
Chapter 1

Introduction

Recently, computational methods in sciences have become one of the major tools for

conducting research. In many cases, the computed values are so good that they agree

with the experimentally measured data so that it is possible to understand the elec-

tronic structures of atoms, molecules and solids. The improvement in the technology

of processors has lead to the improved speed of computers for solving large matrices.

Some of the calculations are so big that they can not be solved by hand. Since the

software developers have improved the accuracy of the software, it has become reliable

to get results by computation. The density-functional theory (DFT) has gained its

place in computational science. The DFT has been used widely to simulate a cluster of

atoms, a molecule and a crystalline material. By minimizing the ground state energy of

the electron, the Schrödinger equation can be solved. The ground state properties have

been described very well by DFT using electron density while the exchange-correlation

potential (υxc) has been introduced which has become a key to DFT in practical appli-

cations [1]. The exchange and the correlation energies can also be obtained by DFT.

However, by using an approximation like local density approximation (LDA), Gener-

alized Gradient Approximation (GGA) and others, the exchange-correlation potential

can be calculated. The effect of the Pauli principle and Coulomb potential has been

described appropriately so that the many-body problem can be solved by calculating
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the exchange-correlation potential [2]. In 1998, Walter Kohn [1] and John A. Pople [3]

have been awarded together the Nobel Prize in chemistry. W. Kohn was awarded be-

cause of his contribution to the development of DFT while John A. Pople was awarded

for using a modern electronic technology to find a solution of the Schrödinger’s wave

equation . This is the first time the Nobel Prize was awarded to scientists for developing

a computational and theoretical method. Walter Kohn’s famous equation called Kohn-

Sham equation [1, 4] developed in 60’s with co-researcher, Lu-Sham becomes a core of

DFT for solving the Schrödinger’s equation. Kohn-Sham equation was an improvement

from the Hohenberg-Kohn theorem [2,5] as a core of DFT. The approximations of the

equation have been made to increase the accuracy of the calculation and to solve the

exchange correlation potential [1, 6]. Since the popularity of the DFT has increased,

this theory will be use in this thesis.

Chapter 1 gives a brief description of the DFT with local density approximation

(LDA). Chapters 2 to chapter 11 describe the results of the calculations using the

Amsterdam density functional (ADF) software and DMol3 software. The calculation

of vibrational frequencies in vitreous glasses, graphene and carbon nitride has been

done. These calculations include the clusters of materials, the analysis of the data

and comparison with experimental results that is obtained from literature review. The

conclusion of this thesis explained in Chapter 12 for all of the material that has been

calculated using DFT.

All molecules are selected for which the calculation has not been done in the liter-

ature but the Raman spectra are available in journals. All the clusters of atoms are

new and identified from the Raman spectra of vitreous material for the first time. This

calculation is not using the classical calculations which are done by some old articles.
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1.1 Hohenberg-Kohn Theory

The basic of the DFT was started in 1927 with developments by Llewellyn Thomas

and Enrico Fermi after the introduction of the Schrödinger equation. They used a

statistical model to approximate the distribution of electrons in a solid. The Thomas-

Fermi model does not treat the exchange correlations. In 1964, the DFT has been put

on firm theoretical approach introduced by Pierre Hohenberg and Walter Kohn [5].

There are two theorems that have been proved by Hohenberg and Kohn . The first

fundamental mathematical theorem states that the density of the ground state is a

unique functional that determines the external potential [1, 2, 5]. There is one-to-one

mapping between the ground state wave function and the ground state electron density.

The ground state electron density can determines the energy and the wave function

of the ground state. The Schrödinger equation can be solved by finding the spatial

derivative of the Hamiltonian [7, 8] in the case of non-degenerate ground state.

ρ = 〈ψo|ρ|ψo〉 =

∫
dr|ψo(rN)|2 (1.1)

and

Eo = 〈ψo|H|ψo〉 =

∫
vo(r)ρ(r)dr + 〈ψo|T + U |ψo〉 (1.2)

where ψo is a ground state wave function , υo(r) is an external potential, ρ(r) is the non-

degenerate ground state density, Eo is an energy of the ground state, T is the kinetic

energy and U is interaction energy. The assumption is the other external potential,

υo’(r) is equal to the potential, υo(r) plus constant with the ground state of another

potential, ψo’ using same ground state density, ρ(r). The second energy functional for

another potential, υo’(r) is

E ′
o = 〈ψ′o|H ′|ψ′o〉 =

∫
v′o(r)ρ(r)dr + 〈ψ′o|T + U |ψ′o〉 (1.3)
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Because of the inequality of the ground state ψo, the trial ground state wave function,

ψo’ for Hamiltonian of first potential, H has been taken.

Eo < 〈ψ′o|H|ψ′o〉 =

∫
vo(r)ρ(r)dr + 〈ψ′o|T + U |ψ′o〉 (1.4)

The equation (1.3) is rearrange so that,

〈ψ′o|T + U |ψ′o〉 = E ′
o −

∫
v′o(r)ρ(r)dr (1.5)

The equation (1.5) is used to replace the last term of equation (1.4) to become,

Eo < 〈ψ′o|H|ψ′o〉 =

∫
vo(r)ρ(r)dr + E ′

o −
∫

v′o(r)ρ(r)dr (1.6)

so,

Eo < 〈ψ′o|H|ψ′o〉 = E ′
o +

∫
ρ(r)[vo(r)− v′o(r)]dr (1.7)

Using the ground state , ψo as a trial of Hamiltonian, H’ gives,

E ′
o < 〈ψo|H ′|ψo〉 =

∫
v′o(r)ρ(r)dr + 〈ψo|T + U |ψo〉 (1.8)

Similarly,

E ′
o < 〈ψo|H ′|ψo〉 = Eo +

∫
ρ(r)[v′o(r)− vo(r)]dr (1.9)

Both equation (1.7) and (1.9) will be added (Eo + Eo’) to become,

Eo + E ′
o < E ′

o +

∫
ρ(r)[vo(r)− v′o(r)]dr + Eo +

∫
ρ(r)[v′o(r)− vo(r)]dr (1.10)

Finally,
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Eo + E ′
o < E ′

o + Eo (1.11)

The assumption of equal density, ρ(r), for the two potentials, υo’(r) 6= υo(r) + constant

is not justified. This is the case for the non-degenerate ground state.

The second theorem of Hohenberg-Kohn states that the minimum energy of the

functional obtained when the electron density ρ(r) is the ground state electron density

[1, 2, 5]. This theorem explains the functional of electron density that is in the first

theorem. This principle can be used to find a minimum energy of Schrödinger equation

while trying to choose a right electron density. The energy can be written as:

E[ρ] =

∫
υ(r)ρ(r)d3r + F [ρ] (1.12)

With E[ρ] minimized through ground state energy and F[ρ] is unknown but universal

functional of the density ρ(r) only. The first term on the right for equation (1.12) is

the Coulomb interaction between the electrons and nuclei. The functional of F[ρ] is,

F [ρ] =
e2

2

∫ ∫
ρ(r)ρ(r′)
r − r′

d3rd3r′ + To[ρ] + Exc[ρ] (1.13)

The first term represent the classical approximation of Coulomb interaction energy

between pairs of electron. The second term shows the kinetic energy of a system

of non-interacting electrons while the third terms represent exchange and correlation

energy.

Even though the Hohenberg-Kohn becomes a basis of DFT for density of many

electron systems, this equation does not promise that solving it is as easier as others

for treating a wave function of Schrödinger equation. The exchange-correlation also

does not explain very well. A year after, Kohn proposed an upgrade of DFT with

co-researcher, Lu Sham called Kohn-Sham equation.
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1.2 Kohn-Sham Self-Consistent Field Theory

The main point of DFT is to use electron density, ρ to replace the many body electronic

wave functions. The complexities of the many-body problem make it difficult to find

accurate expressions. Walter Kohn and Lu Sham [1, 4] have produced a solution for

the Schrödinger equation using electron density functional. The effective potential

includes the external potential and the effects of the Coulomb interactions between

the electrons. The strength of Kohn-Sham equation is that we are dealing with the

electron density functional rather than the position dependent Slater determinant.

(−∇
2

2
+ υeff (r))ψj(r) = εiψj(r) (1.14)

The electron density,

ρ(r) =
N∑

j=1

|ψj(r)|2. (1.15)

The effective external potential is,

υeff = υ(r) +

∫
ρ(r′)
|r − r′|dr′ + υxc(r) (1.16)

Here, the first term is the interaction of electrons and nuclei, second term is a Hartree

potential (vH) that Coulomb repulsion between electrons and the last term is the

exchange-correlation potential [1,4,10–13]. The exchange-correlation potential in term

of electron density in r orbital is,

υxc(r) =
δExc

δρ(r)
(1.17)

The ground state energy is;
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E =
∑
j=1

εj + Exc[ρ(r)]−
∫

υxc(r)ρ(r)d3r − 1

2

∫
ρ(r)ρ(r′)
|r − r′| drdr′. (1.18)

Before the Kohn-Sham equation can be solved, the Hartree potential should be found.

But, the Hartree potential can be found when the electron density has been defined.

But how to get the electron density while we do not know the single-electron wave func-

tions that solves the Kohn-Sham equation. To break this circle, a trial electron density,

ρ(r) should be defined. By using trial electron density, the Kohn-Sham equation can

be solved and a single-particle wave function, ψj(r) can be found. Single particle wave

function can be used to calculate the electron density, ρ’(r). Compare ρ’(r) with trial

electron density ρ(r), so the total energy can be calculated when the electron density

is same as the trial electron density. The ground state energy can be defined. But,

if both electron densities are different, the circle will restart with new trial electron

density. This chain of calculations is called self-consistent field (SCF) approach [2,9].

1.3 Exchange-Correlation Potentials

The explanation of electronic structure through the electron density presented by DFT

becomes a breakthrough for scientist like chemists and physicists for understanding the

multiparticle quantum systems. While Hohenberg-Kohn-Sham explained the mathe-

matical view of electronic potential, the exchange-correlation function included in that

equation needs to be specified for finding the ground state energy. The Hartree equation

does not have any exchange-correlation potential, while Hartree-Fock approach shows

the existent of exchange potential [2, 9]. The electron density ρ(r) in the homoge-

nous electron gas is constant at all points. This situation has been used for treating

the exchange-correlation functional. This approximation shows that the exchange-

correlation potential, υxc is
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υxc = υelectrongas
xc [ρ(r)] (1.19)

and called the local density approximation (LDA) [2, 4, 9]. LDA is the easiest way

to treat the exchange-potential by means of local density. The LDA expression for

exchange correlation is

ELDA
xc ≡

∫
εxc[ρ(r)]ρ(r)dr (1.20)

where εxc(ρ) is the exchange-correlation energy of a homogenous electron gas of ρ.

LDA generally well described the covalent, metallic and ionic bonds but not adequate

on hydrogen bond. While LDA is the simplest approximation for the exchange and

correlation functionals to define the Kohn-Sham equation, this approximation does not

solve the exact Schrödinger equation because it is not using true exchange-correlation

functional. Next approach is generalized gradient approximation (GGA) that has more

physical information then LDA. The difference between GGA and LDA is that while

LDA uses the local density the GGA has the effect of the nearest neighbors by a linear

gradient in the electron density. Many functionals have been used for GGA because

of many ways to include the gradient of the electron density. The most widely used

functional in GGA is produced by Perdew and Wang (PW91) and Perdew-Burke-

Ernzerhof (PBE) [6, 14].

υGGA
xc (ρ) = υxc[ρ(r),∇ρ(r)] (1.21)

The basic concept of GGA is the real electron densities are not uniform. The additional

information on the spatial variation of density can be described with greater flexibility

in a real material.
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1.4 Raman Scattering

Raman scattering has been discovered by Chandrasekhara Venkata Raman together

with K. S. Krishnan in 1928 [15] . This great discovery was awarded the Nobel Prize

in 1930. The inelastic scattering is important to study properties of glasses and crys-

tals by analyzing the frequency of vibrating molecules. When an incident light with

frequency νo passes through matter, most of the radiation continue in the original di-

rection that has same wavelength as the incident light. This elastic scattering is called

the Rayleigh scattering. Some part of radiation is scattered in other directions with

different wavelength than that of the incident light, is called Raman scattering. When

νo is frequency of an incident light of photon, the emitted photon has frequency;

νemitted = νo ± ωo/2π (1.22)

The light with lower frequency compared to the incident light is called Stokes scat-

tering. This down-shifted frequency shows that molecule is absorbing the energy from

incident light. Here ωo/2π is the characteristic frequency of the molecule. Hence,

Raman scattering can be used to determine the molecular frequencies. Hence a large

number of chemicals can be used to determine their frequencies.

νemitted = νo − ωo/2π (1.23)

Electrons in this molecule usually found in the ground state level. That is why

Stokes scattering is commonly found compared to the anti-Stokes [16,17]. For the high

frequency in Raman scattering, the emitted light has a higher energy compared to the

incident light due to energy losses from molecules. This is called the anti-Stokes. The

shorter wavelength, the up-shifted frequency is usually found because of the molecules

being in the excited state.
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νemitted = νo + ωo/2π (1.24)

In Raman effect, the Stokes and anti-Stokes does not count because the difference of

energy between vibrational levels is the important thing to understand the properties

of materials. At low temperatures the excited state populations are very small so that

only the Stokes lines appear in the spectrum. At high temperatures, both the Stokes as

well as anti-Stokes lines appear in the spectrum. The Raman scattering occurs because

of a change in the polarizability of the molecule upon shining with light and hence it

does not show all of the infrared region.

1.5 Objectives

The objective of this thesis is to make the clusters of atoms and calculate it using density

functional theory (DFT) to get the vibrational frequency. The calculated vibrational

frequencies will be compared to the experimental Raman spectra.

(i) Make the clusters of atoms for which the energy is minimum. The energy of the

Schrödinger equation is minimized by varying the geometry of the molecule and

bond lengths are determined .

(ii) Calculate the vibrational frequencies of the molecules.

(iii) Compare the calculated values of vibrational frequencies with those experimen-

tally found in the Raman spectra.

(iv) To identify the molecules which exist in the vitreous state or in the glassy state.
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Chapter 2

Ab Initio Calculation Of The

Vibrational Frequencies Of Agx

Gex−1 Se2x+1 Glass

The vibrational frequencies of Ag2, Ag3, Ag4, Ag5, Ag6, AgGe, Ag2Ge, Ag3Ge, Ag4Ge,

AgGe2, Ag2Ge2, Ag3Ge2, Ag4Ge2, AgGe3, Ag2Ge3, Ag3Ge3, Ag4Ge3, AgGe4, Ag2Ge4,

Ag3Ge4,Ag4Ge4, AgSe, Ag2Se, Ag3Se, Ag4Se, AgSe2, Ag2Se2, Ag3Se2, Ag4Se2, AgSe3,

Ag3Se3, AgSe4, Ag2Se4 and Ag4Se4 are theoretically computed from the first principles

by using density functional theory. The clusters are built in plane, pyramidal or ring

shape configurations. The vibrational frequencies for all of the 47 clusters have been

calculated. The bond lengths and bond angles of all of the molecules are calculated.

The vibrational frequencies of all of the clusters are calculated using a variety of wave

functions. The single zeta wave functions as well as the double zeta wave functions with

and without the polarization have been used. The experimental Raman spectra show

almost a continuum of small frequencies. In particular below 100 cm−1, the Raman

response is due to particle size in the sample, where light scattering is a result of

scattering from the edges of the particles. The spectra of glassy GeSe2 are considerably
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modified by addition of silver. Most of the Raman spectra are weak and occur near

200 cm−1. Clusters of pure silver have been made and the vibrational frequencies in

all cases have been calculated. Ag2 oscillates weakly at 185 cm−1. Due to the metallic

character, the intensity of Ag2 is very small. The Ag3 oscillates at 117 cm−1. The

pyramidal Ag4 has a vibrational frequency of 107 cm−1 whereas the square shaped

molecule Ag4 oscillates at 140 cm−1. The ring of Ag5 oscillates at 141 cm−1. The

pyramidal Ag5 has oscillations near 178 cm−1 and Ag6 ring oscillates near 132 cm−1.

The calculated frequencies of the clusters AgSe2, planar-Ag3Se, Ag2Ge2, Ag2Ge and

planar Ag3Ge are in the neighborhood of those found experimentally. The bond lengths

and angles have been determined for the minimum energy configuration in all cases.

These calculated frequencies are usually very near to the measured values.

2.1 Introduction

The effect of Ag doping on the properties of glasses is of considerable interest [18–21].

In particular, in some cases, there are two sublattices in such a way that one sublattice

remains a solid whereas the other starts melting. In AgI at some high temperatures,

the I atoms remain stationary whereas Ag atoms start moving. This property is known

as “superionic conductivity” because the thermal conductivity becomes very large. It

will be of interest to find the effect of doping by superionic atoms such as silver. The

glasses are also characterized by their long relaxation times [22] due to self-organization

and soft modes in which case the frequency of a phonon goes to zero [23]. There is a

phase transition in the rigidity [24] as a function of concentration of one of the atoms.

Recently, the expertise to optimize the bond distances and angles for the minimum

energy of the Schrödinger equation have been developed [25–28]. This program is able

to calculate the frequencies of vibrations of clusters of atoms to a very high accuracy.

Since these calculated values can be compared with those measured by the Raman

spectra for a real glass, it found that these predicted values are very good. In this way,
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the clusters that actually present in the glass can be identified.

The results of these first principles calculations of the formation of clusters of atoms

in a glass, AgxGex−1Se2x+1 have been reported. The vibrational frequencies of about

40 clusters of atoms have been calculated and those which are closest to the experi-

mental values obtained from the Raman spectra of AgGeSe glass have been reported.

The vibrational frequencies in the pure Ag metal has been found. The Ag2 molecule

oscillates but the number of these molecules is very small. The Ag3 is also weak but

pyramidal Ag4 is reasonably strong. The formation of molecular clusters in Ag metal

has been reported. A detailed study of vibrations in AgSe2, Ag3Se, Ag2Ge2, Ag2Ge,

Ag3Ge and Ag3Ge3 will be report here. It found that the vibrational frequencies of

these clusters were in the proximity of the experimental values.

2.2 Silver Clusters

The density functional theory has been used to make clusters of atoms and the geometry

for the minimum energy of the Schrödinger equation has been optimized. Since Ag is

a metal, the molecule formation is very weak. The Ag2 molecule is found to stabilize

at the bond distance of 262.4 pm (picometer) and its oscillation frequency is 185 cm−1

in single zeta wave function (SZ) but the intensity is almost zero, so that it will not

be observable as a peak in the vibrational spectrum. The same values are obtained

when double zeta wave function (DZ) is used. In the case of double zeta wave function

with polarization (DZP), the bond length is reduced to 260.5 pm and the oscillation

frequency is reduced to 176.8 cm−1 but the intensity continued to be zero. The results

obtained with triple zeta wave function with polarization (TZP) are similar to those

of DZP. The triple zeta with double polarization (TZ2P) gave 256.4 pm for the bond

distance and 181.8 cm−1 for the oscillation frequency but the intensity is still zero.

