree of asynchronicity for the transition structures is found to be 

0.99 Å (Figure 5.6) pointing out to concerted but highly asynchronous reaction 

pathways where the bond between the diene and carbon β of the dienophile is being 

formed in a greater extent than the bond between the diene and carbon α of the 

dienophile. 
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Figure 5.6: ONIOM(B3LYP/6-31G(d):UFF) optimized transition structures for the catalyzed 

Reaction 5-A. Relative free energies are in kcal/mol and distances are in angstroms. TS27 = 

endo transition state involving the s-cis diene attack to the front face and TS28 = endo transition 

state involving the s-cis diene attack to the rear face. 

TS28 

TS27 

∆∆∆∆Grel=0.0 

∆∆∆∆Grel=+7.4 
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Figure 5.6 (Continued): TS29 = exo transition state involving the s-cis diene attack to the front 

face and TS30 = exo transition state involving the s-cis diene attack to the rear face. 
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5.3.3 Limitations of the study and future recommendations 

The ONIOM method as implemented in the Gaussian 03 program does not work in 

combination with the periodic boundary conditions, the polarizable continuum 

solvation models, and the intrinsic reaction coordinate calculation. The current work 

therefore did not utilize any of these methods. 

As mentioned in Section 5.2.2, ONIOM(QM:MM) transition structure searches 

as implemented in the Gaussian 03 program are computationally demanding. This 

imposed a constraint on the number of investigations that could be performed. For 

example, it was not possible to test the transition state structures with the ONIOM-

EE method. In addition, the silica surface functionalization around the catalyst can 

influence the outcome of the reaction [16,17,20]. This was also not tested. In the 

Gaussian 09 program, however, ONIOM(QM:MM) optimization to a transition 

structure makes use of the microiterations procedure which makes optimizations to 

transition structures much more efficient. The comparison between ONIOM-ME and 

ONIOM-EE methods as well as the study of the effect of the surface nature 

surrounding the catalyst with these two methods are suggested. 

As discussed above, ONIOM(QM:MM)-ME lacks the description of the 

electrostatic interactions between the QM and MM layers at the high level of theory. 

Since QM/MM methods including ONIOM(QM:MM) neglect the polarization of the 

MM region by the QM region, the effect of the MM charges is overestimated in 

ONIOM-EE. In the Gaussian program, these charges are also derived from the initial 

input structure and are not updated during the course of geometry optimization. In 

addition, the appropriateness of using MM charges in constructing the QM 

Hamiltonian has been questioned [71]. 
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A method which could not be carried out in this work due to technical 

difficulties is ONIOM(QM:QM) in combination with periodic boundary conditions. 

The QM theory for treating the reaction site may be chosen to be B3LYP/6-31G(d) 

whereas the QM method for treating the silica slab can be any suitable DFT 

functional (e.g., PBE96) with plane wave basis set and pseudopotentials. Such a 

combination can be achieved by using the PSPW (pseudopotential plane wave) 

module implemented in the NWChem program. This method is expected to provide 

more accurate and reliable results than ONIOM(QM:MM). 

5.4 Conclusion 

The Diels-Alder reaction between diene 14 and dienophile 15 in the presence of 

SiO2-immobilized catalyst 16 has been studied by the hybrid ONIOM(B3LYP/6-

31G(d):UFF) method within the mechanical embedding scheme. The amorphous 

silica surface was obtained by classical molecular dynamics using the melt-quench 

method. The silica surface was characterized and found to closely resemble silicas 

calcined at 673 K. The model chiral cationic oxazaborolidinium catalyst 16 was 

immobilized on the aminopropyl-functionalized silica surface to act as a 

heterogeneous catalyst for the Diels-Alder reaction. The preferred SiO2-supported 

catalyst 16 coordination to dienophile 15 was observed to be syn to the HC═CH 

double bond of the dienophile that undergoes the [4 + 2]-cycloaddition. The favored 

reaction path was through an endo transition state and the calculated 

enantioselectivity was 86.5%. The reaction was observed to proceed via a concerted 

but highly asynchronous reaction mechanism. The enantioselectivity and the 

mechanism of the Diels-Alder reaction on silica surface are generally comparable to 

those observed for the homogeneous catalyst (cf. Chapter 3). 
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A DFT Investigation on the 
Enantioselective Cyanosilylation of 

