VIBRATIONAL FREQUENCIES OF CLUSTERS: ARSENIC OXIDE, CARBON NITRIDE, COPPER OXIDE, SELENIUM AND RELATED COMPOUNDS WITH DIFFERENT ATOMS

AHMAD NAZRUL BIN ROSLI

THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF PHYSICS FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

 $\mathbf{2011}$

Abstract

The density functional theory (DFT) has been used to solve the Schrödinger equation. The computer programmes have been developed which give a real advantage for solving large matrices in DFT that seem impossible to write by hand. The Amsterdam density functional (ADF) and DMol³ of Accelerys have been used to calculate the vibrational frequencies of the atoms and molecules. The clusters of the molecules have been made for the study of glasses such as AgGeSe, AsSe, AsS, AsO, CuO, Se, FeP, FeAs, CN and graphene. These calculations are in good agreement with the experimental results. The local density approximation (LDA) and the generalized gradient approximation (GGA) both are used for solving eigen values of the Schrödinger equation. The double numerical and double numerical with polarized orbitals as a basis set for the wave functions are used in these calculations. The calculated frequencies have been compared with the experimentally measured Raman spectra to identify the clusters which are present in the material. This calculation is in accord with the experimentally observed Raman spectra.

Abstrak

Teori fungsi ketumpatan (DFT) telah digunakan dalam menyelesaikan persamaan Schrödinger. Program komputer telah dihasilkan dan memberi kelebihan kepada penyelidik untuk menyelesaikan matriks yang dahulunya mustahil untuk diselesaikan secara manual. Perisian Amsterdam density functional (ADF) dan juga DMol³ dari Accelerys telah digunakan untuk mengira frekuensi getaran bagi atom dan molekul. Kluster bagi molekul-molekul kaca telah dibina seperti AgGeSe, AsSe, AsS, AsO, CuO, Se, FeP, FeAs, CN dan graphene. Keputusan dari pengiraan ini bersesuaian dengan hasil keputusan eksperimen. Penghampiran ketumpatan (LDA) dan penghampiran kecerunan umum (GGA) telah digunakan untuk menyelesaikan nilai eigen dalam persamaan Schrödinger. Numerik berganda (DN) dan numerik berganda beserta berkutub (DNP) digunakan dalam fungsi gelombang sebagai set asas untuk pengiraan ini. Frekuensi yang dikira telah dibandingkan dengan keputusan spektra Raman dari eksperimen untuk mengenal pasti kluster yang hadir dalam sesebuah bahan. Hasil pengiraan ini bertepatan dengan spektra Raman hasil dari eksperimen.

Acknowledgments

First of all, I thank my supervisors, Professor Dr. Keshav N. Shrivastava and cosupervisor Associate Professor Dr. Hasan Abu Kassim for their guidance throughout this work. I would like thank Professor Dr. Christopher G. Jesudason for discussions and support. I am grateful to both my parents for their support and encouragements to me to complete my research.

I also want to express my gratefulness to Dr. J. S. van Gisbergen of the University of Amsterdam for providing the ADF computer program. I also express my gratitude to Acclerys software Inc. San Diego, California support group for discussions.

I express my gratefulness to the Head of the Physics Department, Professor Dr. Abdul Kariem Hj. Mohd Arof for constant encouragements. Last but not the least I thank the authorities of the University of Malaya for giving me the opportunity to study in this great university and also for their encouragements and financial supports. I would also like to thank the Malaysian Academy of Sciences, Saga and the Ministry of High Education, FRGS for support.

Contents

A	bstra	nct	ii
A	bstra	k	iii
\mathbf{A}	ckno	wledgments	iv
1	Intr	oduction	1
	1.1	Hohenberg-Kohn Theory	3
	1.2	Kohn-Sham Self-Consistent Field Theory	6
	1.3	Exchange-Correlation Potentials	7
	1.4	Raman Scattering	9
	1.5	Objectives	10
2	Ab	Initio Calculation Of The Vibrational Frequencies Of $Ag_x Ge_{x-1}$	
	\mathbf{Se}_{2x}	$_{z+1}$ Glass	11
	2.1	Introduction	12
	2.2	Silver Clusters	13
	2.3	The AgSe Clusters	16
	2.4	The AgGe Clusters	18
	2.5	Comparison of Calculated Values With Experimental Raman Spectra $% \mathcal{A}$.	21
	2.6	Conclusions	22