Similarly, 4 zeta with four polarizations (QZ4P), results are about the same as that of

TZP. This type of wave functions has been applied to methane molecule by Sherrill et
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al. [29] and also to water dimmer [30].

In Ag3 the bond distance of the optimized triangle is 277.1 pm and the vibrational

frequency is 117.2 cm−1 in the single zeta wave function. These values remain un-

changed when double zeta wave function is used. When the double zeta wave function

with polarizations is used, the bond length of the triangle is slightly reduced to 276

pm and the frequency also reduces to 111.1 cm−1. When triple zeta wave function is

used the bond length is still 276 pm but the frequency is reduced to 110.8 cm−1. As

compared with Ag2, which has almost zero intensity, the Ag3 is having a strong peak.

Hence, Ag2 is not formed and Ag3 is the smallest cluster, which vibrates in silver metal.

The clusters of atom Ag4 are very interesting because one of them is of pyramidal

structure but the square shape planar ring structure is also stable. In the case of

pyramidal structure bond length is 287.8 pm and the angle is strictly 60 degrees as

expected. The vibrational frequency is 107 cm−1 when single zeta wave function is used.

The double zeta wave function (DZ) gave the same values as those obtained from single

zeta (SZ). However, when double zeta wave function with polarization (DZP) is used,

the frequency reduced to 100.4 cm−1. The triple zeta with polarization (TZP) gave

the same values as DZP. The frequencies as well as the bond lengths in the TZ2P are

found to be 273.9 pm and 161.9 cm−1. The QZ4P gave 276 pm and 161.9 cm−1 for the

pyramidal bond length and the vibrational frequency, respectively. The square shaped

Ag4 clusters has a vibrational frequency of 140.7 cm−1 and the length of the square

is 273.9 pm when single zeta wave function is used. The double zeta wave function

gave almost the same values as the single zeta. The cluster Ag5 forms a ring as well

as a pyramid. In the five sided ring, the bond length is 272.3 pm and the vibrational

frequency is 140.9 cm−1. The double zeta wave function gave the same value as the

single zeta. In the case of double zeta with polarization, the bond length is 271.6 pm

whereas the frequency is 131.4cm−1. The TZP values are 271.7 pm for the five sided

bond length and the vibrational frequency is 131.26 cm−1. The TZ2P gave 264.1 pm
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for the bond length and 147.5 cm−1 for the frequency. The QZ4P values are 264.2 pm

and 147.3 cm−1, respectively. The clusters Ag5 in the pyramidal form gave two strong

bonds. First a square of four atoms is formed with bond distance 286.6 pm. Then on

top one more atom is placed which is at a distance of 276.6 pm from each of the four

atoms. The vibrational frequencies are 69.2 cm−1 (2 values), 87.2 cm−1 (one strong

value), 146.1 cm−1 (2 weak values) and 178.9 cm−1 (one strong value). The DZ values

are the same as those of SZ. The DZP values are 286.7 pm for the square bond length

and 274.8 pm for the on top atom. The frequencies, intensities and degeneracies are

given in Table 2.1.

Table 2.1: The vibrational frequencies of the Ag5 (pyramid) by using DZP wave func-
tions and degeneracies

S. No Frequency Intensity Degeneracy
cm−1

1 64.6 0.488 2
2 81.8 2.273 1
3 139.7 0.146 2
4 169.8 1.683 1

*S. No is a short form for Serial Number of vibrational frequencies.

The Ag6 ring in single zeta wave function has a bond length of 270.8 pm and a

strong vibration at 131.9 cm−1 with degeneracy 2 and weak lines at 114.1, 165.7, 167.6

and 172.1 cm−1. In the case of DZP, the bond length changed to 270.1 pm which is

only a minor change compared with the unpolarized single zeta function. However, in

the case of DZP, the vibrational frequencies (intensities) are changed to 103.6 (0.03),

122.5 (2.8), 124.2 (2.77), 154.1 (0.004), 155.8 (0.004), 160.4 (0.007) cm−1(arb. units).

It is clear that there is a strong ring oscillation as about 122.5 cm−1.
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2.3 The AgSe Clusters

The AgSe2 has Se - Ag bond length 260.3 pm and Se - Se bond length 237.2 pm when

single zeta function is used. The frequencies (intensities) are 146.8 (0.16), 211.3 (6.31),

338.5 (1.18) cm−1 (arb. units). The double zeta wave functions give Se - Ag distance

265.4 pm and Se - Se distance 251.8 pm and frequencies (intensities) 129.4 (1.74), 176.8

(8.05), 266.9 (0.73) cm−1(arb. units). The DZP gave Se - Ag distance 262.2 pm, Se

- Se distance 240.5 pm and frequencies (intensities) of 139.7 (1.23), 177.5 (7.9), 292.3

(0.24) cm−1(arb. units). The vibrational spectrum of AgSe2 calculated from the first

principles is shown in Fig. 2.1.

Figure 2.1: The vibrational spectrum of AgSe2 calculated from the first principles
showing two strong vibrations.

The Ag3Se has a single Se in the centre of a triangle, which is built from three Ag

atoms. The bond length is 256.0 (picometer) when single zeta (SZ) is used. In the

DZP, the bond length changed to 252.2 pm. The vibrational frequencies (intensities)

are given in Table 2.2. A picture of the charge density is shown in Fig. 2.2.
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Table 2.2: The vibrational frequencies and intensities of Ag3Se in single zeta(SZ) as
well as double zeta with polarization(DZP) wave functions for Ag3Se

S. No Frequency Intensity Degeneracy Frequency Intensity
cm−1(SZ) cm−1(DZP) (DZP)

1 28.63 1.85 2 31.2 1.95
2 51.59 10.14 1 56.5 8.71
3 223.71 0.66 2 217.7 0.16

Figure 2.2: A picture of the charge density of Ag3Se using SZ wave functions.
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2.4 The AgGe Clusters

(i) The Ag2Ge2 has the Ag - Ge distance of 251.5 pm, Ge - Ag - Ge angle of 88

degrees and Ag - Ge - Ag angle of 92 degrees when single zeta wave function is

used. The frequencies (intensities) are 184.4 cm−1 (4.75) and 201.9 cm−1 (7.48)

when double zeta wave function is used, the bond length comes out to be 264.0

pm, Ge - Ag - Ge angle 62.5 degrees and Ag - Ge - Ag angle comes out to be

121.3 degrees. The frequencies (intensities) are 107.2 cm−1 (0.135), 201.6 cm−1

(8.2). The double zeta with polarization gave Ag - Ge bond length of 261.8 pm,

Ge - Ag - Ge angle of 61.1 degree and Ag - Ge - Ag angle of 118.9 degrees. The

frequencies (intensities) in the double zeta with polarization are 100.37 (0.25)

and 196.3 (6.71).

(ii) The Ag2Ge has Ag - Ge distance of 258.5 pm and Ag - Ge - Ag angle 71.7

degrees. The vibrational frequencies with SZ are 67.1 (0.005), 168.3 (0.272) and

215.02 (0.227). The DZ values are Ag - Ge distance 258.3 pm and bond angle

71.6 degrees. The frequencies (intensities) are, 67.1 (0.004), 169.05 (0.277) and

215.7 (0.227). The values calculated for DZP wave function are, Ag - Ge bond

distance 253.4 pm and bond angle Ag - Ge - Ag is 74.5 degrees. The vibrational

frequencies and intensities are 58.2 (0.006), 175.15 (0.255) and 215.2 (0.244). The

TZP functions gave Ag - Ge bond distance 254.1 pm and bond angle Ag - Ge

- Ag of 74.1 degrees. The vibrational frequencies for the TZP are 59.5 (0.004),

172.45 (0.243), 213.1 (0.253), cm−1 (km/mol). A charge density plot of Ag2Ge is

shown in Fig. 2.3.

(iii) The Ag3Ge with Ag3 on the corners of a triangle and Ge in the center gives Ge -

Ag bond length of 255.2 pm and Ag - Ge - Ag angle of 120 degrees as it should be

for the center of an equilateral triangle. The vibrational frequencies (intensities)

are 22.6 (1.26) two values, 117.4 (12.9) one value and 227.9 (0.034) two values
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Figure 2.3: A picture of the charge density of Ag2Ge calculated from single zeta wave
functions.

when DZ is used. For DZP, Ge - Ag bond distance is 251.7 pm and Ag - Ge - Ag

angle is 120 degrees as it should be for a triangle. The frequencies (intensities) are

38.8 (0.026) two values, 124.2 (0.000001) one value and 226.2 (2.43) two values,

cm−1 (km/mole).

(iv) The system Ag3Ge3 is hexagonal with alternate Ag and Ge atoms with Ge -

Ag distance 246.4 pm. The SZ vibrational spectrum is shown in Fig. 2.4. The

calculated frequencies (intensities) are 22.4 (1.125) two values, 101.2 (1.87) one

value, 202.62 (7.65) two values, 258.8 (0.07) two values when SZ wave functions

are used. When DZ wave function is used the bond length Ge - Ag comes out

to be 254.0 pm and the frequencies (intensities) (degeneracies) are, 64.1 (0.037)

(1), 168.5 (5.22) (2), 224.8 (2.51) (2) cm−1 (km/mole). The DZP bond length is

250 pm and the frequencies (intensities) (degeneracies) are 61.2 (0.005) (1), 168.6

(4.331) (2), 222.02 (3.045) (2), cm−1 (km/mole). The charge density of Ag3Ge3

is shown in Fig. 2.5.
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Figure 2.4: The vibrational spectrum of Ag3Ge3 hexagon calculated using the first
principles with SZ wave functions.

Figure 2.5: The charge density plot of Ag3Ge3 using SZ wave functions.
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2.5 Comparison of Calculated Values With Exper-

imental Raman Spectra

Fig. 2.6 show the experimental Raman spectra of glassy GeSe2 and glassy Ag4Ge3Se9.

The experimental work has been done by Dejus et al. [31].

Figure 2.6: The experimental Raman spectra of glassy GeSe2 and Ag4Ge3Se9.

The g-GeSe2 has a strong Raman line at 205 cm−1 and another at 221 cm−1. There

are some weak lines, which are not identified. When silver is added the 221 cm−1

goes inside the 200 cm−1 line and hence becomes difficult to resolve, but there is a

broad line at 200 cm−1. There is a continuum below 100 cm−1 and small oscillations

are hidden within the noise. In these calculations, it is clear that there is absorption

near 215 cm−1 in Ag2Ge (SZ), which is near the experimental value of 221 cm−1. The

continuum below 100 cm−1 is due to particle size but Ag2Ge has a mode at 67 cm−1.
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2.6 Conclusions

The extensive ab initio calculations of clusters of atoms constituting Ag and Ge atoms

have been performed. The calculated values of the vibrational frequencies show that

Ag2Ge is formed in glass. The calculations also show that in Ag metal, Ag3 is the

smallest cluster formed which is of the size of 0.277 nm.
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Chapter 3

Vibrational Frequencies in

AsxSe1−x Glass

The density functional theory is used to make models of clusters of atoms of arsenic

and selenium. The bond lengths and angles are able to determine for which the energy

of the Schrödinger equation is minimum. The vibrational spectra of the optimized

clusters are computed using several different wave functions. It is found that the double

zeta wave functions work the best.By calculating the gradients of the first principles

potential, the vibrational frequencies for the optimized clusters in each case have been

calculated. The calculated values have been compared with the experimental Raman

spectra of As-Se glass. The calculations have been done for many clusters, for example,

(i) AsSe (diatomic), (ii) As2Se (linear), (iii) As2Se (triangular), (iv) As3Se (triangular),

(v) As4Se (square), (vi) AsSe3 (triangular), etc. From this study the linear As - Se -

As has been identify for which the calculated frequency is 27.6 cm−1 is in agreement

with the experimental data.
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3.1 Introduction

The structure of glasses involves long relaxation times [22] and may exhibit soft modes

[23]. There is a rigidity transition as a function of concentration of atoms [24]. In

the GeSI, GePS and GeSe glasses, the calculated values of the frequencies of lattice

vibrations are close to the experimental values [25,27,32]. The exchange and correlation

energies in GaAs [28] have been calculated. The AsSe is interesting from the view

point of vibrations in the low frequency regime. Nemanich [33] has studied the Raman

spectra in various samples of AsSe which show strong light scattering near 25 ± 12

cm−1. These low frequency modes can arise from the bond vibrations as well as from

the particle size which is independent of the constituent atoms. Phillips et al. [35] have

investigated the Raman scattering by using molecular models. Ahn et al. [34] have

studied the nuclear quadrupole resonance which is useful for the understanding of the

structure of the glass.

In this chapter, the calculations of the vibrational frequencies of several models of

AsSe have been reported. It found that As-Se-As linear molecule gives vibrations near

27.6 cm−1 which is close to the experimental value of 25 ± 12 cm−1. The particle size

can also scatter light in this region. This calculation of several models is also of interest

from the view point of structure of the AsSe glass. It found that linear modes exist in

the glassy state.

3.2 Clusters

The density functional theory has been used to simulate atoms. The bond lengths

are determined by finding the structure for which the energy is a minimum. The

nuclear motion separates out from that of the electronic motion so that the vibrational

frequencies can be determined. The calculated clusters are given below. The double

zeta wave functions are used in all of the computations. The bond lengths are measured
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in picometer.

(i) AsSe (diatomic): The optimized bond length is 226.8 pm. There is a wide fre-

quency mode at 344.05 cm−1 (2.13 km/mol). The intensity, given in small brack-

ets, indicates that the vibration is moderately strong.

(ii) As2Se (linear): In this cluster, the two As atoms are at the ends and Se is in

the center. The As-Se bond length is found to be 228.5 pm and the vibrational

frequencies (intensities) [degeneracies] are given in Table 3.1. The vibrational

spectrum calculated from the first principles for As2Se (linear) shown in Fig. 3.1.

Figure 3.1: The vibrational spectrum of As2Se (linear) calculated from the first prin-
ciples.

(iii) As2Se (triangle): This cluster is in the form of a triangle with As-Se bond length

259.6 pm and As-As distance 233.4 pm. The vibrational frequencies (intensi-

ties) are given in Table 3.1. The vibrational spectrum calculated from the first

principles for As2Se (triangle) shown in Fig. 3.2.

(iv) As3Se (triangle): The three As atoms form a triangle with one Se in the centre.

The As-Se bond length is 238.4 pm. The vibrational frequencies (intensities)
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Figure 3.2: The vibrational spectrum of As2Se (triangle) calculated from the first
principles.

[degeneracies] are given in Table 3.1. The vibrational spectrum calculated from

the first principles for As3Se (triangle) shown in Fig. 3.3.

(v) As4Se (square): The four As atoms form a square with one Se in the centre. The

As-Se bond length is 250.2 pm. The frequencies (intensities) [degeneracies] are

given in Table 3.1.

(vi) As4Se (pyramid): The four As atoms form a square with one Se on top position,

forming a pyramid. The As - Se distance is 252.1 pm and As-As distance is 253.4

pm. The spectral data is given in Table 3.1. The vibrational spectrum calculated

from the first principles for As4Se (pyramid) shown in Fig. 3.4.

(vii) AsSe2 (linear): In this cluster, the atoms are in a straight line with As-Se distance

is 235.5 pm. The strong linear vibration occurs at 330.6 cm−1.

(viii) AsSe2 (triangle): The AsSe2 arranged in a triangle have As-Se distance of 250.1

pm and Se - Se bond length is 258.1 pm. There are three vibrational frequencies

(intensities) as given in Table 3.1. The vibrational spectrum calculated from the
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Figure 3.3: The vibrational spectrum of As3Se (triangle) calculated from the first
principles.

Figure 3.4: The vibrational spectrum of As4Se (pyramid) calculated from the first
principles.
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first principles for AsSe2 (triangle) shown in Fig. 3.5.

Figure 3.5: The vibrational spectrum of AsSe2 (triangle) calculated from the first
principles.

(ix) As2Se2 (linear): The alternate atoms As-Se-As-Se in a straight line give the

bond length as 228.1 pm. The frequencies (intensities) are given in Table 3.1.

The vibrational spectrum calculated from the first principles for As2Se2 (linear)

shown in Fig. 3.6.

(x) As2Se2 (ring): All four atoms have been arranged alternately to form a square.

The bond length is found to be 248.4 pm. The vibrational data is given in Table

3.2.

(xi) As3Se2 (linear): The bond distance between As-Se atoms is 229.1 pm and 248.4

pm. The frequencies in this linear mode are given in Table 3.2.

(xii) As4Se2 (bipyramid): The 4 atoms of As make a square with As-As distance 275.4

pm and one Se is on top and another Se on bottom to make a double pyramid.

The vibrational data of this double pyramidal molecule is given in Table 3.2. The
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Table 3.1: The frequencies, intensities and degeneracies calculated from the first prin-
ciples for various clusters of arsenic selenide.

S. No Cluster Frequency Intensity Degeneracy
cm−1

1 As2Se (linear) 27.6 1.900 2
2 387.6 4.300 1
3 As2Se (triangle) 237.4 2.400 1
4 332.5 0.050 1
5 As3Se (triangle) 107.5 1.870 1
6 296.6 0.680 2
7 As4Se (square) 58.6 0.040 2
8 241.3 5.870 2
9 As4Se (pyramid) 209.6 7.540 2
10 257.8 0.020 1
11 269.1 1.050 2
12 340.7 0.241 1
13 AsSe2 (triangle) 213.7 0.010 1
14 218.6 1.800 1
15 294.8 1.620 1
16 As2Se2 (linear) 69.4 0.025 2
17 82.4 0.003 1
18 124.6 1.900 2
19 331.6 37.360 1
20 342.9 21.420 1
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Figure 3.6: The vibrational spectrum of As2Se2 (linear) calculated from the first prin-
ciples.

vibrational spectrum calculated from the first principles for As4Se2 (bipyramid)

shown in Fig. 3.7.

(xiii) AsSe3 (triangle): The three Se atoms form a triangle and one As is in the centre.

The As-Se bond length is 231.2 pm and the vibrational data is given in Table 3.2.

The vibrational spectrum calculated from the first principles for AsSe3 (triangle)

shown in Fig. 3.8.