Aldehydes Catalyzed by Chiral 

Oxazaborolidinium Cation 
 

 

 

 

 

Catalytic enantioselective synthesis of cyanohydrins from aldehydes is essential 

since cyanohydrins can be transformed into a number of biologically important 

molecules. Various types of chiral catalysts have been developed in order to obtain 

good enantioselectivities. In the present chapter, the enantioselectivity and 

mechanism of the cyanosilylation of aldehydes using the chiral organocatalyst 

oxazaborolidinium ion are investigated by means of density functional theory with 

the popular B3LYP functional.   

 

 

6.1 Introduction  

The cyanosilylation of aldehydes and ketones is an essential reaction in organic 

synthesis for the production of cyanohydrins that are industrially key precursors in 

the synthesis of biologically important compounds such as α-hydroxy acids and their 

derivatives, and β-amino alcohols. The general synthetic route of cyanohydrins is the 

addition of the mild cyanating agent trimethylsilyl cyanide (TMSCN) to the carbonyl 

compounds in the presence of a catalyst. Lewis acids (e.g., [1,2]), Lewis bases (e.g., 

[3,4]) and bifunctional catalysts (e.g., [5,6]) have been employed as catalysts. A 

large number of chiral catalysts have been developed for the production of 

enantiomerically pure cyanohydrins with the majority consisting of transition-metal 

complexes with chiral ligands. However, efficient syntheses of cyanohydrins 

utilizing organocatalysts have been recently devised [7-17]. 

High enantioselectivities (> 90%) for the cyanosilylation of aldehydes catalyzed 

by chiral oxazaborolidinium cation catalyst 13 have been reported [8]. The 
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stereochemical configuration of the cyanohydrins produced and a mechanistic model 

have been proposed [8]. The mechanistic model is as follows: (1) the formation of a 

coordination complex 17 between catalyst 13 and the aldehyde, (2) the nucleophilic 

attack on the formyl carbon is facilitated by the complexation and occurs at the front 

face since the rear face is shielded by the phenyl ring, (3) the rotation about the B–O 

bond is fixed due to the nonconventional C–H•••O hydrogen bond [18,19], (4) the 

isocyanide should be more reactive as a cyanosilylation reagent than the isomeric 

cyanide, and (5) the silylated (R)-cyanohydrin is produced preferentially.    

 

 
 

 

The objective of the current study is to theoretically investigate the 

enantioselectivity and mechanism of the cyanosilylation of aldehydes in the presence 

of chiral oxazaborolidinium cation catalyst.  

6.2 Computational Details   

Geometry optimizations and vibrational frequencies of the reactants, transition 

structures, intermediates and products were performed in vacuo using the hybrid 

density functional method B3LYP with the 6-31G(d) basis set as implemented in the 

Gaussian 03 program [20]. The default SCF algorithm (EDIIS/CDIIS) in the 

Gaussian 03 program was used unless in case of convergence problem, in particular 

for transition structures, where the keyword “scf=(maxconventional-
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cycles=20,xqc)” was used. This keyword instructs the program to use the default 

SCF algorithm for the first 20 cycles then to use the quadratically convergent (QC) 

SCF algorithm in order to ensure convergence. Geometry optimizations to local 

minima and transition structures were accomplished with the Berny algorithm in 

redundant internal coordinates without any symmetry restriction. Vibrational 

frequency calculations were carried out at the optimized geometries to verify 

whether the obtained structures are minima or transition structures as well as to 

determine zero-point vibrational energies and thermochemical quantities. The 

vibration associated with the imaginary frequency was ensured to correspond to a 

displacement in the direction of the reaction coordinate. This was achieved with the 

graphical user interface for Gaussian program (GaussView). The zero-point 

vibrational energies and thermochemical quantities were computed using frequencies 

scaled by 0.9804. Thermochemical quantities were calculated at 273.15 K and at 1.0 

atm pressure. 

6.3 Results and Discussion 

A typical example representing the enantioselective cyanosilylation of aldehydes in 

the presence of chiral oxazaborolidinium catalyst is depicted in Figure 6.1 (Reaction 

6-A). 

