VIBRATIONAL FREQUENCIES OF CLUSTERS:
ARSENIC OXIDE, CARBON NITRIDE, COPPER OXIDE,
SELENIUM AND RELATED COMPOUNDS WITH
DIFFERENT ATOMS

AHMAD NAZRUL BIN ROSLI

THESIS SUBMITTED IN FULFILMENT OF

THE REQUIREMENT FOR THE DEGREE
OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF PHYSICS
FACULTY OF SCIENCE

UNIVERSITY OF MALAYA
KUALA LUMPUR

2011



Abstract

The density functional theory (DFT) has been used to solve the Schrodinger equation.
The computer programmes have been developed which give a real advantage for solving
large matrices in DFT that seem impossible to write by hand. The Amsterdam density
functional (ADF) and DMol® of Accelerys have been used to calculate the vibrational
frequencies of the atoms and molecules. The clusters of the molecules have been made
for the study of glasses such as AgGeSe, AsSe, AsS, AsO, CuO, Se, FeP, FeAs, CN
and graphene. These calculations are in good agreement with the experimental results.
The local density approximation (LDA) and the generalized gradient approximation
(GGA) both are used for solving eigen values of the Schrédinger equation. The double
numerical and double numerical with polarized orbitals as a basis set for the wave
functions are used in these calculations. The calculated frequencies have been compared
with the experimentally measured Raman spectra to identify the clusters which are
present in the material. This calculation is in accord with the experimentally observed

Raman spectra.
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Abstrak

Teori fungsi ketumpatan (DFT) telah digunakan dalam menyelesaikan persamaan
Schrodinger. Program komputer telah dihasilkan dan memberi kelebihan kepada penye-
lidik untuk menyelesaikan matriks yang dahulunya mustahil untuk diselesaikan secara
manual. Perisian Amsterdam density functional (ADF) dan juga DMol® dari Accelerys
telah digunakan untuk mengira frekuensi getaran bagi atom dan molekul. Kluster bagi
molekul-molekul kaca telah dibina seperti AgGeSe, AsSe, AsS, AsO, CuO, Se, FeP,
FeAs, CN dan graphene. Keputusan dari pengiraan ini bersesuaian dengan hasil kepu-
tusan eksperimen. Penghampiran ketumpatan (LDA) dan penghampiran kecerunan
umum (GGA) telah digunakan untuk menyelesaikan nilai eigen dalam persamaan
Schrodinger. Numerik berganda (DN) dan numerik berganda beserta berkutub (DNP)
digunakan dalam fungsi gelombang sebagai set asas untuk pengiraan ini. Frekuensi
yang dikira telah dibandingkan dengan keputusan spektra Raman dari eksperimen un-
tuk mengenal pasti kluster yang hadir dalam sesebuah bahan. Hasil pengiraan ini

bertepatan dengan spektra Raman hasil dari eksperimen.
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