(xiv) AsSe3 (pyramid): The three Se atoms form a triangle with Se-Se distance 325.0

pm and one As is put on top with As-Se distance 251.0 pm. In this case, the

vibrational frequencies (intensities) [degeneracies] are given in Table 3.2. The

As atom apparently can go through the triangle of Se3 atoms. Therefore, the

triangle has become bigger.

(xv) As2Se3 (linear): The linear arrangement has bond lengths 219.0 and 235.8 pm.

The frequencies are given in Table 3.2. The symmetries in the linear molecule are

quite different from that of the bipyramidal structure. The vibrational spectrum
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Figure 3.7: The vibrational spectrum of As4Se2 (bipyramid) calculated from the first
principles.

Figure 3.8: The vibrational spectrum of AsSe3 (triangle) calculated from the first
principles.
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calculated from the first principles for As2Se3 (linear) shown in Fig. 3.9.

Figure 3.9: The vibrational spectrum of As2Se3 (linear) calculated from the first prin-
ciples.

3.3 AsSe Raman Data

The AsSe Raman scattering has been studied by Nemanich [33]. There is a broad band

near 25 ± 12 cm−1. In this computation, the theoretical value for As2Se is 27.6 cm−1.

Therefore, it is clear that linear molecules are present in the glass. This kind of linear

bonds give strength to the glass. The theoretical modelling has also been done by

Phillips [35]. This work shows that small clusters of atoms are randomly distributed

in the glass and tend to self-organize in the solid state. The sample preparation is

not good as to resolve the vibrational frequencies in arsenic selenide glass. A lot of

scattering is due to particle size. For a particle of diameter d, the Raman frequency is:

ν =
υ

2d
(3.1)

For the sound velocity, υ = 3 x 105 cms−1 and ν = 50 cm−1, the light is scattered by a
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Table 3.2: The frequencies, intensities and degeneracies calculated from the first prin-
ciples.

S.No Cluster Frequency Intensity Degeneracy
cm−1

1 As2Se2 (ring) 91.04 1.24 1
2 232.04 5.44 1
3 237.04 0.43 1
4 As3Se2 (linear) 62.20 1.65 2
5 76.06 2.32 2
6 217.94 44.35 1
7 349.56 0.91 1
8 As4Se2 (bipyramid) 103.36 2.02 2
9 175.24 10.34 1
10 177.62 0.08 2
11 AsSe3 (triangle) 75.90 0.003 1
12 103.50 1.26 2
13 350.80 33.26 2
14 AsSe3 (pyramid) 108.20 0.27 2
15 134.80 1.43 1
16 249.80 16.42 2
17 288.50 0.97 1
18 As2Se3 (linear) 66.30 0.001 2
19 252.36 16.09 1
20 433.73 3.17 1
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particle of size, d = υ
2ν

= 10 Å. When particles of a few nm sizes are present in the film

of the glass, there is considerable scattering due to particles. In fact, the measurement

of the Raman frequency as a function of particle size can be used to measure the sound

velocity. The vibrational modes occur as given in Tables 3.1 and 3.2.

3.4 Conclusions

The ab initio calculations of vibrational frequencies of several clusters containing As

and Se atoms have been performed. The values calculated for a linear system are in

accord with the experimental values. In this way, the linear bonds As-Se-As can be

identify that is present in the AsSe glass. These bonds are important for the strength

of the glassy state.
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Chapter 4

Ab initio Calculation of Vibrational

Frequencies in AsxS1−x Glass and

The Raman Spectra

Many different models have been made to understand the structure of AsS glass. In

particular, the models of AsS3 (triangular), AsS3 (pyramid), AsS4 (3S on one side, one

on the other side of As, S3-As-S), AsS4 (pyramid), AsS4 (tetrahedral), AsS7, As2S6

(dumb bell), As2S3 (bipyramid), As2S3 (zig-zag), As3S2 (bipyramid), As3S2 (linear),

As4S4 (cubic), As4S4 (ring), As4S (tetrahedral), As4S (pyramid), As4S3 (linear) and

As4S2 (dumb bell) have been made using the density functional theory which solves

the Schrödinger equation for the given number of atoms in a cluster in the local density

approximation. The models are optimized for the minimum energy which determines

the structures, bond lengths and angles. By calculating the gradients of the first prin-

ciples potential, the vibrational frequencies for the optimized clusters in each case have

been calculated. The experimentally observed Raman frequencies have been compared

with those of calculated so that the cluster can be identify whether it is present in the

glass. It found that AsS4 (S3-As-S), As4S4 (ring), As2S3 (bipyramid), As4S4 (cubic),
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As4S3 (linear), As2S3 (zig-zag), AsS4 (Td), As2S6 (dumb bell), AsS3 (triangle) and AsS3

(pyramid) structures are present in the actual glass.

4.1 Introduction

In recent years, there has been considerable progress in the understanding of glass phase

of a solid [43]. The glass phase is often composed of molecules or clusters of atoms. In

the formation of a molecule only a single valency is present, for example in AsS, arsenic

is divalent. If the relative concentration of As and S be disturbed by mixing more or

less of As than S in AsxS1−x, there is a phase transition at a particular value of x from

the single crystal to a glass. AsS is called realgar. It is sensitive to light which changes

the valency of As from 2 to 3. In the compound As2S3 arsenic is trivalent. In this

state As2S3 is called orpiment. Actually several other forms are also well known, e.g.,

As4S (duranusite), As4S3 (dimorphite) and As4S5 (uzonite). The Raman spectra are

poorly resolved so that there is hope to identify new molecular compositions. There has

been considerable effort to resolve the Raman spectra in AsS glass [36]. The fractional

valency of As is also found, 1.5 in As4S3 and 2.5 in As4S5 which indicates that there

is a strong sharing of orbits between As and S atoms. Yang et al. [37] have calculated

the force constants in both AsS as well as As2S3 from which they determine that As-S

bond is much stronger than the As-As bond. Ohsaka and Ihara [38] have analyzed

the low frequency region where the phonon frequency is determined by the size of the

grains in the sample,

ν =
υ

2d
, (4.1)

where v is the velocity of sound, d is the diameter of the particle and ν is the phonon

frequency. The Raman spectra of As2S3 have been reported by Kawazoe et al. [39].

There is a strong peak at 340 cm−1 and comparatively weaker peaks at 230 and 490
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cm−1. There is a poorly resolved band at 700-800 cm−1. Tanaka [40] has also discussed

the Raman peak at 350 cm−1 and humps at 230 and 500 cm−1. There is also a

peak at about 30 cm−1 which is due to scattering related to particle size. In recent

years, the density functional theory calculations have successfully performed which

predict the vibrational frequency in reasonable agreement with the experimental values

[25–27, 41, 42]. The first principles calculations [44–46] have also been useful for the

understanding of solids. The detailed theory of relaxation with stretched exponential

has been given by Phillips [22] and Thorpe [23] has introduced the concept of soft

modes in glasses. Wang et al. [24] have found that there is a phase transition in

glasses as a function of concentration in which rigidity is the order parameter. Since

the calculations of vibrational frequencies in the glasses [25, 27], GePI and GePS are

in reasonable agreement with those measured by the Raman spectra, the calculations

extend to AsS as report below.

In this chapter, the calculations of vibrational frequencies in clusters of arsenic

sulphide have been reported. This calculated value has been compared with those

found in the Raman spectra. The calculations of structure optimization and vibrational

frequencies of AsS3 (triangular), AsS3 (pyramid), AsS4 (3S on one side, one on the

other side of As, S3-As-S, 3-1 model), AsS4 (pyramid), AsS4 (tetrahedral), AsS7, As2S6

(dumb bell), As2S3 (bipyramid), As2S3 (zig-zag), As3S2 (bipyramid), As3S2 (linear),

As4S4 (cubic), As4S4 (ring), As4S (tetrahedral), As4S (pyramid), As4S3 (linear) and

As6S2 (dumb bell) have been performed. By comparing the calculated values with

those found from the Raman spectra of actual glasses, it is found that AsS4 (S3-As-S),

As4S4 (ring), As2S3 (bipyramid), As4S4 (cubic), As4S3 (linear), As2S3 (zig-zag), AsS4

(Td), As2S6 (dumb bell), AsS3 (triangle) and AsS3 (pyramid) structures are actually

present in the glass. It is found that AsS4 stabilizes as a pyramidal molecule as well as

in a 3-1 model. This is possible in a double well type potential. There is more than one

position for an atom for which the molecule is stable. It is also obvious that many more
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molecules of sulphur and arsenic exist in addition to the well known minerals, realgar

and orpiment. The decolouration in the minerals is associated with the existence of

several other molecules.

4.2 Methodology

The clusters of atoms have been made while the bond distances and angles have been

optimized for the minimum energy. The Schrödinger equation for a given cluster of

atoms is solved in the local density approximation of the density functional theory

[1, 4, 5]. The force constants are obtained from the derivative of the potential without

any adjustable parameters. The Accelrys computer program is run on Core 2 Duo

Quadro computer operating at 2.4 GHz. The vibrational spectra for clusters of atoms

are obtained from the first principles. The Amsterdam Density Functional (ADF)

program was also used occasionally [28].

In the ADF programme, the single zeta wave functions (SZ), the double zeta wave

functions (DZ), the double zeta wave function with polarization (DZP), triple zeta wave

function with polarization (TZP) and triple zeta wave functions with double polariza-

tion (TZ2P) can be used. In the Accelrys programme, the single zeta wave functions

with minimum basis set (Min), the double numeric wave function (DN), the double

numerical which leaves out the p wave functions of hydrogen (DND) and the double

numeric with polarization (DNP) can be used as a basis set. It is customary to add hy-

drogen atoms to neutralize the charge on the clusters. In the Accelrys programme, the

charge on the clusters can be selected by hand. In the present calculations, all of the

clusters are metallic and hence hydrogen has not been added. There is no restriction

on the number of atoms except that more computer time is needed when number of

atoms is large. The vibrational frequencies are calculated from the gradient of the po-

tential. In the calculations given in this chapter, the Raman spectra are not computed

but the Raman frequencies are picked up from the full vibrational spectra. Similarly,
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the vibrational density of states is not calculated. Indeed, when the same cluster of

atoms is calculated by Min, DN, DND and DNP wave functions, different values are

obtained. For example, for AsS4 with S4 atoms on the corners of a square with As in

the centre, a small difference in the bond length have been obtain as given in Table 4.1.

Comparing these values, it show that a 14% variation is possible when different wave

functions are chosen. As far as comparison of calculated frequencies with experimental

values is concerned, it found that the double numeric (DN) wave function gives the

closest values. The uncertainty is less than 10 cm−1 in the frequencies. Some of the

frequencies are as close as 5 cm−1. The source of the deviation is in the approximations

used to solve the secular determinant.

Table 4.1: The length of the As-S bond for the square model of AsS4 with calculated
using several different types of eigen vectors.

Wave function Min Dn DND DNP

As-S bond (Å) 2.327 2.278 2.160 2.162

4.3 Clusters of atoms

The clusters of atoms have been build to obtain their optimized structures, bond lengths

and angles. Then the vibrational spectra can be obtained. In some cases the same

molecule occurs in three dimensions as well as in a plane showing the collapse of one of

the dimensions. In some cases, one ion has been exchanged to another so the effect of

ion exchange can be seen. In the density functional theory, the nuclear motion equation

separates out from that of the electron. The Born-Oppenheimer approximation which

means that the electronic and nuclear wave functions are written in the form a product

of wave functions also seems to be very satisfactory. In the following material, 17

different clusters are reported.
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The cluster AsS4 stabilizes in several different configurations. For example the 4

sulphur atoms occupy the four corners of a square with As in the centre. The AsS4

also stabilizes with 3 sulphur atoms on one side and one S atom on the other side of

As which is call S3-As-S(3-1 model). It is possible to stabilize AsS4 as a pyramid in

which all of the four S atoms are in a square and one As is on top. AsS4 also stabilizes

with S atoms on a tetrahedron with As in the centre. Thus several different shapes for

the same set of atoms are allowed. As discussed in the above section on methodology,

the SZ, DZ, DZP, DZ2P, Min, DN, DND and DNP type eigen vectors are available.

As far as the comparison with the experiment is concerned, the DN works the best.

Therefore, this report only tabulate the eigen values of the DN for all of the clusters.

(i) AsS3 (triangle): In this cluster, three atoms of S are on the corners of a triangle

and As is in the centre. The S-As-S angle is strictly 120◦ so that only one

distance is sufficient to define this cluster. The optimized As-S distance is found

to be 2.165 Å by using double numeric (DN) wave functions. The frequencies of

vibrations and their intensities are given in Table 4.2.

(ii) AsS3 (pyramid): From the calculation [i], it is clear that AsS3 stabilizes in a

plane. However, it is also possible to find the stable configuration in a pyramidal

form. In this case the S-S bond distance is found to be 2.359 Å while the As-S

distance is 3.000 Å. The frequencies and their intensities are given in Table 4.2.

The vibrational spectrum calculated from the first principles by using the DN

wave functions is shown in Fig. 4.1.

(iii) AsS4 (S3-As-S, 3-1 model): This cluster has three S atoms on one side of As

and one S on the other, which is call 3-1 model. The S atoms on one side form

a triangle with S-S distance 3.080 Å with As-S distance of 2.241 Å, then there

is one S atom on the other side with As-S distance of 2.120 Å. The frequencies

and intensities of various modes are tabulated in Table 4.2. The eigen values
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Figure 4.1: The vibrational spectrum of AsS3 (pyramid) calculated from the first prin-
ciples.

tabulated are those of the DN wave vectors. This cluster also has been solved

with Min, DND and DNP wave functions. The eigen values of the DND and

DNP are almost equal to each other but the minimum basis set of wave functions

gives different values. Needless to say that single zeta wave function does not

agree with the experimental data. The vibrational spectrum calculated from the

first principles is shown in Fig. 4.2.

(iv) AsS4 (pyramid): This is a pyramidal cluster so that all of the four S atoms are

on one side forming a square and As is on top. The S-S distance is 2.671 Å and

As-S distance is 2.474 Å. The calculated vibrational frequencies and intensities

are given in Table 4.3.

(v) AsS4 (Td): It is possible to put the 4 sulphur atoms on a tetrahedron with As in

the centre. This is a stable configuration. When DN wave function is used, the

As-S distance is found to be 2.241 Å. The calculated vibrational frequencies are

given in Table 4.3. The vibrational spectrum computed from the first principles

is given in Fig. 4.3. A strong vibration at 358.3 cm−1 is clearly visible.
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Figure 4.2: The vibrational spectrum of AsS4 (3-1 model) calculated from the first
principles.

Table 4.2: The frequencies and intensities computed from the first principles for various
clusters by using DN wave functions. The degeneracy is given in the small brackets.

S. No Cluster Frequency Intensity
cm−1 km/mol

1 AsS3(triangle) 109.07 0.30
2 110.43 0.36
3 110.89 1.32
4 387.36 0.01
5 422.75 1.86
6 424.72 1.99
7 AsS3(pyramid) 80.81 0.04(2)
8 172.15 0.89
9 309.60 0.20(2)
10 399.60 2.23
11 AsS4(3-1 model) 90.00 0.45
12 139.00 1.97
13 173.00 1.60
14 210.00 13.20
15 270.00 7.71
16 466.00 1.91
17 500.00 66.81
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Figure 4.3: The vibrational spectrum of AsS4 (tetrahedral) calculated from the first
principles.

(vi) AsS7: There is one As in the centre and 7 atoms of S are all around it. The As-S

distance is 2.521 Å and the S-S distance is 2.314 Å. The calculated frequencies

and intensities of this cluster for the DN wave functions are given in Table 4.3.

(vii) As2S6 (dumb bell): In this model the two As atoms are far apart. The distance

between two As atoms is 3.474 Å and then three S atoms are attached to each As

atom. The AsS atoms are 2.169 Å apart. Since the figure is symmetric each set of

3 atoms of S are symmetrically connected. The calculated vibrational frequencies

as well as intensities are given in Table 4.3. The vibrational spectrum shown in

Fig. 4.4.

(viii) As2S3 (bipyramid): This is a bipyramidal cluster. The S3 form a triangle with

one As is on top position while another As atom is on the bottom position. The

As-S distance is 3.388 Å and S-S distance is 2.441 Å. The calculated frequencies

are given in Table 4.3 and the calculated spectrum is given in Fig. 4.5.

(ix) As2S3 (zig-zag): The atoms are arranged in a straight line as S-As-S-As-S. Then
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Figure 4.4: The vibrational spectrum of As2S6 (dumb bell) calculated from the first
principles.

Figure 4.5: The vibrational spectrum of As2S3 (bipyramid) calculated from the first
principles.
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Table 4.3: The frequencies and intensities computed from the first principles for various
clusters by using DN wave functions. The degeneracy, when different from 1, is given
in small brackets.

S.No Cluster Frequency Intensity
cm−1 km/mol

1 AsS4(pyramid) 203.90 0.88
2 288.20 20.36
3 383.10 2.61
4 AsS4(Td) 61.70 0.12(3)
5 358.30 2.28(3)
6 AsS7 162.60 5.12
7 163.22 6.25
8 257.02 0.03
9 296.30 0.10
10 358.08 0.38
11 As2S6(dumb bell) 55.68 0.01
12 91.95 0.84
13 105.60 0.07
14 113.17 0.01
15 113.21 0.04
16 116.00 0.01(2)
17 385.50 1.28
18 415.00 2.68(2)
19 416.30 0.02(2)
20 As2S3(bipyramid) 177.20 3.93(2)
21 301.60 23.90
22 330.60 19.83(2)
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optimization makes the zig-zag so that S atoms are in one line and all of the

As atoms are pulled slightly below that line. The As-S distance is 2.390 Å and

S-S distance is 2.131 Å. The vibrational frequencies calculated for the DN wave

functions are given in Table 4.4. The calculated vibrational spectrum is given in

Fig. 4.6.

Figure 4.6: The vibrational spectrum of As2S3 (zig-zag) calculated from the first prin-
ciples.

(x) As3S2 (bipyramid): In this cluster, there is a triangle of As atoms with one S atom

on the top position and the other S atom on the bottom position. The As-As

distance is 2.528 Å and the As-S distance is 2.714 Å. The vibrational frequencies

are given in Table 4.4. The DN eigen vectors have been used for this calculation.

(xi) As3S2 (linear): It is possible to stabilize As-S-As-S-As in a linear cluster. In this

case, the As-S distance near the end is 2.345 Å while near the centre it is 2.153

Å when DN eigen vectors are used. The vibrational frequencies of this system

are given in Table 4.4.