3	Vib	rational Frequencies in $As_x Se_{1-x}$ Glass	23
	3.1	Introduction	24
	3.2	Clusters	24
	3.3	AsSe Raman Data	32
	3.4	Conclusions	34
4	Ab	initio Calculation of Vibrational Frequencies in $\mathbf{As}_x \mathbf{S}_{1-x}$ Glass and	
	The	e Raman Spectra	35
	4.1	Introduction	36
	4.2	Methodology	38
	4.3	Clusters of atoms	39
	4.4	Discussion	50
	4.5	Experimental Raman Spectra	51
	4.6	Comparison Between Theory and Experiments	53
	4.7	Conclusions	54
5	\mathbf{DF}'	T Calculation of Structure and Vibrations in AsO Glass.	55
	5.1	Introduction	55
	5.2	Clusters	56
	5.3	Experimental Raman Data	61
	5.4	Conclusions	61
6	\mathbf{DF}'	T Determination of Law of Force in Fe and P Clusters of Atoms	63
	6.1	Introduction	63
	6.2	Clusters (Double Numeric Wavefunctions)	64
	6.3	Clusters (Double Numeric Spin Polarized Wavefunctions)	67
	6.4	Frequency Doping	68
	6.5	Conclusions	70

7	DF	Γ Calculation of Vibrational Frequencies in Clusters of Fe and As	
	Ato	ms	71
	7.1	Introduction	71
	7.2	Clusters	72
	7.3	Results	77
8	DF	Γ Calculations of Vibrational Frequencies of Carbon-Nitrogen	
	Clus	sters: Raman Spectra of Carbon Nitrides	78
	8.1	Introduction	78
	8.2	The Methodology	79
	8.3	Carbon-Nitrogen Clusters.	81
	8.4	Experimental data	88
	8.5	Discussions	89
	8.6	Conclusions	92
9	Gra	phene Infrared Spectroscopy: DFT Vibrational Frequencies	97
	9.1	Introduction	97
	9.2	Results	98
	9.3	Conclusions	99
10	Osc	illations in The Force Upon Doping Cuprates	106
	10.1	Introduction	106
	10.2	The Methodology	107
	10.3	Clusters of CuO_n	108
	10.4	Jahn-Teller effect	121
	10.5	Vibrational frequencies	122
	10.6	Discussions	124
	10.7	Conclusions	125

11	Vibrations in Selenium Glass	130
	11.1 Introduction	131
	11.2 Calculated Frequencies	132
	11.3 Raman Spectra	137
	11.4 Conclusions	138
12	Conclusions	139
\mathbf{A}	Review of Raman Spectra in Glasses	143
В	List of Publications	149
	Bibliography	152
	Index	160

List of Figures

2.1	The vibrational spectrum of $AgSe_2$ calculated from the first principles	
	showing two strong vibrations	16
2.2	A picture of the charge density of Ag_3Se using SZ wave functions	17
2.3	A picture of the charge density of Ag_2Ge calculated from single zeta	
	wave functions.	19
2.4	The vibrational spectrum of Ag_3Ge_3 hexagon calculated using the first	
	principles with SZ wave functions	20
2.5	The charge density plot of Ag_3Ge_3 using SZ wave functions	20
2.6	The experimental Raman spectra of glassy $GeSe_2$ and $Ag_4Ge_3Se_9$	21
3.1	The vibrational spectrum of As_2Se (linear) calculated from the first prin-	
	ciples.	25
3.2	The vibrational spectrum of As_2Se (triangle) calculated from the first	
	principles.	26
3.3	The vibrational spectrum of As_3Se (triangle) calculated from the first	
	principles.	27
3.4	The vibrational spectrum of As_4Se (pyramid) calculated from the first	
	principles.	27
3.5	The vibrational spectrum of $AsSe_2$ (triangle) calculated from the first	
	principles	28

