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ABSTRACT 

 In this study, the ion-exchange constant, KX
Br for the ion-exchange process X-/Br- 

involving different halo-substituted organic salts, MX and CTABr micelle in aqueous 

system were determined by a semiempirical kinetic approach with the interest of 

investigating the relationship of the ion-exchange constant to the micellar aggregation 

behavior. The first chapter contains the reviews of literature studies on this area. Chapter 2 

listed all the materials used as well as the experimental details for the study. It consists of 2 

parts: (a) kinetic measurements which show the effect of [MX] on the rate of 

piperidinolysis of phenyl salicylate in the absence and presence of CTABr; and (b) the 

rheological investigation. In chapter 3, the results of the kinetic measurements and 

rheological behavior of the reaction mixtures are presented. The mean values of KX
Br are 

12.8 ± 0.9, 13.4 ± 0.6, 4.67 ± 0.7, 50.3 ± 2.0, 47.9 ± 2.5, 8.82 ± 0.3, 71.2 ± 5.6, 62.1 ± 5.2, 

11.2 ± 0.9 and 144 ± 12 for MX = 3- and 4-FC6H4CO2Na; 2-, 3- and 4-ClC6H4CO2Na; 2-, 

3- and 4-BrC6H4CO2Na; and 2- and 4-IC6H4CO2Na, respectively. Shear thinning behavior 

of the plots of shear viscosity versus shear rate at constant [MX] and [CTABr]T are 

observed in all systems except when MX = 2-ClC6H4CO2Na for which the value of KX
Br is 

the lowest. In Chapter 4, detailed discussions of the results are given. The values of KX
Br 

offer quantitative evidence of the perception that the strong micellar binding of certain 

counterions is the cause of the micellar structural transition from spherical to cylindrical to 

wormlike entangled micelles. Viscosity maxima of the plots of shear viscosity as a function 

of [MX] are known as the characteristic features of the wormlike micellar solution. Thus, it 

may be concluded that the magnitudes of the thermodynamic ion-exchange constant, KX
Y 

for ion-exchange process X-/Y- on the cationic micellar surface in aqueous solution could 

affect the physical properties such as the structure of micelles of ionic surfactant solutions. 
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ABSTRAK 

 Dalam kajian ini, pemalar penukaran ion, KX
Br untuk proses penukaran ion X-/Br- 

melibatkan pelbagai garam organik dengan kumpulan penukarganti halogen, MX dan misel 

CTABr di dalam system akues telah ditentukan dengan menggunakan satu pendekatan 

semiempirikal kinetic dengan minat untuk mengkaji perhubungan pemalar penukaran ion 

kepada sifat aggregasi misel. Bab pertama mengandungi rumusan kajian terdahulu 

mengenai bidang ini. Bab 2 menyenaraikan semua bahan yang digunakan dan juga kaedah 

eksperimen untuk kajian ini. Ia mengandungi 2 bahagian: (a) pengukuran kinetik yang 

menunjukkan kesan [MX] terhadap  kadar piperidinolisis fenil salisilat tanpa kehadiran dan 

kehadiran CTABr; dan (b) kajian rheologi. Di dalam Bab 3, keputusan dari kajian kinetik 

dan rheologi terhadap campuran tindak balas turut disenaraikan. Purata nilai KX
Br adalah 

12.8 ± 0.9, 13.4 ± 0.6, 4.67 ± 0.7, 50.3 ± 2.0, 47.9 ± 2.5, 8.82 ± 0.3, 71.2 ± 5.6, 62.1 ± 5.2, 

11.2 ± 0.9 dan 144 ± 12 yang masing-masing merujuk kepada MX = 3- dan 4-

FC6H4CO2Na; 2-, 3- dan 4-ClC6H4CO2Na; 2-, 3- dan 4-BrC6H4CO2Na; dan 2- dan 4-

IC6H4CO2Na. Sifat peluncuran menipis pada plot kelikatan melawan kadar putaran pada 

keadaan [MX] dan [CTABr]T malar telah dilihat dalam semua system kecuali apabila MX = 

2-ClC6H4CO2Na di mana nilai KX
Br adalah terendah. Di dalam Bab 4, perbincangan 

terperinci tentang keputusan turut disertakan. Nilai KX
Br menawarkan bukti kuantitatif 

terhadap persepsi bahawa pengikatan yang kuat terhadap misel oleh sesetengah ion 

berlawanan cas adalah penyebab perubahan struktur misel daripada berbentuk sfera kepada 

silinder dan kepada misel cecacing yang berselirat. Kelikatan maksima pada plot kelikatan 

sebagai fungsi [MX] adalah diketahui sebagai ciri misel cecacing. Maka, boleh dirumuskan 

bahawa magnitud pemalar termodinamik penukaran ion, KX
Y untuk proses penukaran ion 
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X-/Y- pada permukaan misel kationik di dalam keadaan akues boleh mempengaruhi sifat 

fizikalnya seperti struktur misel pada larutan surfaktan ionik. 
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