(xii) As4S4 (cubic): The S4 atoms are on the tetrahedron sites. The cubic sites left

vacant by S are occupied by As atoms. The cell size is 2.529 Å so that a single
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distance determines the structure. The vibrational frequencies corresponding to

DN wave functions are given in Table 4.4 and the calculated spectrum is given

in Fig. 4.7.

(xiii) As4S4 (ring): A circular cluster is formed with alternate As and S atoms with As-

S distance 2.208 Å. The circumference of the circle is thus 8 times this distance,

i.e., 17.664 Å. The diameter of this molecule is about 5.62 Å. The vibrational

frequencies of this molecule are given in Table 4.4 and the calculated spectrum

is shown in Fig. 4.8.

Table 4.4: The frequencies and intensities calculated from the first principles for various
clusters. The degeneracy, when different from unity, is given in the small brackets.

S.No Cluster Frequency Intensity
cm−1 km/mol

1 As2S3(zig-zag) 39.11 1.23
2 51.83 0.14
3 114.06 0.19
4 129.22 3.58
5 285.84 104.70
6 344.00 6.68
7 484.80 44.46
8 486.08 0.36
9 As3S2(bipyramid) 115.71 2.76(2)
10 242.47 41.86
11 As3S2(linear) 119.94 5.90(2)
12 160.45 5.60
13 468.80 38.00
14 As4S4(cubic) 118.60 0.96(3)
15 211.90 3.77(3)
16 279.30 1.82(3)
17 As4S4(ring) 113.18 2.71
18 156.15 1.55(2)
19 183.40 5.15
20 226.97 6.41
21 238.37 8.72(2)
22 346.50 4.69(2)

(xiv) As4S (Td): There are four As atoms on the tetrahedral sites and one S atom in
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Figure 4.7: The vibrational spectrum of As4S4 (cubic) calculated from the first princi-
ples.

Figure 4.8: The vibrational spectrum of As4S4 (ring) calculated from the first principles.
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the centre. The As-S bond distance is 2.298 Å and its vibrational frequencies are

given in Table 4.5.

(xv) As4S (pyramid): In this system, the four As atoms form a square with As-As

distance 2.503 Å and one S is on top position with As-S distance 2.892 Å. The

vibrations belong to A1, A2 and E irreducible representation are found. The

frequencies of these oscillations along with degeneracy are given in Table 4.5.

(xvi) As4S3 (linear): This molecule is genuinely linear. The bond length at the end

of the molecule is 2.529 Å. As one approaches from the end towards the centre,

the bond becomes smaller and the values change to 2.2999 Å and then near the

centre to 2.152 Å. This molecule has a strong mode at 343 cm−1 and a weak

mode at 411.39 cm−1 as given in Table 4.5 and the spectrum is given in Fig. 4.9.

Figure 4.9: The vibrational spectrum of As4S3 (linear) calculated from the first prin-
ciples.

(xvii) As6S2 (dumb bell): The two S atoms are now far apart with S-S distance of 4.031

Å. This means that there is unusual expansion of the S-S bond. Three As atoms

are attached to each S. The As atoms belonging to one S are attracted to those
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belonging to the other S atom. The As-S distance is 2.556 Å. The vibrational

frequencies of this molecule calculated by using the DN eigen vectors are given

in Table 4.5.

Table 4.5: The vibrational frequencies of various clusters calculated by using DN wave
functions. The degeneracy, when different from unity, is given in small brackets.

S. No Cluster Frequency Intensity
cm−1 km/mol

1 As4S(Td) 412.45 2.10
2 443.60 5.50
3 409.70 8.80
4 As4S(pyramid) 231.09 0.18
5 242.17 0.52(2)
6 297.63 0.11
7 As4S3(linear) 38.60 0.01
8 64.50 1.11
9 122.60 0.04
10 343.00 1.14
11 411.40 1.93
12 As6S2(dumb bell) 69.30 1.13(2)
13 148.70 0.08
14 157.30 0.61(2)
15 234.80 3.88(2)
16 246.30 4.33

4.4 Discussion

Usually, when the electronically degenerate state is interacting with a lattice vibration

with respect to which it is unstable, the degeneracy is removed. Therefore, some of the

symmetries are not found in molecules. This phenomenon is called the “Jahn-Teller

effect”. In this calculations it was found that the same set of atoms, for example,

AsS3 have two stable configurations, the S3 in a triangle with As in the centre and a

pyramid. This phenomenon of multiple symmetries is more pronounced in AsS4 where

three stable configurations are found. The AsS4 with As4S which is call “ion exchange”
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has been compared. The atomic number of As is 33 and that of S is 16. Hence As4S

is much heavier than AsS4. Accordingly, the heavier cluster tends to be bigger than

the lighter cluster for the same symmetry. The calculated and experimentally observed

frequencies help in identifying the clusters actually present in the real material. (a)

Realgar. The frequencies 187, 218, 272, 342 and 362 cm−1 experimentally found in the

realgar, are identified with AsS4 (3-1 model), AsS4 (Td), As4S4 (ring), As2S3 (bipyra-

mid) and As4S4 (cubic). (b) Orpiment. The frequencies 308, 330, 378 and 397 cm−1 are

found experimentally in the orpiment. According to Table 4.6, these frequencies are

identified with AsS3 (pyramid), As2S3 (bipyramid), As2S6 (dumb bell) and AsS3 (trian-

gular). The orpiment is therefore built from AsS3 (pyramid). However, there can occur

tunneling of As through the triangle of S3 atoms so that AsS3 triangles are also stable.

When glass is formed, As2S3 (bipyramid) and As2S6 (dumb bell) are also predicted.

The experimental data is completely blank for frequencies > 400 cm−1. Whereas, the

calculations do show some vibrational modes. This phenomenon of transparency is

caused by the non-availability of “change in polarizability” upon shining the material

with light.

4.5 Experimental Raman Spectra

The Raman spectra of As2S3 given by Tanaka [40] are poorly resolved. There is a peak

at 20 cm−1 due to scattering from the particle size, which means that the particle size

is equal to the wave length of radiation, ν = v/2d. Here v is the velocity of sound and d

is the diameter of the grain. Let us take ν = 20 cm−1 as an exercise. This is equivalent

to 20c in c.p.s. units. The diameter of the particle which scatters this radiation is

d = v/2ν, where v ∼= 3X105 cm/s is the velocity of sound. Substituting v and ν in

the expression for d found that d = 25 Å which is 250 nm. This is just the size of the

particles present in the glass. Therefore, the 20 cm−1 radiation is caused by the particle

size. This particle is a boson which is not related to the electronic structure of the
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atoms. It is also not related to the force constants. There are weak lines at 230 cm−1

and 500 cm−1 along with a strong and broad line at 350 cm−1. Georgiev et al. [36] have

made efforts to resolve the broad line into components. In the glass AsxS1−x(x = 0.38)

there is a broad line but at x = 0.44 some resolution becomes apparent and lines at 185

and 220 cm−1 look like peaks on a broad back ground. In the Raman spectrum of the

glass As0.44S0.56, the values of the frequencies can be identified easily. The actual glass

is a mixture of many different compositions. In the mineral form also, it is easy to see

the different compositions distinguished by different colours. The quantity of sulphur

is strongly reflected by decolouration. The different colour parts of the mineral have

different chemical formula. A typical Raman spectrum has been selected to know the

experimental values of the vibrational frequencies. The experimental Raman spectra

which are deduced from ref. [36] has been showed in Fig. 4.10. The experimental

Raman frequencies clearly visible in this spectrum are, 187, 218, 272, 308, 330, 342,

362, 378 and 397 cm−1.

Figure 4.10: The experimental Raman spectrum of As-S glass. The measured frequen-
cies are given in Table 4.6.
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4.6 Comparison Between Theory and Experiments

The experimental as well as the values obtained from the first principle’s calculations

have been showed in Table 4.6. All of the experimentally found frequencies agree with

those of calculated for the clusters. This means that the glass consists of random self-

organized arrangements of clusters. The existence of As4S3 (linear) shows the linear

growth which gives strength to the glass by working like a “back bone”. The zig-zag

As2S3 also shows that the structure of the back bone is not like a linear chain but more

like a zig-zag arrangement of atoms. Besides, the “back bone”, there are clusters which

resemble rings, pyramids, bipyramids and triangles. The clusters relax with time and

reorganize their orientations. This type of self-organization gives long relaxation times

to the glass.

Table 4.6: Comparison of experimentally observed values of frequencies with those
calculated for the given clusters.

S.No Experimental Calculated Cluster
(cm−1) (cm−1)

1 187 183.0 As4S4(ring)
177.0 As2S3(bipyramid)
173.0 AsS4(3-1 model)

2 218 211.9 As4S4(cubic)
210.0 AsS4(3-1 model)

3 272 270.0 AsS4(3-1 model)
279.3 As4S4(cubic)

4 308 309.6 AsS3(pyramid)
5 330 330.6 As2S3(bipyramid)
6 342 343.0 As4S3(linear)

344.0 As2S3(zig-zag)
7 362 358.3 AsS4(Td)
8 378 385.5 As2S6(dumb bell)

387.3 AsS3(triangular)
9 397 399.6 AsS3(pyramid)
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4.7 Conclusions

The arsenic sulphide consists of several different compositions mixed together have been

found. Although the minerals realgar (AsS) and orpiment (As2S3) are well known,

it found that other molecules such as AsS3 (triangular), AsS3 (pyramid), AsS4 (3-1

model), AsS4 (Td), As4S4 (ring), As2S3 (bipyramid), As4S4 (cubic), As2S3 (zig-zag),

As4S3 (linear) and As2S6 (dumb bell) are predicted on the basis of quantum mechan-

ical first principle calculations. This prediction is in accord with the experimentally

observed Raman spectra. The existence of these molecules is also apparent from the de-

colouration in the samples. The usefulness of quantum mechanics for the study of glass

structures is well demonstrated. Hence, the existent of a class of “quantum glasses”

has been predicted for which the vibrational frequencies are predictable by quantum

mechanics. The calculations may help in decoding local structures of clusters that are

produced by atomic beams. The molecular clusters are also populated in nanoscale

phase separated molecular glasses.
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Chapter 5

DFT Calculation of Structure and

Vibrations in AsO Glass.

A large number of cluster of atoms are made by using the density functional theory. Out

of the clusters, it is found that AsO2, AsO4 (Td), As2O2 (rectangular), AsO2 (triangle)

and AsO3 (pyramid) are really present in the vitreous As2O3. The dominant Raman

frequencies found in the experimental data are identified by theoretical calculations.

5.1 Introduction

Recently, it was pointed out by Phillips [47,48] that anomalous properties exist over a

narrow range of composition in molecular glasses. It was also shown that long relaxation

times occur in glasses [22]. In fact, some of the phonon frequencies can become soft and

approach towards zero [23]. There is a phase transitions in the rigidness of glasses [24].

The random network of atoms is considered to be important for the understanding

of glasses. Random network of clusters of atoms have been found present in many

glasses [25, 27, 32]. Arsenic is found in several different valencies. The arsenic trioxide

As2O3 dissolves in alkaline solutions to make arsenites. It reacts with oxidizing agents

to form As2O5. The vibrational excitations of arsenic oxides have been reported [49–52]
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in vitreous and disordered phases. The polarized Raman spectra with second-order

scattering are reported by Galeener et al. [50].

In this chapter, the calculation of vibrational frequencies of several clusters of ar-

senic and oxygen atoms will be report. Configuration of clusters have been optimized

for which the energy of the Schrödinger equations is minimum.

These calculations are based on the kinetic energy of the electrons and the nuclei and

all of the Coulomb interactions with no adjustable parameters. The calculated values

from the first principles have been compared with those found from the experimental

Raman spectra. The values calculated for the clusters were found to be in reasonable

agreement with those measured. Therefore, it found that there were clusters in the

vitreous As2O3. The glassy state is therefore made from the random network of clusters.

5.2 Clusters

The density functional theory in the local density approximation (LDA) has been used.

The Kohn - Sham equations are solved and vibrational frequencies are deduced. The

bond lengths and angles are obtained for the minimum energy [4]. The computer

program DMol3 is used. The double numeric (DN) wave functions are used in all of

the calculations.

(i) AsO: This is a diatomic cluster. In the optimized configuration the distance

between the two atoms is found to be 1.698 Å. There is a single vibrational

frequency belonging to the bond stretching. The vibrational frequency is 881.37

cm−1.

(ii) AsO2: In this molecule for the optimized geometry, the bond angle is found

to be 122.18 degrees. The As-O bond length is found to be 1.719 Å. The vi-

brational frequencies (intensities) are 219.8 (19.9), 753.7 (13.2) and 754.1 (1.59)

cm−1 (km/mol).
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(iii) AsO2 (linear): It is possible to optimize this molecule in a linear form so that

O-As-O angle is 180 degrees. The As-O bond length is found to be 1.734 Å. The

vibrational frequency is calculated to be 753.8 cm−1.

(iv) AsO2 (triangle): It is also possible to optimize AsO2 in the shape of a triangle.

The As-O distance is 1.896 Å and O-O distance is 1.590 Å. The vibrational

frequencies (intensities) are found to be 535.8 (11), 544.7 (11.8) and 855.1 (7.42)

cm−1 (km/mol).

(v) AsO3 (triangular): In this cluster the three oxygen atoms are at the corners of

a triangle and As is in the centre. In the optimized configuration, the As-O

distance is 1.662 Å and the vibrational frequencies (intensities) are 156.3 (3.5),

159.5 (3.3), 237.1 (24.7), 819.1 (2.2), 820.2 (2.1) and 826.9 (0.02) cm−1 (km/mol).

The vibrational spectrum calculated for the cluster from the first principles is

given in Fig.5.1.

Figure 5.1: The vibrational spectrum of AsO3 (triangular) calculated from the first
principles.
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(vi) AsO3 (pyramidal): The O-O distance is 1.865 Å in the O3 triangle. The As atom

sits on top of the triangle to form a pyramidal. The As-O distance is 2.250 Å.

It has strong vibrations at 280.3 (5.28), 532.1 (0.91) {2} and 701.8 (11.8) cm−1

(km/mol){degeneracy}. The vibrational spectrum calculated from first principles

is shown in Fig.5.2.

Figure 5.2: The vibrational spectrum of AsO3 (pyramidal) calculated from the first
principles.

(vii) AsO4 (Td): This is a tetrahedral molecule. The O-As distance is 1.759 Å. The

dominant mode occurs at 335.1 cm−1 and it is tripely degenerate.

(viii) As2O: This molecule has As-O-As angle of 71.36 degrees and bond length is

1.971 Å. The vibrational frequencies (intensities) are 195.4 (6.2), 305.7 (6.09),

605.8 (22.9) cm−1 (km/mol). The calculated spectrum for this model is shown

in Fig.5.3.

(ix) As2O (triangle): The three atoms are arranged in a triangle. The As-As distance

is 2.299 Å and As-O distance is 1.971 Å. There are three vibrational frequencies

(intensities) at 194.7 (6.2), 305.7 (6.1) and 605.1 (22.9) cm−1 (km/mol).
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Figure 5.3: The vibrational spectrum of As2O calculated from the first principles.

(x) As2O (linear): It found that with O in the centre and two As on both sides to

form a straight line is stable. The As - O bond distance is 1.759 Å. There is

a doubly degenerate vibration at 233.2 (20.8) cm−1 (km/mol) {2} and a singly

degenerate oscillation at 981.6 (22.2) cm−1 (km/mol).

(xi) As2O2 (rectangular): The As-O bond length is 1.871 Å and the angle of the

rectangle is 100.5 degrees. There are two strong frequencies at 296.5 (39.7) and

489.7 (48.2) cm−1 (km/mol).

(xii) As2O2 (pyramidal): In this cluster the As-As distance is 2.348 Å, the O-O dis-

tance is 1.952 Å and the As-O distance is 2.157 Å. The vibrational frequencies

(intensities) are 328.9 (15.3), 376.3 (1.6), 384.5 (6.3), 573.8 (52.3) and 643.4 (19.5)

cm−1 (km/mol). The computed vibrational spectrum is shown in Fig.5.4.

(xiii) As2O3 (linear): In this system all the atoms are in a straight line with one oxygen

atom in the centre and two oxygen atoms at both ends. The end bond length

is 1.721 Å and the inner bond length is 1.968 Å. The end correction is thus

clearly seen in the structure. This system has the positive vibrational frequencies
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Figure 5.4: The vibrational spectrum of As2O2 (pyramidal) calculated from the first
principles.

(intensities) {degeneracies} as 31.6 (2.66) {2}, 327.3 (159), 782.4 (240) cm−1

(km/mol).

(xiv) As2O3 (bipyramidal): In this system, first a triangle is made with three oxygen

atoms and then one As is put on top of the triangle and another is put symmet-

rically on the other side to form a bipyramid. The O-O distance in the triangle

is 2.496 Å and the O - As distance is 1.927 Å. There are two strong vibrations at

375.7 (39.7) 2, 561.1 (154), 562.6 (34.9) {2}. The later two are not well resolved.

(xv) As2O4 (bipyramid): The square shape contain 4 oxygen atoms has been made

with one As atom on the top of the plane square and another symmetrically in

the bottom of the square. The O-O distance is 2.260 Å and As-O distance is

2.036 Å. The vibrational frequencies (intensities) {degeneracies} are found to be

138.4 (97.8) {2} and 443.9 (774) {2}.

(xvi) As3O (triangle): The three As atoms are on the corners of a triangle and one is

in the centre. the As-O distance is 1.868 Å. The vibrational frequencies found
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are 131.8 (4.3), 671.5 (12.3) and 693.9 (10.6) cm−1 (km/mol).

(xvii) As3O (pyramidal): In this model the three As form a triangle with O-O distance

of 2.477 Å and one As atom is on top to form a pyramid. The As-O distance

is 2.151 Å. The vibrational frequencies (intensities) are 235.9 (0.7), 300.6 (2.95)

and 491.5 (17.7) cm−1 (km/mol).

(xviii) As3O2 (linear): In this cluster all of the five atoms are in a straight line with As

on two ends. The bond distance near the ends is 1.753 Å and towards the centre

it is 1.919 Å. There are strong oscillations at the frequencies (intensities), 23.9

(0.91) {2}, 238.8 (5.5), 291.6 (44.3) {2} and 760.2 (131).

5.3 Experimental Raman Data

The experimental Raman spectra of vitreous As2O3 are reported by Galeener et al. [50].

The experimental data shows the frequencies 220 (weak), 342, 485 (weak), 552 (weak),

700 and 850 cm−1. The identification of these bands and comparison with the calculated

values is shown in Table 5.1. Apparently all of the experimentally found frequencies

can be identified with the help of large number of computed frequencies. It is found

that the vitreous state of As2O3 is made of several clusters of different valencies. It is

possible that the second-order Raman scattering at 2ν is also present in the data but

the 6 frequencies experimentally found in the oxide of arsenic are identified as arising

from our clusters.