The studied simplified model of Reaction 6-A is illustrated in Figure 6.2 

(Reaction 6-B). The simplifications are as follows: (1) the model (S)-catalyst 16 is 

used instead of catalyst 13, (2) trimethylsilyl cyanide (TMSCN) and 

triphenylphosphine oxide (Ph3PO) are represented by H3SiCN and Me3PO, 

respectively, and (3) only the coordination mode that allows the formation of the 

nonconventional hydrogen bond between the formyl hydrogen of benzaldehyde and 

the oxygen of catalyst 16 is considered. 
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Figure 6.1: Corey’s enantioselective cyanosilylation of benzaldehyde using chiral 

oxazaborolidinium catalyst (reference 8). 

  

 

 

 

 

 
 

 

Figure 6.2: Modeled enantioselective cyanosilylation of benzaldehyde using chiral 

oxazaborolidinium catalyst 16.  

 

 

 

 

Reaction 6-A 

Reaction 6-B 
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The Ph3PO acts as an enantioselectivity promoter and is incorporated into the 

catalytic Lewis acid structures leading to the so called ‘two-center catalysis’ (i.e. 

Lewis acid – Lewis base bifunctional catalysis) [8,21]. NMR and IR experiments [8] 

have supported the idea that Ph3PO reacts with TMSCN and suggested the possible 

formation of isocyanide Ph3P(OTMS)(NC) as a reactive intermediate. This 

isocyanide is expected to be a more reactive cyanosilylation reagent than the 

isomeric cyanide [8]. At the B3LYP/6-31G(d) level employed in the present work, 

the Gibbs free energy for isocyanide is 6.7 kcal/mol higher than that of cyanide. The 

isomerization takes place via the transition state structure depicted in Figure 6.3. The 

transition state possesses a three-membered ring structure and the free energy barrier 

for this isomerization step is found to be 30.9 kcal/mol. 

Based on the isomerization from cyanide to isocyanide and on the 

stereochemical configuration of the transition state (R or S), there are eight possible 

transition states as shown in Figure 6.4. Four-membered ring or five-membered ring 

transition state structures are possible depending on whether the attack on the formyl 

carbon is initiated by the carbon atom or the nitrogen atom of the cyano group. 

 

      

 

 

Figure 6.3: B3LYP/6-31G(d) optimized transition state structure for the isomerization from 

Me3POH3SiCN to Me3POH3SiNC. Color code: carbon in grey, hydrogen in white, oxygen in 

red, nitrogen in blue, silicon in yellow and phosphorus in orange. Arrows indicate 

displacement vectors. Distances are in angstroms.  
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Figure 6.4: Possible transition states of the cyanosilylation of aldehydes. Products have 

either the R or the S configuration.  

 

 

  

In the current study, the B3LYP/6-31G(d) calculations show that in the presence 

of model catalyst 16, the cyanosilylation of benzaldehyde takes place by a stepwise 

mechanism. Starting the transition state searches with four-membered ring structures 

led to the same transition state structures obtained from five-membered ring 

structures. Hence, only five-membered-like transition state structures could be 

located. The B3LYP/6-31G(d) located transition state structures and intermediates 

are shown in Figures 6.5 – 6.10.      
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Figure 6.5: B3LYP/6-31G(d) optimized first transition structures for Reaction 6-B (isocyanide 

path). Relative free energies are in kcal/mol at 273.15 K. Distances are in angstroms. TS31 = 

transition state having the R configuration and TS32 = transition state having the S 

configuration. Color code: carbon in grey, hydrogen in white, oxygen in red, nitrogen in blue, 

silicon in yellow, boron in pink and phosphorus in orange. 

 

TS31 

∆∆∆∆Grel=0.0 

TS32 

∆∆∆∆Grel=+2.6 



191 

 

 
 

 

 

 

 

 

 
 

 

 

 

 
Figure 6.6: B3LYP/6-31G(d) optimized first transition structures for Reaction 6-B (cyanide 

path). Relative free energies are in kcal/mol at 273.15 K. Distances are in angstroms. TS33 = 

transition state having the R configuration and TS34 = transition state having the S 

configuration.  
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Figure 6.7: B3LYP/6-31G(d) optimized intermediates for Reaction 6-B (isocyanide path). 