3.6	The vibrational spectrum of As_2Se_2 (linear) calculated from the first	
	principles.	30
3.7	The vibrational spectrum of As_4Se_2 (bipyramid) calculated from the first	
	principles.	31
3.8	The vibrational spectrum of $AsSe_3$ (triangle) calculated from the first	
	principles.	31
3.9	The vibrational spectrum of As_2Se_3 (linear) calculated from the first	
	principles	32
4.1	The vibrational spectrum of AsS_3 (pyramid) calculated from the first	
	principles	41
4.2	The vibrational spectrum of AsS_4 (3-1 model) calculated from the first	
	principles	42
4.3	The vibrational spectrum of AsS_4 (tetrahedral) calculated from the first	
	principles.	43
4.4	The vibrational spectrum of As_2S_6 (dumb bell) calculated from the first	
	principles	44
4.5	The vibrational spectrum of As_2S_3 (bipyramid) calculated from the first	
	principles.	44
4.6	The vibrational spectrum of As_2S_3 (zig-zag) calculated from the first	
	principles	46
4.7	The vibrational spectrum of $\mathrm{As}_4\mathrm{S}_4$ (cubic) calculated from the first prin-	
	ciples	48
4.8	The vibrational spectrum of As_4S_4 (ring) calculated from the first prin-	
	ciples	48
4.9	The vibrational spectrum of $\mathrm{As}_4\mathrm{S}_3$ (linear) calculated from the first prin-	
	ciples.	49

4.10	The experimental Raman spectrum of As-S glass. The measured fre-	
	quencies are given in Table 4.6.	52
5.1	The vibrational spectrum of AsO_3 (triangular) calculated from the first	
	principles	57
5.2	The vibrational spectrum of AsO_3 (pyramidal) calculated from the first	
	principles	58
5.3	The vibrational spectrum of As_2O calculated from the first principles.	59
5.4	The vibrational spectrum of As_2O_2 (pyramidal) calculated from the first	
	principles	60
6.1	The infrared spectrum of $\mathrm{Fe_3P_3}$ calculated from the first principles	66
6.2	The oscillation of largest vibrational frequency of FeP_n as a function of n .	69
6.3	The variation of largest frequency of $\text{Fe}_2 P_n$ as a function of n calculated	
	by using polarized orbitals	70
7.1	The vibrational spectrum of FeAs_2 triagonal with DN wave function.	73
7.2	The vibrational spectrum of $FeAs_3$ pyramidal calculated from the first	
	principles	74
7.3	The vibrational spectrum of FeAs_4 pyramidal with DN wave function	75
7.4	The vibrational spectrum of $\mathrm{Fe}_2\mathrm{As}_4$ by pyramid calculated from the first	
	principles	76
8.1	The qualitative geometry of clusters (i) to (x) shown by stick-ball models	
	without electronic structure	91
8.2	The qualitative geometry of clusters (xi) to (xx) shown by stick-ball	
	models without electronic structure	93
8.3	The qualitative geometry of clusters (xxi) to (xxvii) shown by stick-ball	
	models without electronic structure	94

9.1	A model of 30 atoms of carbon for 1 layer of graphene called type A. $$.	98
9.2	The vibrational frequencies of 1 layer of graphene type A	99
9.3	A model of 32 atoms of carbon for 1 layer of graphene type B	100
9.4	The vibrational frequencies of 1 layer of graphene type B	101
9.5	Graphene 2 layers, type AA, view from the side	101
9.6	The vibrational frequencies of 2 layers of graphene, type AA	105
10.1	The vibrational spectrum of Cu_2O_2 (rectangular) calculated from the	
	first principles.	113
10.2	The vibrational spectrum of $\mathrm{Cu}_2\mathrm{O}_4(\mathrm{dumb\ bell})$ calculated from the first	
	principles	113
10.3	The vibrational spectrum of Cu_3O_5 (extrabipy ramidal) calculated from	
	the first principles	119
10.4	The vibrational spectrum of $\mathrm{Cu}_4\mathrm{O}_2(\mathrm{dumb\ bell})$ calculated from the first	
	principles	119
10.5	A plot of the largest vibrational frequency as a function of number of	
	oxygen atoms in the cluster with only one Cu atom as calculated from	
	the first principles. For n going from 1 to 2 the frequency increases,	
	otherwise, it oscillates.	123
10.6	A plot of the largest frequency as a function of number of oxygen atoms	
	with only two Cu atoms calculated from the first principles, showing a	
	peak at n=4 and oscillations around it	124
10.7	A plot of the largest frequency as a function of number of oxygen atoms	
	with only three Cu atoms showing increase in the frequency for n going	
	from 1 to 2 and oscillations upon further doping	125

