THE EFFECT OF HEATING ON THE ANTIOXIDANTS CONTENT IN EDIBLE OIL

A research report submitted in partial fulfilment of course SCGS 6189 for Master of Science in Analytical Chemistry and Instrumentation to the Chemistry Department, University of Malaya Kuala Lumpur.

PREMANAND A/L KRISHNAN

SGC 090016

SESSION 2009/2010

Supervisor:

Associate Professor Dr. Lo Kong Mun

ACKNOWLEDGEMENT

First and foremost I would like to thank the Almighty for giving me the strength and patience for completing this wonderful research that has been chosen by me. I would to express my deepest and sincere gratitude to Associate Professor Dr. Lo Kong Mun who is my supervisor for the guidance, encouragement and endless support that they have given me. Not forgetting to my group of friends for their friendship and encouragement to make this research a success. Last but not least, a special thanks to my beloved family for their love, encouragement and support that they have given me. Without the individuals that I've mentioned above there wouldn't be a success in this project. Thank you.

ABSTRAK

Terdapat banyak jenis minyak masak dengan pelbagai jenama boleh didapati di pasaran. Jenis-jenis minyak yang digunakan dalam analisis kandungan antioksidan adalah minyak kelapa sawit, minyak zaiton, minyak canola, minyak bunga matahari, minyak kacang soya, minyak jagung, minyak bijan, minyak 'rice bran' minyak campuran dan minyak ayurvedic. Apabila sampel-sampel minyak tersebut dipanaskan pada suhu yang berbeza, kandungan antioksidannya menunjukkan kesan negatif. Kandungan antioksidan di dalam semua sampel minyak menunjukkan pola menurun apabila dipanaskan. Sampel yang mengandungi kandungan antioksidan tertinggi pada semua suhu 180 °C ialah minyak jagung, diikuti minyak kelapa sawit, minyak bunga matahari, minyak zaiton, minyak canola, minyak ayurvedic, minyak 'rice bran', minyak campuran, minyak kacang soya dan minyak bijan. Oleh itu, minyak jagung merupakan minyak yang paling sesuai digunakan untuk memasak pada suhu tinggi.

ABSTRACT

There are many types edible oils with various brand found in the market. The types of oils involved in the analysis for the antioxidants content were palm oil, olive oil, canola oil, sunflower oil, soy bean oil, corn oil, gingerly oil, rice bran oil, mixed oil and ayurvedic oil. The method used to evaluate the amount antioxidants in this study was 2, 2-diphenyl-1-picrylhydrazyl (DPPH). In this test, the scavenging of the DPPH radicals was followed by monitoring the decrease in absorbance at 515 nm. Heating the oil samples to various temperatures shows negative effect on the antioxidants content. The antioxidants content in all types of oils showed decreasing pattern when subjected to heat. The sample with highest antioxidants content at the temperature 180 °C is corn oil, followed by palm oil, sunflower oil, olive oil, canola oil, ayurvedic oil, rice bran oil, mixed oil, soy bean oil and lastly gingerly oil. Therefore, corn oil is the most suitable type of oil for high temperature cooking such as frying.

CONTENTS

ACKNOWLEDGEMENT				
ABS	ABSTRAK			
ABS	STRAC	CT CT	iv	
TA	BLE O	F CONTENT	v	
LIS	T OF 1	TABLES, GRAPHS AND FIGURES	viii	
LIS	T OF A	ABREVIATIOS	X	
1.0	Introdu	action	1	
	1.1	Edible oil	2	
		1.1.1 Saturated oils	4	
		1.1.2 Unsaturated fatty acids	4	
	1.2	Antioxidant	6	
		1.2.1 Definition	6	
		1.2.2 Classification of antioxidant	6	
		1.2.2.1 Primary antioxidant	8	
		1.2.2.2 Secondary antioxidant	8	
		1.2.2.3 Synergistic antioxidant	9	
		1.2.3 Antioxidant activity	Q	