5.4 Conclusions

The first principle calculations of vibrational frequencies in a large number of clusters

containing As and O atoms have been performed. The clusters present in the actual

sample have been identified by comparing the calculated values with these found in the
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Table 5.1: The calculated and measured bands in vitreous As2O3 along with their
identification.

S.No Experimental Calculated Cluster
cm−1 cm−1

1 220(weak) 219.8 AsO2

2 342 335.1 AsO4 (Td)
3 485(weak) 489.7 As2O2 (rectangular)
4 552(weak) 544.7 AsO2 (triangle)
5 700 701.8 AsO3 (pyramidal)
6 850 855.1 AsO2 (triangle)

data. Therefore, a method to identify new clusters and molecules found in the minerals

has been found.
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Chapter 6

DFT Determination of Law of Force

in Fe and P Clusters of Atoms

The density functional theory has been used to make clusters of atoms of Fe with a

few atoms of P and the geometry in each case has been optimized. The vibrational

spectra has been determined for each cluster with vary number of P atoms. The largest

vibrational frequency has been calculated as a function of number of P atoms. It is

found that the force, F = -kx is not linear but shows oscillations. The oscillations

arise due to the quantum mechanical orbitals which are solutions of the Schrödinger

equation. The law of force between Fe and P atoms for several clusters of atoms are

able to determine.

6.1 Introduction

It has recently been pointed that the Cu-O plane become superconductivity upon

doping with oxygen [53]. In recent years it is found that adding excess of Co in place

Fe in AFe2As2 (A = Ba, Sr) neutralizes the magnetic moment of Fe so that for x >

0.25, SrFe2−xCoxAs2 becomes superconductivity below 20K [54]. As it is, this problem

looks quite different from that of B.C.S theory which requires pairing of the electrons
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in the conduction band. The transition temperature of LaFePO also increase from 5K

to 7K upon Ca or F doping [55], which shows the importance of chemical doping to

achieve a metallic state which upon cooling becomes superconducting [56]. There is a

layer of FeP atoms with FeP4 tetrahedra which becomes superconducting upon doping.

Hence, it is of interest to determine the law of force which birch the iron atoms with

phosphorous. In order to investigate this problem, the clusters of Fe and P atoms have

been build and the geometrical parameters have been optimized. For the optimized

configuration, the vibrational frequencies have been calculated. The largest vibrational

frequency has been plotted as a function of number of P atoms, n in the cluster from

which it can determine the power law ω ∝ nα. In some clusters such as FePn, the

power law does not occur and the frequency oscillates. In this chapter, the ab initio

calculation of the vibrational frequencies of clusters, FePn, Fe2Pn and Fe3Pn has been

reported by using double numeric wave functions with and without spin polarization.

It is found that the force, F = -kx is not linear as a function of number of P atoms.

6.2 Clusters (Double Numeric Wavefunctions)

(i) Fe-P (linear) has a bond length of 2.006 Å and a strong stretching vibrational

frequency of 507 cm−1 when double numeric wave functions has been used in the

density-functional theory.

(ii) FeP2 (ring) shows the bond lengths Fe-P = 2.157 Å , P-P = 2.186 Å and the

vibrational frequencies (intensities) are calculated to be 338.8 (4.9), 352.8 (1.94),

539.5 (3.3) cm−1(km/mol).

(iii) FeP3 (pyramidal) shows Fe-P = 2.268 Å and P-P = 2.385 Å and the frequencies

(intensities) of 237.5 (1.9), 311.1 (5.4), 375.3 (5.3), 545.4 (0.18), 883.0 (206) and

921.7 (258) cm−1 (km/mol).

(iv) FeP4 (pyramidal) shows Fe-P bond distance of 2.320 Å and P-P bond length
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of 2.340 Å. The vibrational frequencies (intensities) {degeneracies} are 269.7

(2.9){2}, 345.0 (6.7){1}, 441.5 (0.03){2} and 494.2 (1.5){1} cm−1 (km/mol).

(v) Fe2P (molecules) shows a bond length of 2.144 Å and the vibrational frequencies

(intensities) of 173.2(0.6), 484.8(15.5), 615.5(59) cm−1 (km/mol).

(vi) Fe2P2 (square) of Fe-P distance 2.160 Å is found. The vibrational frequen-

cies (intensities) calculated are 185.5(8.3), 208.6(0.03), 319.7(24), 495.2(0.1) and

519.7(9.7) cm−1 (km/mol).

(vii) Fe2P2 (pyramidal). In this system the bond lengths in the optimized configuration

are Fe-Fe = 2.125 Å P-P = 2.551 Å Fe-P = 2.230 Å and the vibrational frequen-

cies (intensities) are 102.5(1.9), 259.3(5.8), 287.3(1.3), 375.1(2.0) and 458.2(12.7).

It may be noted that Fe2P2 stabilizes in the pyramidal forms as well as a square

like planar form.

(viii) Fe2P3 (bipyramidal). A triangle of P atoms has been made with one Fe on

top and another on bottom position. In the optimized configuration, the bond

distances are Fe-P = 2.209 Å and P-P = 3.267 Å. The dominant positive fre-

quencies (intensities) {degeneracies} calculated are 237.2(24), 420.8(8){2} cm−1

(km/mol).

(ix) Fe2P4 (bipyramidal). A square of P4 atoms has been made and one Fe has been

put on top and another on the bottom position. The bond lengths are Fe-P =

2.3264 Å and P-P = 2.589 Å. The frequencies (intensities) {degeneracies} are

40.8(0.9){2}, 255.9(14.7), 366.8(0.5){2} cm−1 (km/mol).

(x) Fe3P (pyramidal). A triangle of Fe atoms has been made with one P atom on

top position. In the optimized configuration P-Fe distance is 2.259 Å and Fe-

Fe distance is 2.204 Å. The calculated vibrational frequencies (intensities) are

223.7(5.8), 225.1(5), 309.7(0.08) and 507.1(10.3) cm−1 (km/mol).
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(xi) Fe3P2 (bipyramidal). A triangle of Fe atoms has been made with one P atom on

the top and another P atom on the bottom of the triangle. The optimized Fe-P

bond length is 2.276 Å and P-P distance is 2.288 Å. The vibrational frequencies

(intensities) {degeneracies} are 161.3(7){2}, 207(0.2){2}, 273.4(40){3}, 447.8(17)

and 466.2(4) cm−1 (km/mol).

(xii) Fe3P3 (prismatic). A triangle of Fe atoms is put on top of a triangle of P atoms.

The various bond lengths are Fe-Fe = 2.227 Å P-P = 2.408 Å and Fe-P = 2.408

Å and Fe-P = 2.303 Å. The vibrational frequencies (intensities) {degeneracies}
are 13.2(9.5){2}, 188.7(3.9){2}, 290(4.5){2}, 310.6(2.6), 331.4(2.2), 403.9(3.1){2}
and 589.3(2.4). The vibrational spectrum calculated by using DFT (LDA) for

this cluster of atoms is given in Fig. 6.1.

Figure 6.1: The infrared spectrum of Fe3P3 calculated from the first principles.
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6.3 Clusters (Double Numeric Spin Polarized Wave-

functions)

In the case of magnetic atoms such as Fe, the spin polarization plays an important role.

It is possible to add another atom such as Co which by aligning anti-ferromagnetically

can neutralize the magnetic moment of Fe. Within a single atom also both spin align-

ment occur and often spin up does not have the same energy as the spin down electron.

In some cases, it is possible that all of the d electrons have spin up only and then they

are responsible for a large magnetic moment. The vibrational frequencies are also

sensitive to the spin configurations. Therefore, the vibrational frequencies have been

calculated by using spin polarized orbitals as given in this section.

(xiii) FeP. The double numeric polarized orbitals used in the density-functional theory

by using LDA gave the Fe-P distance equal to 1.942 Å and a single vibrational

frequency corresponding to bond stretching of 553.27 cm−1.

(xiv) FeP2 (triangular). The polarized bond lengths are found to be Fe-P = 2.117 Å

and P-P = 2.041 Å and the vibrational frequencies (intensities) are calculated to

be 352.8(1.5), 375.4(6.6) and 611.9(2) cm−1 (km/mol).

(xv) FeP3 (triangular). The P3 atoms form a triangle and one Fe is in the centre of

the triangle. The vibrational frequencies (intensities) {degeneracies} calculated

by using polarized orbitals are 14.23(1.36){2}, 608.29(6.48){2} cm−1 (km/mol).

(xvi) FeP4 (Td). In the tetrahedral configuration the polarized bond length is found

to be 1.997 Å and the dominant frequencies are 129.07(2.5){3} and 474.3(31){3}
cm−1 (km/mol).

(xvii) FeP4 (pyramidal). The four P atoms form a square and one Fe atom is placed

on top position. The bond lengths are Fe-P = 2.230 Å and P-P = 2.180 Å. The
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vibrational frequencies are 255.7(6.85){2}, 353.1(6.2), 430.3(2){2} and 512.8(4.8)

cm−1 (km/mol).

(xviii) Fe2P2 (square). The bond length using the polarized orbitals is found to be 2.110

Å. The frequencies (intensities) are 141.1(7.8), 331.95(28) and 476.53(28) cm−1

(km/mol).

(xix) Fe2P2 (pyramidal). The polarized bond lengths are Fe-P = 2.246 Å, P-P = 2.159

Å and Fe-Fe = 2.099 Å. The vibrational frequencies (intensities) are 156.2(1.96),

291.4(1.8), 385.7(4.1), 411.7(103) and 461.5(7.5) cm−1 (km/mol).

(xx) Fe2P3 (bipyramidal). There is a triangle of P atoms and then Fe atoms are

placed one on top position and the other on bottom position. The polarized Fe-P

distance is 2.112 Å and P-P distance is 2.506 Å. The calculated vibrational fre-

quencies (intensities) are 327.05(0.01), 342.4(7.4){2}, 431.8(21) cm−1 (km/mol).

(xxi) Fe2P4 (bipyramidal). There is a square of P atoms and two Fe atoms are placed

one on top position and other on bottom position. The polarized bond lengths

are Fe-P = 2.201 Å and P-P = 2.492 Å. The dominant frequencies (intensi-

ties){degeneracies} are 342.5(13.9), 404(4.68){2} cm−1 (km/mol).

6.4 Frequency Doping

From the ab initio computational work, the variation of the largest vibrational fre-

quency are able to extract as a function of number of P atoms. Fig. 6.2 showed the

variation of the largest frequency as a function of n for FePn for double numeric wave

functions and in Fig. 6.3 for Fe2Pn found for polarized wave functions. It is found that

the frequency as a function of P atoms oscillates but for small doping (n<3) power law

behavior is possible, ω ≈ nα.
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The frequemcy of a harmonic oscillator is given by ω =
√

k
m

where k is a force

constant and m is the mass of the oscillator. Hence, the frequency of oscillations is

proportional to the m− 1
2 . This is a power law for two atoms. In the case of molecules

more atoms may oscillates as in normal modes of oscillations. Hence, the variation

of frequency as a function of mass in complex clusters of atoms has been calculated.

Hence, the calculations of frequency as a function of number of phosphorous atoms has

been performed by using the DFT quantum mechanical code. The force is F = −kx in

one dimension which can become a matrix form for more complicated molecules and

clusters of atoms. Hence, the calculation of frequency which implies the force constant

is important.

Figure 6.2: The oscillation of largest vibrational frequency of FePn as a function of n.
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Figure 6.3: The variation of largest frequency of Fe2Pn as a function of n calculated
by using polarized orbitals.

6.5 Conclusions

LaFePO is one of the fewest of the recently discovered materials. It becomes super-

conducting upon doping with Ca or F. It has unusual magnetization as a function of

magnetic field. Hence it is important to learn the law of force which exists between

Fe and P atoms. It found that in FePn the law of force is not linear but in Fe2Pn for

small n, a power law is possible. According to the law of force, F = -kx = -n ω2x,

the frequency is a constant. It found that ω oscillates upon doping Fe atoms with

phosphorous.
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Chapter 7

DFT Calculation of Vibrational

Frequencies in Clusters of Fe and

As Atoms

The density-functional theory (DFT) is used to simulate clusters of the formula FemAsn.

The bond lengths and angles has been optimized to determine the stable structure for

integer values of m and n. The vibrational frequencies have been calculated for all

of the clusters and hence determine the largest frequency each cluster as a function

of number of As atoms. For FeAsn, it found that the lowest frequency of 220.5 cm−1

occurs for n = 1. As n increase the frequency shows a maximum. In Fe2Asn, Fe3Asn

and Fe4Asn, the largest frequency shows oscillations as a function of n.

7.1 Introduction

Recently, it has been reported that compounds containing FeAs atoms become super-

conducting upon doping [57, 58]. Usually, the compounds containing Fe atoms will

not be superconducting or even if they superconduct, their transition temperatures

are expected to be very small. The field inside a superconductor is zero and they
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exhibit perfect diamagnetism. The presence of a large magnetic moment of Fe is not

commensurate with perfect diamagnetism. Usually there are two critical fields. Above

the lower critical field there are vortices of magnetic lines forces so that it is called a

type-II superconductor. The present materials of FeAs doped with electrons or holes

are neither type-I nor type-II superconductor. They are a class themselves. The field

inside a superconductor is given by H + 4πm which is zero so that the susceptibility is

x = -1/4π. In the FeAs doped superconductors the value of -1/4π is not obtained. The

transition temperature of a superconductor depends on the phonon frequency. Hence,

investigation of phonon frequencies in these materials may help in the understanding

of the transition temperature.

In this chapter, the density-functional theory has been used to stimulate clusters of

Fe and As atoms and determine their vibrational frequencies. The largest vibrational

frequency of a cluster of FemAsn atoms has been determines so that the largest fre-

quency as a function of As atoms can be find and calculate its variation as a function of

number of As atoms. It found that such a vibrational frequency oscillates as a function

of As atoms indicating the presence of oscillations in the force which determines the

transition temperature of the superconductor.

7.2 Clusters

The density-functional theory has been used to optimize the structures in the local-

density approximation (LDA). The vibrational frequencies are determined for the op-

timized clusters. The double numeric wave functions are used in all of the calculations.

(i) FeAs. The cluster of Fe-As as a diatomic molecule has been made. It has a

bond length of 2.379 Å and a single vibrational frequency corresponding to bond

stretching. The calculated frequency is 220.5 cm−1.

(ii) FeAs2 (linear). In this case the optimized bond length is 2.394 Å and the vibra-
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tional frequencies (intensities) {degeneracies} are 14.97 (1.96) {2}, 266.18 (0.01).

(iii) FeAs2 (triangular). In this cluster the Fe-As distance is 2.248 Å and As-As dis-

tance is 2.365 Å. The vibrational frequencies are 236.29 (1.69), 247.28 (1.16) and

358.68 (2.61) cm−1 (km/mol). The spectrum calculated from the first principles

is shown in Fig. 7.1.

Figure 7.1: The vibrational spectrum of FeAs2 triagonal with DN wave function.

(iv) FeAs3 (triangular). This is a triangular molecule with one Fe atom in the centre

of the triangle. The Fe-As distance is 2.081 Å and the vibrational frequencies

(intensities) are 282.6 (0.01), 490.7 (1.02) and 491.78 (1.05) cm−1 (km/mol).

(v) FeAs3 (pyramidal). The three As atoms form a triangle and one Fe sits on top

position. The As-As distance is 2.596 Å and the Fe-Fe distance is 2.336 Å.

The vibrational frequencies found are 124.74 (0.02), 134.15 (0.1), 189.04 (3.98),

214.56 (2.47), 216.13 (2.18) and 350.08 (0.95) cm−1 (km/mol). The calculated
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vibrational spectrum is shown in Fig. 7.2.

Figure 7.2: The vibrational spectrum of FeAs3 pyramidal calculated from the first
principles.

(vi) FeAs4. In this cluster, the four As atoms sit on the four corners of a square and

one Fe atom at the centre of the square. The Fe-As bond length is 2.164 Å and

the vibrational frequencies are 87.98 (1.16) and 261.16 (9.63) cm−1 (km/mol).

(vii) FeAs4 (Td). In the tetrahedral arrangement of atoms, the bond length is 2.394

Å and the vibrational frequencies are 27.57 (0.03) {3}, 226.06 (0.01) {3}.

(viii) FeAs4 (pyramidal). The four As atoms form a square with As-As distance of 2.504

Å and Fe-As distance of 2.400 Å. The calculated vibrational frequencies are 187.38

(3.43){2}, 230.57 (0.53), 239.29 (2.39){2} and 308.79 (3.59) cm−1 (km/mol). The

vibrational spectrum calculated from the first principles is shown in Fig. 7.3.

In the clusters of FeAsn (n = 1 - 4) it is observed that largest frequency occurs for n

= 3. Hence, the plot of the largest frequency as a function of n not linear but peaked

74



Figure 7.3: The vibrational spectrum of FeAs4 pyramidal with DN wave function.

at n = 3. Since the vibrational frequencies are related to the force constant ω =
√

k
m

,

the force constant oscillates as a function of concentration of As. Now, the vibrational

frequencies of clusters containing two atoms of Fe have been calculated and shown

below.

(ix) Fe2As (linear). In this case, the Fe-As bond length is 2.374 Å and the vibrational

frequency is 263.99 cm−1.

(x) Fe2As2 (triangular). In this molecule, Fe-Fe distance is 2.461 Å and Fe-As dis-

tance is 2.438 Å. The vibrational frequencies are 259.4 (0.25) and 232.04 (0.63)

cm−1 (km/mol).

(xi) Fe2As2 (rectangular). The Fe-As bond length is 2.249 Å and the vibrational

frequencies are 101.12 (4.28), 238.92 (8.7), 361.5 (10.5).

(xii) Fe2As3 (bipyramidal). The three As atoms form a triangle and two Fe atoms sit
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on each side of the triangle. The As-As distance is 3.413 Å and Fe-As distance is

2.291 Å. The vibrational frequencies (intensities) degeneracies are 38.2 (0.42){2},
197.08 (0.01), 202.39 (11.5) and 316.4 (2.8) {2}.

(xiii) Fe2As4 (bipyramidal). The As atoms form a square and two Fe atoms sit on top

and bottom positions. The As-As distance is 2.822 Å and Fe-As distance is 2.354

Å. The calculated vibrational frequencies are 77.04 (0.71) {2}, 241.68 (5.28) and

293.36 (2.4) {2}. The vibrational spectrum calculated from the first principle is

shown in Fig. 7.4.