Relative free energies are in kcal/mol at 273.15 K. Distances are in angstroms. Int1 = 

intermediate having the R configuration and Int2 = intermediate having the S configuration. 
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Figure 6.8: B3LYP/6-31G(d) optimized intermediates for Reaction 6-B (cyanide path). Relative 

free energies are in kcal/mol at 273.15 K. Distances are in angstroms. Int3 = intermediate 

having the R configuration and Int4 = intermediate having the S configuration. 
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Figure 6.9: B3LYP/6-31G(d) optimized second transition structures for Reaction 6-B (isocyanide 

path). Relative free energies are in kcal/mol at 273.15 K. Distances are in angstroms. TS35 = 

transition state having the R configuration and TS36 = transition state having the S 

configuration.  
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Figure 6.10: B3LYP/6-31G(d) optimized second transition structures for Reaction 6-B (cyanide 

path). Relative free energies are in kcal/mol at 273.15 K. Distances are in angstroms. TS37 = 

transition state having the R configuration and TS38 = transition state having the S 

configuration.  
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Table 6.1 lists the B3LYP/6-31G(d) computed activation free energies for the 

four possible reaction pathways (isocyanide path with the R or S configuration and 

cyanide channel with the R or S configuration). As can be seen from the table, the 

present calculations show the isocyanide to be more reactive than the isomeric 

cyanide with a maximum difference in activation free energies of 11.7 kcal/mol 

(based on the first activation free energies). This result is in agreement with the 

prediction made by Ryu and Corey [8] that the isocyanide would be a more reactive 

cyanosilylation reagent than the isomeric cyanide. 

  

Table 6.1: B3LYP/6-31G(d) calculated activation free 

energies (kcal/mol). 

 
1G∆
‡
 2G∆

‡
 

   
Isocyanide – R  5.1 34.1 
Isocyanide – S  7.7 32.9 

Cyanide – R  16.8 32.2 

Cyanide – S  19.2 31.9 

   
 

The imaginary frequencies associated with the first transition state structures 

(Figures 6.5 and 6.6) correspond to a swing motion of the (iso)cyano group between 

the formyl carbon and the silicon atom. The direction of the displacement vector is 

towards the formyl carbon indicating the formation of the C–C or N–C bond and the 

breaking of the Si–N or Si–C bond. For the second transition state structures (Figures 

6.9 and 6.10), the imaginary frequencies correspond to the formation of the Si–

O(benzaldehyde) bond. Therefore, the major steps involved in the cyanosilylation of 

benzaldehyde catalyzed by 16 are the nucleophilic addition of the iso(cyano) group 

to the formyl carbon of the benzaldehyde to give an intermediate (Figures 6.7 and 

6.8) followed by a nucleophilic substitution step where the Me3PO is the leaving 

group. The activation free energy of this step is higher than that of the nucleophilic 
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addition step (Table 6.1) rendering it the rate determining step of the cyanosilylation 

reaction.          

Based on the rate determining step, the R transition structures are lower in free 

energy than the corresponding S transition structures (Figures 6.9 and 6.10). For both 

the cyanide and isocyanide paths, the percent enantiomeric excess (%ee) is found to 

be greater than 99% at 273.15 K favoring the R enantiomer. 

6.4 Conclusion 

The mechanism and enantioselectivity of the cyanosilylation of benzaldehyde 18 by 

the cyanosilylation reagent Me3POH3SiCN and its isomer Me3POH3SiNC in the 

presence of the model chiral oxazaborolidinium ion catalyst 16 have been 

investigated by density functional theory using the B3LYP functional with the 6-

31G(d) basis set. Both cyanide and isocyanide paths showed stepwise reaction 

mechanism where the formation of N–C bond (cyanide path) or C–C bond 

(isocyanide path) is accomplished in the first step of the reaction. The formation of 

the Si–O bond takes place in a subsequent step and it is the rate determining step of 

the cyanosilylation reaction. The isocyanide exhibited higher reactivity than the 

isomeric cyanide. On the basis of the rate determining step, the preferred enantiomer 

was found to possess the R configuration and the calculated enantioselectivities for 

both cyanide and isocyanide routes were found to be > 99%. 
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