	1.3	Free radicals	10
		1.3.1 Definition	10
		1.3.2 Types of free radicals	10
	1.4	Antioxidant in edible oil	12
		1.4.1 Polyphenols	14
		1.4.2 Vitamin E	15
		1.4.3 Vitamin A	16
	1.5	Lipid peroxidation	17
	1.6	Heat and antioxidant activity	19
	1.7	Method for determination of antioxidant activity	21
		1.7.1 Measurements of antioxidants activity	21
		1.7.2 2,2-diphenyl-1-picrylhydrazyl (DPPH) method	21
2.0	Experi	mental	22
	2.1	Reagents	22
	2.2	Apparatus	23
	2.3	Sample Collection	24
	2.4	Preparation of 2,2-diphenyl-1-picrylhydrazyl (DPPH) solution	24
	2.5	Preparation of Butylated Hydroxytoluene (BHT) standard solution	24
	2.6	Instrumentation	25
	2.7	Analytical procedure	25

		2.7.1 Preparation of calibration graph	25	
		2.7.2 Sample preparation and analysis	26	
3.0	Result	and discussion	27	
	3.1	Calibration curve	27	
	3.2	Sample analysis	29	
4.0	Conclusion		53	
RE	REFERENCES			

LIST OF TABLES, GRAPHS AND FIGURES

TABLE 1: Biologically significant free radicals and reactive oxygen species with their chemical structure TABLE 2: The content and function of antioxidants presence in edible oil Volume of 1 x 10⁻⁵ g/ml BHT solution (ml) required to produce TABLE 3: standard solution Absorbance of DPPH against BHT Concentration TABLE 4: Antioxidant Content of Oils at 25 °C TABLE 5: Antioxidant Content of Oils at 80 °C TABLE 6: Antioxidant Content of Oils at 120 °C TABLE 7: TABLE 8: Antioxidant Content of Oils at 180 °C Comparison of Antioxidant Content of Oils at 25 °C, 80 °C, 120 °C and TABLE 9: 180 °C GRAPH 1: Calibration Graph of Absorbance of DPPH against BHT Standard Samples Antioxidant Content of Oils at 25 °C GRAPH 2: GRAPH 3: Antioxidant Content of Oils at 80 °C Antioxidant Content of Oils at 120 °C GRAPH 4: GRAPH 5: Antioxidant Content of Oils at 180 °C Antioxidant Content of Palm and Olive Oils at 25 °C, 80 °C, 120 °C GRAPH 6: and 180 °C GRAPH 7: Antioxidant Content of Olive, Canola and Sunflower Oils at 25 °C, 80 °C, 120 °C and 180 °C

GRAPH 8: Antioxidant Content of Soy Bean, Corn and Gingerly Oils at 25 °C, 80

°C, 120 °C and 180 °C

GRAPH 9: Antioxidant Content of Gingerly, Rice Bran and Ayurvedic Oils at 25

°C, 80 °C, 120 °C and 180 °C

FIGURE 1: The structure of Butyric acid

FIGURE 2: The structure of Lauric acid

FIGURE 3: The structure of Oleic acid

FIGURE 4: The structure of Palmitoleic acid

FIGURE 5: The structure of Butylated Hydroxytoluene

FIGURE 6: The structure of Butylhydroquinone

FIGURE 7: The structure of flavanols

FIGURE 8: The structure of anthocyanidins

FIGURE 9: The structure of proanthocyanidins

FIGURE 10: The structure of tocopherols

FIGURE 11: The structure of tocotrienols

FIGURE 12: The structure of vitamin A

FIGURE 13: The stages involves in lipid peroxidation process

LIST OF ABREVIATIONS

BHA Butylated Hydrosyanysole

BHT Butylated Hydroxytoluene

ROS Reactive Oxygen Species

TBHQ Tertiary Butyhydroquinone

ROOH Hydroperoxides

DPPH 2,2-diphenyl-1-picrylhydrazyl

mM milli mole

mL milli litre