Figure 7.4: The vibrational spectrum of Fe2As4 bypyramid calculated from the first
principles.
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7.3 Results

From the above calculations, the largest vibrational frequency oscillates as a func-

tion of number of As atoms in FeAsn and Fe2Asn has been found. The oscillations

vibrational frequencies indicate oscillations in the transitions temperature of a super-

conductor upon doping. Usually, the B.C.S. theory of superconductivity series upon

the electron-phonon interaction in the conduction band where the strength depends on

the translational symmetry [56, 59]. In the present case, the superconductivity arises

upon doping which lacks in translational symmetry. Hence, the phonon-induced B.C.S.

theory is not taken into account but the chances that theory showed will be based on

doping.
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Chapter 8

DFT Calculations of Vibrational

Frequencies of Carbon-Nitrogen

Clusters: Raman Spectra of Carbon

Nitrides

8.1 Introduction

Diamond is the hardest of the materials known. The cubic boron nitride is also known

to be a hard material [60,61]. It is expected that carbon nitride C3N4 should also be a

very hand material [62]. There is a lot of effort to make the carbon nitrides and obtain

their Raman spectra but the reaction products are difficult to isolate. Many different

structures are formed which contribute to the Raman spectra. Hence, it is a difficult

task to identify the clusters present in the material. The infrared and Raman spectra

of amorphous carbon nitrides have been reported by Ferrari et al. [63]. Cote and

Cohen [64] have shown that the sp2 bonding is favourable to sp3 bonding which implies

that rhombohedral phase is more stable than the zinc-blende and rocksalt phases. The
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x-ray absorption and photoemission of carbon nitrides has been discussed by Zheng et

al. [65]. The p bonding in hard films is discussed by Jimenez et al. [66]. The six-fold

ring structure is given by Abrasonis et al. [67]. The ab initio calculations of Merchant

et al. [68] show the effect of the electronic configurations on the density of the clusters.

The carbon nitrides also occur in graphitic structures, the stability of which has been

discussed by Lowther [69].

This chapter report the calculation of vibrational frequencies of clusters containing

carbon and nitrogen atoms. The structural parameters as well as vibrational frequen-

cies have been reported and these calculated values have been compared with those

measured by the Raman spectra of amorphous carbon nitrides. The density-functional

theory in the local-density approximation (DFT-LDA) has been used. The experience

with this type of calculations shows that the calculated values should be very close to

the experimental values [25,27,32]. The vibrational frequencies of Ge based glasses as

well as those of AsSe clusters are indeed in agreement with the experimental data [70].

8.2 The Methodology

The density-functional theory is used to obtain the solution of the Schrödinger equation.

The electron density is used to differentiate the Schrödinger equation so that Kohn-

Sham equations are obtained [4, 5]. These equations are solved in the local-density

approximation (LDA). It is also possible to obtain the result in the generalized gradient

approximation (GGA) but these results are very close to that of LDA . Hence, it is not

necessary to obtain the results in both approximations. Two programs are available for

this purpose. The Amsterdam density-functional theory (ADF) uses the double zeta

wave functions. The DMol3 package of Accelerys Software Inc, San Diego, California

also uses a variety of wave functions out of which the double numeric (DN) wave

function works the best. Hence, the DMol3 with double numeric wave functions has

been used. The calculation of vibrational frequencies is also explained by Lopez-Duran
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et al. [71].

All possible clusters starting from the simplest one which has only two atoms have

been made. For this cluster, the electronic energy is calculated as a function of distance

between atoms. The calculation stops when the energy is a minimum and the distance

between atoms is noted. The minimum energy configuration is considered to be stable.

For distances, other than those for which the energy is a minimum are considered to

be instable and discarded. In a second step, the vibrational frequencies are calculated

for the stable structures. The electronic energy calculation is used to optimize the

structure and then the vibrational frequencies are calculated. Naturally the electronic

energy is held constant to calculate the vibrational frequencies which are independent

of the electronic energy. The number of atoms has been increased by one, considering

all of the possibilities such as CN2 and C2N. The optimization of the electronic energy

determines the structure and the vibrational frequencies are always obtained for the

optimized structure. Various clusters of atoms have been build until the number of

atoms in a cluster becomes eight. The experimental Raman frequencies indicate that

the number of atoms in a cluster of atoms is quite small. When the number of atoms

becomes large, none of the calculated frequencies correspond to the experimental data.

This is because the large number of atoms require large distances which reduces the

Coulomb interactions as 1/r. Hence most of the experimental data uses only small

molecules. In large molecules also, the vibrations corresponds to nearest neighbors

only or to atoms confined within a unit cell. All of the possible clusters have been built

and only the stable ones have been retained. These all possible configurations are also

obtained with due consideration of the symmetries. Usually, the stable structures are

symmetric. The large asymmetric structures tend to be instable. The accuracy of the

calculation has been set to much less than 1 cm−1 such as 10−5 cm−1 but only one digit

after the decimal point is retained for tabulation.
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8.3 Carbon-Nitrogen Clusters.

(i) CN. The diatomic molecule CN has been optimized for the minimum energy of

the Schrödinger equation. This calculation gives the CN bond length of 1.187 Å

and the vibrational frequency is calculated to be 2049.8 cm−1.

(ii) CN2 (linear). In this molecule, the carbon atom is kept in the centre and two

nitrogen atoms are located on each side of C so that N - C - N are aligned in a

straight line. The bond length is found to be 1.245 Å. The calculated vibrational

frequencies (intensities){degeneracies} are 407.3 (19.3) {2}, 1571.1 (90.2) cm−1

(km/mol).

(iii) CN3 (triangular). In this cluster, three atoms of N sit on three corners of a

triangle and C sits in the centre of the triangle. The CN bond length is found to

be 1.370 Å and the vibrational frequencies are given in Table 8.1.

(iv) CN3 (pyramidal). The three N atoms form a triangle and one C atom sits on top

position. The N - N bond length is 1.645 Å and CN bond distance is 1.458 Å.

The calculated vibrational frequencies are given in Table 8.1.

(v) CN4 (pyramidal). The four N atoms form a square and one C atom sits on the

top position. The CN bond length is 1.777 Å and N - N bond distance is 1.477

Å. The calculated frequencies are given in Table 8.1.

(vi) CN4 (square). The four N atoms are on the corners of a square and one C is

located in the centre of the square. The CN bond length is 1.419 Å and the

vibrational frequencies are given in Table 8.1.

(vii) CN4 (Td). In the tetrahedral coordination the bond length is 1.390 Å and the

frequencies are given in Table 8.1.
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Table 8.1: The vibrational frequencies of various clusters calculated from the first
principles

S.No. Cluster Frequency Intensity Degeneracy
(cm−1) (km/mol)

1 CN3 (triangular) 509.6 8.0 2
2 CN3 (triangular) 587.2 12.8 1
3 CN3 (triangular) 932.5 65.5 2
4 CN3 (pyramidal) 561.2 1.2 2
5 CN3 (pyramidal) 901.0 2.2 2
6 CN3 (pyramidal) 1257.5 1.8 1
7 CN4 (pyramidal) 736.1 1.7 2
8 CN4 (pyramidal) 779.3 101.2 1
9 CN4 (pyramidal) 988.7 3.7 1
10 CN4 (square) 280.2 11.1 1
11 CN4 (square) 781.7 23.7 2
12 CN4 (Td) 130.2 1.0 3
13 CN4 (Td) 4420.9 5.0 3

(viii) C2N (linear). The C2N is linear with one N in the centre. The C - N bond length

is 1.264 Å. The vibrational frequencies are given in Table 8.2.

(ix) C2N (triangular). In this cluster the CN distance is 1.340 Å and the N - N

distance is 1.615 Å. The vibrational frequencies for this configuration are given

in Table 8.2.

(x) C2N2 (rectangular). The atoms are alternately arranged with the bond length

1.414 Å. The vibrational frequencies are given in Table 8.2.

(xi) C2N3 (bipyramid). The three N atoms form a triangle and one C atom sits on

the top position and another C in the bottom position. The C - N bond length

is 1.498 Å and the N - N bond length is 2.163 Å. The calculated vibrational

frequencies are given in Table 8.2.

(xii) C2N3 (linear). This is a linear molecule with N atoms at the centre and the ends.

The CN bond length near the end is 1.207 Å and towards the centre is 1.250
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Å. The vibrational frequencies are given in Table 8.2. The frequency of 1544

cm−1 found in C2N3 (linear) is very close to the value 1512.3 cm−1 found in the

C2N (linear) showing that this value is characteristic of linear property of the

molecule. In the amorphous structure such a linear frequency can be interpreted

to be a back bone which gives strength or hardness to the glassy sample.

(xiii) C2N4 (bipyramid). The four nitrogen atoms form a square and one C is located

on top and the other on bottom position. The CN bond length is 1.784 Å and C

- N bond length is 1.753 Å. The calculated frequencies are given in Table 8.2.

Table 8.2: The vibrational frequencies of various clusters calculated from the first
principles

S.No. Cluster Frequency Intensity Degeneracy
(cm−1) (km/mol)

1 C2N (linear) 237.7 6.8 2
2 C2N (linear) 1512.3 89.5 1
3 C2N (triangular) 474.2 2.6 1
4 C2N (triangular) 616.0 68.7 1
5 C2N (triangular) 1436.4 45.3 1
6 C2N2 (rectangular) 409.1 13.5 1
7 C2N2 (rectangular) 582.3 19.0 1
8 C2N2 (rectangular) 1296.4 44.9 1
9 C2N3 (bipyramidal) 481.7 26.0 1
10 C2N3 (bipyramidal) 852.7 0.3 2
11 C2N3 (linear) 100.1 2.36 2
12 C2N3 (linear) 458.5 34.7 2
13 C2N3 (linear) 1544.4 13.3 1
14 C2N3 (linear) 2004.9 1.8 1
15 C2N4 (bipyramidal) 474.3 10.8 2
16 C2N4 (bipyramidal) 641.3 136.1 1

(xiv) C3N (pyramidal). The three C atoms form a triangle with CN bond distance 1.638

Å and C - C bond length is 1.467 Å. The calculated values of the frequencies are

given in Table 8.3.

(xv) C3N (triangular). The three C atoms form a triangle and one N sits on the
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centre. In this case the C - N bond length is 1.395 Å. The calculated vibrational

frequencies are given in Table 8.3.

(xvi) C3N2 (bipyramidal). The three C atoms form a triangle and one N is on top

position and the other in the bottom position. The C - N distance is 1.543 Å

and the N - N distance is 1.893 Å. The various vibrational frequencies calculated

from the first principles are given in Table 8.3.

(xvii) C3N2 (linear). This is a linear molecule with carbon atoms at the ends and one

C at the centre. The bond length at the end point is 1.241 Å and near the

centre it is 1.252 Å. There is a strong vibration at 293.4 cm−1 which is doubly

degenerate and there is vibration at 1473.1 cm−1 which is characteristic of linear

“back bone”. The calculated frequencies are given in Table 8.3.

(xviii) C3N3 (ring). This is a hexagonal ring with alternate sites occupied by C and N

atoms with unusual resonating bond. The vibrational frequencies are given in

Table 8.3.

(xix) C3N4 (linear). This is a linear molecule with N atoms at the ends. The bond

lengths are smallest at the ends and largest near the centre. The bonds near the

ends are 1.184 Å long while at the centre it is 1.205 Å. The middle bond has a

length of 1.284 Å. In this way there is expansion of the bond near the centre.

The calculated vibrational frequencies are given in Table 8.4.

(xx) C4N (Td). This is a tetrahedral molecule with CN bond length of 1.1469 Å. The

calculated vibrational frequencies are given in Table 8.4.

(xxi) C4N (square). The C atoms are located at the corners of a square and N is at

the centre. The CN bond length is 1.447 Å. The strong vibrational frequencies

are given in Table 8.4.
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Table 8.3: The vibrational frequencies calculated from the first principles.

S.No. Cluster Frequency Intensity Degeneracy
(cm−1) (km/mol)

1 C3N (pyramidal) 309.0 142.0 2
2 C3N (pyramidal) 582.0 24.0 1
3 C3N (pyramidal) 1087.4 96.9 1
4 C3N (triangular) 168.4 0.15 2
5 C3N (triangular) 240.5 18.8 1
6 C3N (triangular) 775.1 4.0 2
7 C3N2 (bipyramidal) 45.6 2.8 2
8 C3N2 (bipyramidal) 738.9 26.6 2
9 C3N2 (bipyramidal) 879.2 3.3 1
10 C3N2 (linear) 293.4 2.5 2
11 C3N2 (linear) 1473.1 0.04 1
12 C3N2 (linear) 1976.7 48.1 1
13 C3N3 (ring) 443.8 0.02 2
14 C3N3 (ring) 634.3 3.89 1
15 C3N3 (ring) 944.5 127.6 2
16 C3N3 (ring) 1041.1 180.8 2

Table 8.4: The vibrational frequencies calculated from the first principles.

S.No. Cluster Frequency Intensity Degeneracy
(cm−1) (km/mol)

1 C3N4 (linear) 71.9 3.6 2
2 C3N4 (linear) 437.4 52.9 2
3 C3N4 (linear) 470.2 12.8 2
4 C3N4 (linear) 1100.2 1.4 1
5 C3N4 (linear) 2223.4 45.1 1
6 C3N4 (linear) 2529.6 2500.3 1
7 C4N (Td) 468.2 31.8 1
8 C4N (Td) 487.3 37.3 1
9 C4N (Td) 500.6 41.4 1
10 C4N (square) 534.1 0.3 1
11 C4N (square) 889.2 58.8 1
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(xxii) C4N (pyramidal). The four C atoms form a square and one N is on the top

position. The C-C bond length is 1.502 Å and the CN bond distance is 1.718 Å.

The calculated vibrational frequencies are given in Table 8.5.

(xxiii) C4N2 (bipyramidal). The four C atoms form a square with C - C distance 1.803

Å and there are two N atoms one on top position and the other on the bottom

position with C - N distance 1.690 Å. The calculated vibrational frequencies are

given in Table 8.5.

(xxiv) C4N2 (dumb bell). The two N atoms form a N - N bond with bond length 1.238

Å. Then 2 C atoms are attached to each N so it becomes C2N - NC2. The CN

bond length is 1.441 Å. The vibrational frequencies calculated for this molecule

are given in Table 8.5.

Table 8.5: The vibrational frequencies calculated from the first principles for several
clusters of atoms.

S.No. Cluster Frequency Intensity Degeneracy
(cm−1) (km/mol)

1 C4N (pyramidal) 298.8 5.8 2
2 C4N (pyramidal) 784.0 28.7 2
3 C4N (pyramidal) 791.5 0.04 1
4 C4N (pyramidal) 1121.3 0.29 1
5 C4N2 (bipyramidal) 567.0 1.0 1
6 C4N2 (bipyramidal) 667.3 150.5 1
7 C4N2 (dumb bell) 166.7 6.8 1
8 C4N2 (dumb bell) 192.8 7.3 1
9 C4N2 (dumb bell) 456.8 0.4 1
10 C4N2 (dumb bell) 461.1 0.4 1
11 C4N2 (dumb bell) 734.2 0.8 1
12 C4N2 (dumb bell) 743.7 0.7 1
13 C4N2 (dumb bell) 882.8 0.01 1
14 C4N2 (dumb bell) 962.2 10.27 1
15 C4N2 (dumb bell) 1270.5 0.12 1
16 C4N2 (dumb bell) 1640.2 0.05 1

(xxv) C4N4 (ring). There are 4 N and 4 C atoms alternately to form a ring. The CN
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bond length is 1.256 Å. All of the calculated frequencies are given in Table 8.6.

Table 8.6: The vibrational frequencies calculated from the first principles for several
clusters of atoms.

S.No. Cluster Frequency Intensity Degeneracy
(cm−1) (km/mol)

1 C4N4 (ring) 136.9 5.5 1
2 C4N4 (ring) 167.7 4.4 1
3 C4N4 (ring) 210.6 0.02 1
4 C4N4 (ring) 232.7 0.02 1
5 C4N4 (ring) 394.1 3.6 2
6 C4N4 (ring) 475.3 0.6 2
7 C4N4 (ring) 489.5 0.05 2
8 C4N4 (ring) 585.1 93.8 1
9 C4N4 (ring) 778.4 0.2 1
10 C4N4 (ring) 921.9 0.9 1
11 C4N4 (ring) 1005.2 114.9 1
12 C4N4 (ring) 1121.8 162.6 1
13 C4N4 (ring) 1361.7 20.7 1
14 C4N4 (ring) 1419.2 0.01 1
15 C4N4 (ring) 1445.9 103.0 1
16 C4N4 (ring) 1951.1 164.6 1

(xxvi) C4N4 (cube). All of the atoms are arranged on the eight corners of a cube

alternately. The C - N bond length is 1.549 Å. There are only two oscillations,

each triply degenerate. These frequencies are 661.5 cm−1 and 854.6 cm−1 as given

in Table 8.7.

(xxvii) C3N4 (distorted cube). In this model 4 atoms, 2 C and 2 N are first arranged in

a square and then 2 N atoms are put below the 2 C atoms and one C atom is put

below one N atom so that the 7 atoms are arranged as if one atom is missing from

the cube of 8 sites. The CN bonds are of two lengths one 1.461 Å and another

1.488 Å. One of the N atoms is connected to all of the 3 C atoms so its bond

length becomes bigger. Larger coordination thus increases the bond length and

the end N has smaller bond. The vibrational frequencies of this model are given
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in Table 8.7.

Table 8.7: The vibrational frequencies calculated from the first principles.

S.No. Cluster Frequency Intensity Degeneracy
(cm−1) (km/mol)

1 C4N4 (cubic) 661.5 14.7 3
2 C4N4 (cubic) 854.6 24.7 3
3 C3N4 (distorted cube) 488.8 4.8 1
4 C3N4 (distorted cube) 518.3 3.1 2
5 C3N4 (distorted cube) 612.6 0.2 2
6 C3N4 (distorted cube) 681.8 1.3 1
7 C3N4 (distorted cube) 719.5 10.0 2
8 C3N4 (distorted cube) 863.5 3.0 2
9 C3N4 (distorted cube) 994.9 0.2 2
10 C3N4 (distorted cube) 995.7 3.0 1
11 C3N4 (distorted cube) 1012.3 27.0 1

8.4 Experimental data

The experimental Raman spectra of amorphous carbon nitrides have been published

by Ferrari et al. [63]. For the excitation frequency of 514.5 nm, there is a shoulder near

1380 cm−1 and a strong peak near 1560 cm−1. The spectra depend on the excitation.