10.8	A plot of the largest vibrational frequency of four Cu atoms upon doping	
	with oxygen atoms showing increase in the frequency with increasing	
	number of oxygen atoms. For $n > 3$, there are oscillations. Since the	
	transition temperature of a superconductor depends on the vibrational	
	frequency, the transition temperature upon doping is expected to be	
	increase	126
11.1	The vibrational spectrum of Se_3 ring calculated from first principles	133
11.2	The picture of Se_3 ring structure	134
11.3	The vibrational spectrum of Se_4 (square) calculated from the first prin-	
	ciples	135
11.4	The vibrational spectrum of Se_5 (linear) calculated from the first principles.	136
11.5	The vibrational spectrum of Se_5 ring with DZ wave function calculated	
	from the first principles.	136
11.6	The picture of Se_5 ring structure	137

List of Tables

The vibrational frequencies of the Ag_5 (pyramid) by using DZP wave	
functions and degeneracies	15
The vibrational frequencies and intensities of Ag_3Se in single $zeta(SZ)$	
as well as double zeta with polarization (DZP) wave functions for ${\rm Ag}_{3}{\rm Se}$	17
The frequencies, intensities and degeneracies calculated from the first	
principles for various clusters of arsenic selenide	29
The frequencies, intensities and degeneracies calculated from the first	
principles.	33
The length of the As-S bond for the square model of AsS_4 with calculated	
using several different types of eigen vectors	39
The frequencies and intensities computed from the first principles for	
various clusters by using DN wave functions. The degeneracy is given	
in the small brackets.	42
The frequencies and intensities computed from the first principles for	
various clusters by using DN wave functions. The degeneracy, when	
different from 1, is given in small brackets.	45
The frequencies and intensities calculated from the first principles for	
various clusters. The degeneracy, when different from unity, is given in	
the small brackets.	47
	The vibrational frequencies of the Ag_5 (pyramid) by using DZP wave functions and degeneracies

4.5	The vibrational frequencies of various clusters calculated by using DN	
	wave functions. The degeneracy, when different from unity, is given in	
	small brackets.	50
4.6	Comparison of experimentally observed values of frequencies with those	
	calculated for the given clusters.	53
5.1	The calculated and measured bands in vitreous As_2O_3 along with their	
	identification.	62
8.1	The vibrational frequencies of various clusters calculated from the first	
	principles	82
8.2	The vibrational frequencies of various clusters calculated from the first	
	principles	83
8.3	The vibrational frequencies calculated from the first principles	85
8.4	The vibrational frequencies calculated from the first principles	85
8.5	The vibrational frequencies calculated from the first principles for several	
	clusters of atoms.	86
8.6	The vibrational frequencies calculated from the first principles for several	
	clusters of atoms.	87
8.7	The vibrational frequencies calculated from the first principles	88
8.8	Identification of clusters by comparison of measured frequency values	
	with those calculated	89
8.9	The zero-point vibrational energy and the binding energy of a cluster $% \left({{{\bf{n}}_{{\rm{s}}}}_{{\rm{s}}}} \right)$.	95
9.1	The calculated vibrational frequencies of 1 graphene layer of type A $$.	100
9.2	The calculated vibrational frequencies of 1 graphene layer of type B $$.	102
9.3	The calculated vibrational frequencies of 2 graphene layers of type AA	
	for frequency range between 0 - 650 cm^{-1}	103

9.4	The calculated vibrational frequencies of 2 graphene layers of type AA	
	for frequency range between 650 - 1550 $\rm cm^{-1}$	104
10.1	The vibrational frequencies of CuO_n (n=1-6) along with intensities and	
	degeneracies.	110
10.2	The vibrational frequencies of CuO_n (n=7-10) along with intensities and	
	degeneracies.	112
10.3	The vibrational frequencies of Cu_2O_n (n=1-4) along with intensities and	
	degeneracies.	114
10.4	The vibrational frequencies of Cu_2O_n (n=5-7) along with intensities and	
	degeneracies.	115
10.5	The vibrational frequencies of Cu_3O_n (n=1-4) along with intensities and	
	degeneracies.	117
10.6	The vibrational frequencies of Cu_3O_n (n=5) along with intensities and	
	degeneracies.	120
10.7	The vibrational frequencies of Cu_3O_n (n=6) along with intensities and	
	degeneracies.	127
10.8	The vibrational frequencies of Cu_4O_n (n=1-3) along with intensities and	
	degeneracies.	128
10.9	The vibrational frequencies of Cu_4O_n (n=4-6) along with intensities and	
	degeneracies.	129
11.1	The experimental Se vibrational mode compared with calculations	137