Another small peak appears at 720 cm−1 when excitation is at 244 nm. Hence, the

Raman frequencies found experimentally are 720 cm−1, 1380 cm−1, 1560 cm−1, 1580

cm−1 and 2260 cm−1. When the excitation frequency is 514.5 nm sputtered material

gives 760 cm−1, 1380 cm−1 and 2230 cm−1. The experimental values along with those

calculated in the present calculation showed in Table 8.8. It is clear that many different

clusters are found in the amorphous material. The fact that at least three frequencies

are assigned to linear molecules, shows the existence of “back bone” type structure

which gives the strength to the glassy state.

Actually, all of the calculated values should be identified in the experimental data.

However, the infrared spectra are usually noisy and poorly resolved. It requires to
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Table 8.8: Identification of clusters by comparison of measured frequency values with
those calculated

S.No. Experimental Calculated Cluster
(cm−1) (cm−1)

1 720 719.5 C3N4 (distorted cube)
2 1380 1361.7 C4N4 (ring)
3 1560 1571.1 CN2 (linear)
4 1580 1571.1 CN2 (linear)
5 2220 2223.4 C3N4 (linear)

All frequencies which are Raman active have not been included because of the poor
resolution in the observed Raman spectra

use a large number of lines to simulate the observed infrared. Since, the number of

vibrational frequencies is large, the resolution in the infrared is wiped out and the

structure is masked due to large line widths. In the case of Raman spectra also all of

the Raman active modes are not resolved due to poor resolution in the experimental

spectra. Hence only sharp lines are noted and broad lines are left out.

8.5 Discussions

An effort is made to show all of the clusters by stick-ball models in Figs. 8.1, 8.2,

8.3. It makes it easy to visualize the models. However, it may be noted that when

all of the variety of clusters are present, the material will become amorphous and

will not exhibit the periodic boundary conditions. Since the clusters have varying

sizes and shapes, they do not form a single crystal. The zero-intensity lines has not

been described. The intensity coordinate is in arbitrary units which is described as

km/mol. It fixes the relative intensities very accurately. As an example, CN2 shows

three frequencies, not 4. One frequency is due to the uniform stretching or contracting

the full length of NCN. The CN bond frequency is doubly degenerate and hence there

are two equal values for the CN bond. The NN bond is very far away and hence does

89



not come in this calculation. Some times a frequency has a zero intensity which is

not tabulated. When the system has a translational symmetry as in a crystal, it call

the “density of vibrational states”. In the case of clusters which is the translational

symmetry does not occur, it call “vibrational spectrum”. In the case of electrons is call

“density of states” (DOS) and for crystals, is “vibrational density of states” (vDOS)

but in molecules is call the vibrational spectrum. The infrared spectra are very rich.

In the case of amorphous carbon nitride, the infrared spectra are very poorly resolved

or not resolved at all and there are impurity modes. Hence at the present time, such

data can not be compared with the calculated frequencies. Actually, this calculation

gives all of the infrared bands but the experimental data is not resolved. The Raman

spectra arise only if there is a change in the polarizability upon shining with light but

the IR does not have such a requirement. There are several isomers in this calculation.

These are the clusters with the same number of atoms but arranged differently so that

the symmetries are different. Usually, the symmetries which are absent are considered

to be broken due to the electron-vibrational interaction. If there is a vibration with

respect to which a degenerate electronic state is not stable, the molecules get distorted

which is called the Jahn-Teller effect. For example, the cluster (iii) CN3 has the same

number of atoms as the cluster (iv) CN3. These isomers indicate that the CN bond

is smaller in the planar configuration than in the pyramidal configuration. There is a

potential with two wells so that the two molecules are located in different wells. Hence,

both clusters are stable. Similarly, CN4 is found in three different symmetries (v), (vi)

and (vii). The CN bond is shortest in the tetrahedral symmetry and longest in the

pyramidal molecule. The C2N is also found in two symmetries, (viii) and (ix). The

linear CNC has a CN bond length of 1.264 Å while the triangular molecule has CN

bond length of 1.340 Å.

The molecule C2N3 is also stable in two configurations, (xi) and (xii). The linear

molecule NCNCN is having shorter CN bond length than the bipyramidal. In the case
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Figure 8.1: The qualitative geometry of clusters (i) to (x) shown by stick-ball models
without electronic structure.
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of C3N two stable configurations are given by (xiv) and (xv). The planar molecule

with C3 forming a triangle with one N in the centre has smaller CN bond length than

the pyramidal molecule. The molecule C3N2 also occurs in two configurations. In this

case also the linear molecule has shorter bond length than the bipyramidal. In the

case of C4N2 the dumb bell configuration has smaller CN bonds than the bipyramidal.

Basically, the isomers, with the same number of atoms,occur in double well potentials

and both of the configurations are stable. The stability of the clusters, the binding

energies and the effect of approximations is further indicated by the energy values

given in Table 8.9. The local density approximation (LDA) values are slightly different

from those obtained from the generalized gradient approximation (GGA). It is believed

that GGA values are better approximation to the actual cluster than those of LDA.

The binding energy strongly depends on the number of atoms and for isomers on the

symmetry of the cluster.

8.6 Conclusions

There is considerable effect of ion exchange on the vibrational frequencies. For exam-

ple, comparison of CN3 (pyramidal) with C3N (pyramidal) shows that CN3 has 561.2

cm−1 whereas C3N has 309 cm−1 as the smallest frequency so that the effect of force

constant is much stronger than the effect of the mass. The vibrational frequencies of

several clusters of carbon and nitrogen atoms have been calculated. Several calculated

frequencies agree with the measured values. It has been pointed out by Liu and Co-

hen [72] that prototype structure may be metastable. It was reported by Hu et al. [73]

that as the nitrogen concentration changes from 11 to 17 percent, the density changes

from 3.3 g/cm3 to 2.1 g/cm3. In this cluster calculation it is very clear that the bond

distances depend on the structure. The population of the vibrations depends on tem-

perature. Hence there is a small effect of temperature on the bond formation. The

effect of extra boron atoms on the boron-carbon-nitrogen bonds has been examined by
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Figure 8.2: The qualitative geometry of clusters (xi) to (xx) shown by stick-ball models
without electronic structure.
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Figure 8.3: The qualitative geometry of clusters (xxi) to (xxvii) shown by stick-ball
models without electronic structure.
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Table 8.9: The zero-point vibrational energy and the binding energy of a cluster

S.No. Cluster Zero point vibrational Binding energy
energy (eV) (eV)

LDA GGA LDA GGA
1 CN 0.1271 0.1253 8.4889 7.6700
2 CN2 Linear 0.2227 0.2133 14.0713 12.6098
3 CN3 Triangular 0.2732 0.2651 14.3830 12.5825
4 CN3 Pyramidal 0.3020 0.2945 13.1572 10.7857
5 CN4 Pyramidal 0.3533 0.3428 17.2567 14.0698
6 CN4 Square 0.2531 0.3345 13.1520 10.3472
7 CN4 Td 0.8935 0.2050 13.6548 11.7459
8 C2N Linear 0.1971 0.2075 14.1565 12.9131
9 C2N Triangular 0.1566 0.1495 12.7557 11.3248
10 C2N2 Rectangular 0.2741 0.2658 17.9783 15.5362
11 C2N3 Bipyramid 0.3318 0.3283 19.7156 16.4972
12 C2N3 Linear 0.5252 0.4827 27.7429 24.4425
13 C2N4 Bipyramid 0.1970 0.2086 16.7952 13.2403
14 C3N Pyramidal 0.1418 0.1658 14.4209 12.1873
15 C3N Triangular 0.1895 0.1906 14.9572 13.1571
16 C3N2 Bipyramid 0.2985 0.2979 21.0665 18.1002
17 C3N2 Linear 0.4526 0.4239 26.8867 23.8476
18 C3N3 Ring 0.5115 0.4739 31.9007 27.6289
19 C3N4 Linear 0.8381 0.7756 41.6774 36.6537
20 C4N Td 0.1413 0.2933 15.8692 13.3594
21 C4N Square 0.1982 0.1500 17.3608 14.7165
22 C4N Pyramidal 0.2528 0.2378 22.7600 19.7943
23 C4N2 Bipyramid 0.3572 0.3567 23.3756 19.9261
24 C4N2 Dumb bell 0.5039 0.4815 27.1663 23.3923
25 C4N4 Ring 0.9104 0.8282 43.2208 40.9440
26 C4N4 Cube 0.6620 0.6571 36.6185 30.7557
27 C3N4 Distorted Cube 0.6800 0.6495 31.9706 26.8455
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Yuge [74]. Many of this clusters are found to be stable with several different relative

concentrations of carbon and nitrogen. The stability of a molecule with slightly differ-

ent concentration than C:N=3:4 has also been discussed by Mattesini and Mater [75].

The linear bonds contribute to the strength of the glassy state and these are influenced

by doping [76].
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Chapter 9

Graphene Infrared Spectroscopy:

DFT Vibrational Frequencies

The band structure asymmetry in terms of positive energy solution not being equal to

the negative energy solution for the electron has been found. The experimental work

shows the gap resonance and the linear Stark effect upon application of the electric field.

The vibrational frequencies of various models of graphene have been calculated using

the density functional theory (DFT). The bond length in a single hexagonal carbon

ring is 1.376 Å and its vibrational frequency is 1062.27 cm−1. In a monolayer of 32

atoms, there are a large number of vibrations starting from 42.24 cm−1 to about 1551.32

cm−1. In another type of graphene model of 30 atoms, the frequencies calculated vary

from 23.12 cm−1 to 1546.26 cm−1. In the case of the two layers of 30 atoms each, the

vibrational frequencies vary from 32.55 cm−1 to 1548.23 cm−1.

9.1 Introduction

In a recent study [77], the electronic band structure of a monolayer of graphene has

been found. It showed that the bands do not cross with a small gap of about 27

meV. The band structure of multilayer of graphene has been calculated from which it
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found that the calculations as well as the experimental data agree with nonrelativistic

theory. This chapter reports the calculation of the vibrational frequencies of graphene.

The periodic boundary conditions are automatically done by the computer programme.

However, in clusters or glasses the ”periodic boundary conditions” are not necessary.

In the periodic boundary condition, the atoms are not oscillating due to the rigidity

of the system so the vibration mode cannot be observed. The vibration modes can be

observed using a cluster method. The clusters of material will be minimized to the

ground state energy before the vibrational frequency can be calculated.

Figure 9.1: A model of 30 atoms of carbon for 1 layer of graphene called type A.

9.2 Results

A single hexagonal ring of carbon atoms has a C - C bond length of 1.376 Å and its

vibrational frequency is 1062.27 cm−1. A model of 30 atoms of carbon has been made

called A type as shown in Fig. 9.1. The vibrational spectrum for this model is shown

in Fig. 9.2. The calculated vibrational frequencies are given in Table 9.1. A model

with 32 atoms whichs is called B has been built and shown in Fig. 9.3. The calculated
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vibrational spectrum is shown in Fig. 9.4. The two layers of the AA type are shown in

Fig. 9.5 and their frequencies are shown in Table 9.3 and Table 9.4. The vibrational

spectrum of AA type is shown in Fig. 9.6.

Figure 9.2: The vibrational frequencies of 1 layer of graphene type A.

9.3 Conclusions

It is found that the energy of 18 meV is of electronic origin. Similarly, the gap of nearly

3100 cm−1 occurs in a system of 12 layers of atoms. The experimental study [78] of

infrared in graphene is therefore concerned with electronic band structure. It is nice

to calculate the vibrational frequencies which show that 18 meV gap can occur in the

electronic bands as well as in vibrational spectra. The resonance effect are expected if

the same energy occurs in the electrons as well as in phonons. Considering the mass of

the carbon atom, the frequency of 3100 cm−1 does not occur in the vibrational spectra

of graphene.
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Figure 9.3: A model of 32 atoms of carbon for 1 layer of graphene type B.

Table 9.1: The calculated vibrational frequencies of 1 graphene layer of type A

Frequency Intensity Frequency Intensity Frequency Intensity
cm−1 (km/mol) cm−1 (km/mol) cm−1 (km/mol)
23.12 1.01 488.74 0.07 989.62 1.53
51.36 2.26 514.68 0.09 1024.44 0.14
94.51 84.70 514.69 3.81 1042.70 29.84
95.31 0.56 520.91 14.47 1061.38 34.69
182.37 28.70 535.82 4.26 1118.65 113.39
188.16 1.88 555.46 0.38 1145.84 23.53
220.77 0.97 556.51 0.39 1163.27 0.03
236.42 1.46 582.64 9.15 1204.22 0.07
267.45 68.16 594.19 95.63 1234.24 0.44
275.54 0.24 649.79 0.02 1239.07 89.13
293.20 0.18 650.76 0.36 1269.68 90.38
337.22 0.04 669.34 182.86 1310.15 3.97
390.63 0.01 670.02 0.07 1349.03 0.06
391.02 0.07 697.49 6.80 1352.46 60.92
393.48 1.53 727.63 4.71 1359.32 17.78
421.36 6.07 736.73 0.22 1380.46 30.61
426.58 0.05 750.59 19.27 1406.51 0.04
443.50 0.15 770.28 0.00 1456.05 0.27
444.21 6.05 807.86 0.03 1472.24 0.01
461.32 3.47 960.28 0.01 1473.00 8.28
488.48 0.02 985.95 299.51 1546.26 34.74
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Figure 9.4: The vibrational frequencies of 1 layer of graphene type B.

Figure 9.5: Graphene 2 layers, type AA, view from the side.
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Table 9.2: The calculated vibrational frequencies of 1 graphene layer of type B

Frequency Intensity Frequency Intensity Frequency Intensity
cm−1 (km/mol) cm−1 (km/mol) cm−1 (km/mol)
42.24 83.71 533.53 3.28 1042.71 2.72
72.05 9.79 544.32 66.81 1076.83 725.60
74.07 3.80 544.52 1.63 1078.40 15.89
80.13 8.23 548.41 4.11 1105.16 17.39
99.73 2.78 558.19 51.85 1108.16 191.69
105.67 19.35 559.02 412.79 1123.52 0.55
140.70 713.95 560.79 7.13 1151.08 129.95
148.74 1.34 596.65 79.18 1154.56 11.18
150.90 2.38 597.34 263.66 1157.02 0.24
171.32 7.61 598.53 1.37 1163.21 12.00
185.96 31.40 616.62 47.22 1201.99 0.61
205.98 2.31 626.59 5.53 1202.42 0.08
208.29 2.03 627.50 2.57 1207.16 82.96
229.16 87.19 640.99 156.42 1222.34 78.48
242.78 1.45 647.92 2.64 1238.43 181.80
255.37 84.86 651.93 0.74 1247.65 32.22
273.59 171.29 655.84 56.98 1256.80 0.58
297.01 1.71 670.88 0.36 1262.98 1.34
302.83 18.00 683.25 21.05 1280.96 160.97
304.84 80.25 688.54 7.35 1294.34 2.48
306.49 2.76 701.92 6.77 1318.36 79.80
309.93 25.59 702.98 3.54 1337.00 3.12
319.68 4.80 723.09 83.06 1360.88 5.74
333.88 202.17 737.35 25.63 1366.50 1.34
358.74 0.16 745.84 34.14 1375.04 143.30
360.17 3.40 760.44 54.72 1387.80 0.84
363.32 109.49 793.37 1.93 1408.39 16.78
382.66 21.96 810.97 6.35 1411.33 0.07
396.03 7.22 874.40 22.58 1432.48 0.20
418.45 0.19 876.04 28.17 1432.60 3.70
465.21 7.73 915.57 45.39 1444.07 13.60
474.18 96.98 930.32 9.41 1450.76 2.72
489.73 0.57 933.10 12.73 1457.57 7.68
500.78 6.05 979.48 1060.16 1472.42 7.43
513.17 9.63 993.31 0.03 1483.82 98.13
515.28 212.62 1006.21 0.02 1508.41 6.05
526.86 0.03 1016.15 133.01 1535.28 32.96
533.25 42.76 1029.69 611.55 1551.32 50.55
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Table 9.3: The calculated vibrational frequencies of 2 graphene layers of type AA for
frequency range between 0 - 650 cm−1

Frequency Intensity Frequency Intensity Frequency Intensity
cm−1 (km/mol) cm−1 (km/mol) cm−1 (km/mol)
32.55 260.56 294.18 65.00 495.38 423.70
36.81 73.46 298.49 37.50 505.82 49.00
54.66 768.90 320.34 146.78 507.35 41.12
66.33 99.30 325.92 42.81 508.52 174.72
82.51 16.77 332.10 49.97 512.28 165.54
103.59 72.76 339.79 45.14 516.98 22.67
107.83 100.24 342.71 616.00 521.21 98.19
114.67 153.75 351.59 206.73 523.30 54.20
119.37 747.62 367.53 238.17 524.37 89.45
126.07 359.38 387.82 191.36 526.19 188.28
128.05 80.70 389.87 13.52 528.91 27.49
141.40 22.28 390.46 45.55 533.56 271.59
143.28 43.50 393.56 256.65 536.46 8.47
163.46 19.80 397.53 38.41 547.52 216.02
193.32 79.86 399.61 7.80 550.78 4.44
195.89 627.88 417.37 11.71 566.11 276.43
208.24 2.77 426.21 13.60 567.45 173.97
218.17 38.04 430.02 4.49 575.00 33.05
226.59 17.02 431.36 3.47 578.79 301.27
233.86 626.24 435.27 88.15 581.73 59.60
238.78 12.56 446.84 62.78 583.24 463.48
244.31 73.38 454.06 14.09 586.04 419.10
245.61 218.30 455.04 1.65 587.64 17.16
268.77 113.44 457.12 51.00 592.72 95.42
269.96 140.78 463.25 150.63 608.34 203.20
274.85 301.19 479.76 56.46 610.58 124.70
275.99 12.12 489.25 141.95 634.58 141.62
281.55 38.68 489.66 119.17 640.92 7.46
282.91 196.05 493.56 82.87
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Table 9.4: The calculated vibrational frequencies of 2 graphene layers of type AA for
frequency range between 650 - 1550 cm−1

Frequency Intensity Frequency Intensity Frequency Intensity
cm−1 (km/mol) cm−1 (km/mol) cm−1 (km/mol)
654.43 56.16 1027.84 284.81 1314.67 131.63
663.74 37.35 1040.40 61.91 1337.32 348.11
664.90 22.78 1043.81 127.35 1344.89 31.23
670.20 93.95 1056.84 271.83 1347.09 190.34
672.27 27.47 1062.36 58.33 1357.66 388.47
675.02 453.18 1063.63 295.47 1358.54 214.42
690.68 457.97 1113.67 16.76 1360.84 93.33
692.88 73.91 1122.50 17.85 1362.89 583.19
727.71 149.04 1126.66 86.74 1363.35 274.15
728.65 3.50 1130.55 48.28 1372.52 3.62
733.29 13.34 1149.34 192.17 1377.66 60.45
744.38 536.88 1150.14 66.58 1387.56 271.78
748.65 839.46 1161.44 13.80 1390.26 266.34
751.36 41.63 1162.19 166.38 1409.60 179.15
769.63 13.42 1164.60 135.64 1450.43 69.82
776.41 190.97 1168.28 47.39 1453.91 41.31
798.08 39.98 1192.91 3.93 1466.97 15.01
811.19 6.62 1200.86 11.47 1467.39 139.48
875.98 150.97 1202.93 17.94 1469.71 79.11
916.43 418.09 1206.74 81.92 1470.22 208.99
917.86 105.31 1235.04 619.84 1477.80 17.41
956.70 52.97 1238.50 0.29 1479.98 3.71
959.98 434.30 1262.36 59.85 1485.23 62.76
974.07 55.97 1265.49 48.59 1485.66 481.42
976.21 0.48 1267.82 164.45 1540.34 197.99
994.95 61.29 1275.82 109.55 1542.98 309.07
1005.52 157.05 1291.93 68.65 1546.15 95.67
1016.12 27.38 1296.46 168.29 1548.23 79.26
1018.41 18.86 1312.28 27.75
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Figure 9.6: The vibrational frequencies of 2 layers of graphene, type AA.
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Chapter 10

Oscillations in The Force Upon

Doping Cuprates

10.1 Introduction

The present view of the understanding of superconductivity is recently provided by Alex

Müller [53]. Needless to say that there have been more than 80000 papers since the

original discovery of indications of high transition temperatures of superconductors [79].

According to the view point of Müller, CuO2 planes exist and when doped with holes,

the phenomenon of “high-temperature superconductivity” occurs. In the original B.C.S

theory, the pairing of the electrons in the conduction band occurs via the electron-

phonon interaction but the transition temperatures are less than 23 K [56]. Since,

large transition temperatures are observed Tc ∼148 K, it is of concern to determine

the mechanism of superconductivity. At one time, it was thought that if a Hubbard

type hoping term is added to the B.C.S. theory, it will provide the correct theory of

superconductivity [56, 80]. It will be of interest if on theoretical grounds it can be

proved that superconductivity is a result of hole doping. The force which is largely

responsible for the lattice vibrations is, (F)=-(k)(x) which is in the form of a matrix
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due to anisotropic force constant. The potential from this force is determined from,

F=-∂V/∂x with similar expressions for ∂/∂y and ∂/∂z. The integrated force is due to

the potential V=1
2
kx2 which is again in the form of a matrix due to anisotropy. It will

be of importance if the effect of hole doping on the force can be found which is relevant

for the understanding of the vibrations in superconductors. The density functional

theory has been used to make models of clusters of atoms which have minimum energy.

Therefore, the clusters of atoms can be built and their vibrational frequencies can be

determined. The transition temperature of a superconductor depends on the inverse

square root of the atomic mass. Hence, the maximum vibrational frequency of a cluster

determines the transition temperature.

In this chapter, the models of CuOn, Cu2On, Cu3On and Cu4On(n=1 to 6) have

been made. In the case of each cluster, the vibrational frequencies have been calculated.

The largest vibrational frequency has been plotted as a function of number of oxygen

atoms. It found that for a small increase in the number of oxygen atoms near a Cu

atom, the vibrational frequency increases. For further increase in the number of oxygen

atoms, the maximum vibrational frequency shows oscillations as a function of number

of oxygen atoms. The vibrational frequency is proportional to the square root of the

force constant, ω =
√

k/m. When normal modes are considered, the force constant will

be represented by a matrix. Therefore the increase in vibrational frequency shows that

the force constant increases upon increasing the number of oxygen atoms and hence

the magnitude of the force increases upon initial doping with oxygen. It is found that

with increasing the number of oxygen atoms, the force oscillates. These oscillations

are important for the understanding of superconductivity.

10.2 The Methodology

One atom of Cu has been considered, on which the various numbers of oxygen atoms

have been added and minimize the energy of the Schrödinger equation for all of the
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electrons which determines the bond lengths and the positions of various atoms. After

the minimum energy configuration is obtained, the vibrational frequencies have been

found. This programme has been tested and the calculated vibrational frequencies have

been compared with the experimental data of Raman spectra with reasonable degree of

confidence. At least in the cases of three different glasses, GeSi, GeSP and GeSe, these

calculated values are in reasonable agreement with the data [25,27,32]. The calculation

is based on the density functional theory in the local density approximation and double

numerical wave functions are used [4,5]. The complete electronic configurations of Cu

and O atoms are taken into account. The atomic number of Cu is 29 and that of

O is 8 which shows the size of the secular determinant. The Schrödinger equation is

differentiated with respect to the electron density to obtain the Kohn-Sham equation

which is solved. An example of obtaining the vibrational frequencies by this method is

given by Lopez-Duran et al. [71]. The whole system of electrons and nuclei is considered

correctly. The programme provides the local density approximation (LDA) as well

as the generalized gradient approximation (GGA) values but they are quite close to

each other. It is kindly provided by Accelrys Software Inc., San Diego, California.

The specific programme used is called DMol3, the details of which are available. The

variety of wave functions have been used and found by experience [25, 27, 32] that

double numeric is the closest to the experimental data.

10.3 Clusters of CuOn

(i) The clusters of CuO molecule has been made with only two atoms, one of Cu

and one of O. The bond length for which the energy is minimum is 1.716 Å. The

vibrational frequency of the stretching frequency is found to be 706.5 cm−1. The

intensity is of reasonable magnitude and the mode is non-degenerate as given in

Table 10.1.
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(ii) A linear molecule O-Cu-O has been made using only the first principles potential

without any adjustable parameters and minimize the energy of the Schrödinger

equation. The bond length corresponding to the minimum energy configuration

is found to be 1.672 Å and the vibrational frequencies are given in Table 10.1.

In addition to the usual mode, there is one more strong vibration at relatively

lower frequency.

(iii) The CuO2(triangular) structure has been made. After optimization for the min-

imum energy, it is found that Cu-O bond length is 1.921 Å and the O-O distance

is 1.478 Å. The vibrational frequencies of this molecule are given in Table 10.1.

(iv) CuO3(pyramidal). The three oxygen atoms have been arrange in a triangle and

put one Cu atom on top so that a pyramid is formed. In the optimized structure,

the Cu-O distance is found to be 1.750 Å and the O-O distance is 3.032 Å. The

vibrational frequencies are given in Table 10.1. There are two doubly degenerate

modes and one in non-degenerate.

(v) CuO4(Td). In this system, the four oxygen atoms are connected to a central Cu

atom so that the symmetry is tetrahedral. In the optimized structure Cu-O bond

length is found to be 1.799 Å and the vibrational frequencies are given in Table

10.1.

(vi) CuO4(pyramidal). A square with four oxygen atoms has firstly made and then

one Cu atom has been putted on the top position. In the optimized structure O-

O distance is 1.760 Å and Cu-O distance is 2.025 Å. The vibrational frequencies

are given in Table 10.1.

(vii) CuO5(pyramidal). A five sided figure from five oxygen atoms has been made and

one Cu atom has been putted on top position. By using double numeric polarized

wave functions, the configuration for which the energy is a minimum, shows O-

O bond length of 1.051 Å and the Cu-O distance is 2.469 Å. The vibrational
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frequencies calculated from the density functional theory by using local-density

approximation are given in Table 10.1.

(viii) CuO6(bipyramidal). The three oxygen atoms forming a triangle are on the right

hand side of one Cu atom and the remaining three oxygen atoms are on the

left. The O-O distance in the minimized configuration is 1.654 Å and the Cu-O

distance is 2.134 Å. The calculated vibrational frequencies are given in Table

10.1.

Table 10.1: The vibrational frequencies of CuOn (n=1-6) along with intensities and
degeneracies.

S.No. Cluster Frequency Intensity Degeneracy
(cm−1) km/mol

1 CuO 706.5 2.6 1
2 CuO2(linear) 133.6 20.0 2
3 CuO2(linear) 845.9 1.2 1
4 CuO2(triangular) 226.6 5.4 1
5 CuO2(triangular) 390.1 11.6 1
6 CuO2(triangular) 892.5 122.8 1
7 CuO3(pyramidal) 49.8 1.2 2
8 CuO3(pyramidal) 161.0 19.1 1
9 CuO3(pyramidal) 649.8 6.9 2
10 CuO4(Td) 116.5 5.1 3
11 CuO4(Td) 550.7 3.6 3
12 CuO4(pyramidal) 246.2 3.7 1
13 CuO4(pyramidal) 270.9 2.9 2
14 CuO4(pyramidal) 706.2 4.4 1
15 CuO5(pyramidal) 251.6 93.0 2
16 CuO5(pyramidal) 625.7 350.0 1
17 CuO6(bipyramidal) 82.0 5.6 2
18 CuO6(bipyramidal) 247.4 66.3 1
19 CuO6(bipyramidal) 778.9 96.6 1

(ix) CuO7. In this cluster seven oxygen atoms are on the surface of a sphere and Cu

is located in the central position. In the optimized configuration Cu-O distance

is 1.934 Å and the vibrational frequencies are given in Table 10.2.
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(x) CuO8. The double numeric polarized wave functions gave Cu-O distance as 2.194

Å. The Cu atom is in the centre and four oxygen atoms are on one side and the

remaining four on the other side. All of the oxygen atoms are on the surface of

a sphere. The vibrational frequencies for this system are given in Table 10.2.

(xi) CuO9. In this cluster one Cu atom is in the centre and all of the oxygen atoms

are on the surface of a sphere. In the optimized configuration Cu-O distance is

2.020 Å and the frequencies are given in Table 10.2.

(xii) CuO10. In this cluster the Cu-O distance is 2.335 Å and O-O distance is 1.984

Å. In the optimized configuration,the vibrational frequencies are given in Table

10.2.

(xiii) Cu2O (triangular). A molecule of three atoms with one oxygen and two Cu atoms

has been made. The Cu-Cu bond length is found to be 2.407 Å and the Cu-O

distance is 1.771 Å. The vibrational frequencies calculated for this system are

given in Table 10.3.

(xiv) Cu2O2 (rectangular). The alternate atoms are Cu and O to form a closed molecule

with Cu-O distance of 1.810 Å. The calculated vibrational frequencies are given

in Table 10.3 and the spectrum calculated from the first principles is given in

Fig. 10.1.

(xv) Cu2O4 (bipyramidal). The four oxygen atoms are first placed in a square and

then one Cu atom is put on one side and another Cu atom on the other side of

the O4 plane. The O-O distance is 2.238 Å and Cu-O distance is found to be

1.950 Å. The vibrational frequencies calculated for this system are given in Table

10.3.

(xvi) Cu2O4 (dumb bell). The Cu-Cu distance is 2.277 Å. Two oxygen atoms are

attached to each Cu atom with Cu-O distance of 1.823 Å. The spectrum calcu-
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Table 10.2: The vibrational frequencies of CuOn (n=7-10) along with intensities and
degeneracies.

S.No. Cluster Frequency Intensity Degeneracy
(cm−1) km/mol

1 CuO7 48.4 0.3 1
2 CuO7 52.1 0.1 1
3 CuO7 401.1 0.01 1
4 CuO7 447.9 7.05 1
5 CuO7 450.3 7.07 1
6 CuO7 486.8 0.01 1
7 CuO7 609.4 0.10 1
8 CuO8 209.5 13.3 1
9 CuO8 733.0 373.0 1
10 CuO9 51.1 0.01 1
11 CuO9 87.8 1.4 2
12 CuO9 94.8 0.97 2
13 CuO9 125.1 0.26 1
14 CuO9 149.2 2.35 1
15 CuO9 300.0 2.12 2
16 CuO9 342.1 0.14 1
17 CuO9 441.4 23.0 2
18 CuO9 446.5 8.14 1
19 CuO9 448.6 0.03 1
20 CuO10 172.5 0.38 2
21 CuO10 269.6 2.71 1
22 CuO10 435.6 5.38 1
23 CuO10 467.1 23.1 2

lated from the first principles is shown in Fig. 10.2. The vibrational frequencies

calculated for this system are given in Table 10.3.

(xvii) Cu2O5 (bipyramidal). A pentagon with oxygen atoms has been made. The O-O

bond length is 2.003 Å and two Cu atoms are placed on the two sides of the

pentagon to form a bipyramidal figure. The Cu-O distance in 2.057 Å. The

calculated vibrational frequencies are given in Table 10.4.

(xviii) Cu2O6 (bipyramidal). A hexagon with oxygen atoms has been made and then

place two Cu atoms, one on each side of the hexagon to form a bipyramidal figure.
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Figure 10.1: The vibrational spectrum of Cu2O2(rectangular) calculated from the first
principles.

Figure 10.2: The vibrational spectrum of Cu2O4(dumb bell) calculated from the first
principles.
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Table 10.3: The vibrational frequencies of Cu2On (n=1-4) along with intensities and
degeneracies.

S.No. Cluster Frequency Intensity Degeneracy
(cm−1) km/mol

1 Cu2O(triangular) 156.1 1.2 1
2 Cu2O(triangular) 565.5 30.2 1
3 Cu2O(triangular) 668.9 22.7 1
4 Cu2O2(rectangular) 192.2 44.5 1
5 Cu2O2(rectangular) 456.7 41.3 1
6 Cu2O2(rectangular) 626.6 31.9 1
7 Cu2O4(bipyramidal) 108.6 32.5 1
8 Cu2O4(bipyramidal) 135.7 0.7 2
9 Cu2O4(bipyramidal) 234.1 0.01 2
10 Cu2O4(bipyramidal) 492.8 8.6 2
11 Cu2O4(dumb bell) 122.7 25.8 1
12 Cu2O4(dumb bell) 260.8 24.9 1
13 Cu2O4(dumb bell) 585.5 0.03 1
14 Cu2O4(dumb bell) 604.0 5.48 1
15 Cu2O4(dumb bell) 813.7 168.8 1
16 Cu2O3(bipyramidal) 112.6 3.2 2
17 Cu2O3(bipyramidal) 267.2 0.01 2
18 Cu2O3(bipyramidal) 316.7 11.6 2
19 Cu2O3(bipyramidal) 414.8 14.1 1
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The O-O distance in the optimized configuration is 1.821 Å and the Cu-O bond

length is 2.164 Å. The calculated vibrational frequencies are given in Table 10.4.

(xix) Cu2O6 (dumb bell). Two Cu atoms which are separated by 2.974 Å has been

made. Then three O atoms are attached to each Cu atom in the three fold sym-

metry. The Cu-O bond length is found to be 1.842 Å. The calculated vibrational

frequencies are given in Table 10.4.

Table 10.4: The vibrational frequencies of Cu2On (n=5-7) along with intensities and
degeneracies.

S.No. Cluster Frequency Intensity Degeneracy
(cm−1) km/mol

1 Cu2O5(bipyramidal) 166.4 0.02 1
2 Cu2O5(bipyramidal) 171.6 0.02 1
3 Cu2O5(bipyramidal) 255.5 28.7 1
4 Cu2O5(bipyramidal) 360.8 9.7 1
5 Cu2O5(bipyramidal) 362.4 9.6 1
6 Cu2O6(bipyramidal) 137.7 28.2 1
7 Cu2O6(bipyramidal) 226.9 0.01 1
8 Cu2O6(bipyramidal) 500.9 24.2 1
9 Cu2O6(bipyramidal) 501.0 23.6 1
10 Cu2O6(dumb bell) 130.8 11.4 2
11 Cu2O6(dumb bell) 172.1 48.3 1
12 Cu2O6(dumb bell) 321.7 2.4 2
13 Cu2O6(dumb bell) 516.5 0.3 2
14 Cu2O6(dumb bell) 524.9 17.1 1
15 Cu2O7(bipyramidal) 395.4 0.01 1
16 Cu2O7(bipyramidal) 503.1 17.8 2
17 Cu2O7(bipyramidal) 515.3 0.01 1

(xx) Cu3O(pyramidal). Three copper atoms form a triangle with Cu-Cu distance of

2.407 Å and one O atom sits on the top position with Cu-O distance of 1.882

Å. The vibrational frequencies of clusters containing three Cu atoms are given in

Table 10.5.

(xxi) Cu3O2(bipyramidal). First a triangle is made by using three copper atoms and
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then one oxygen atom is put on top and another Cu atom is placed symmetrically

on the other side of the triangle to form a bipyramid. In the optimized structure

the Cu-Cu distance is 2.374 Å and Cu-O distance is 1.945 Å. The vibrational

frequencies are given in Table 10.5.

(xxii) Cu3O2(linear). A linear molecule with one Cu atom in the centre has been made.

Near the ends, the Cu-O bond is 1.721 Å long whereas near the centre, the O-Cu

distance is 1.729 Å. The DFT naturally distinguishes the bonds which are near

the ends of the molecule compared with the same atoms near the centre. In the

molecular physics all of the Cu-O bonds should be of equal length but the more

accurate study clearly distinguishes more modes than old molecular physics in

which all of the Cu-O bonds must be of equal length. The vibrational frequencies

are given in Table 10.5.

(xxiii) Cu3O3(bitriangular). The oxygen atoms form one triangle and Cu atoms form

another. The two triangles are superimposed on each other. The Cu-O bonds

have length 1.795 Å. The vibrational frequencies are given in Table 10.5.

(xxiv) Cu3O4(linear). All of the seven atoms are in a straight line. As expected the

Cu-O distance at the end is less than in the centre. The bond distances are

1.699, 1.720 and 1.712 Å. The vibrational frequencies are given in Table 10.5.

(xxv) Cu3O5(extrabipyramidal). The three Cu atoms form a triangle with Cu-Cu dis-

tance of 2.617 Å. Two O atoms sit one on top and the other on bottom of the

triangle to form a bipyramid. The Cu-O distance in the pyramids is 1.892 Å.

The remaining three O atoms are attached, one to each Cu atom. Outside the

pyramids the Cu-O distance is 1.698 Å. The vibrational spectrum calculated from

the first principles is given in Fig. 10.3. The vibrational frequencies of clusters

containing three Cu atoms and 5 O atoms are given in Table 10.6.
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Table 10.5: The vibrational frequencies of Cu3On (n=1-4) along with intensities and
degeneracies.

S.No. Cluster Frequency Intensity Degeneracy
(cm−1) km/mol

1 Cu3O(pyramidal) 119.8 0.13 2
2 Cu3O(pyramidal) 184.6 0.71 1
3 Cu3O(pyramidal) 370.3 0.01 2
4 Cu3O(pyramidal) 558.6 15.88 1
5 Cu3O2(bipyramidal) 163.2 2.2 2
6 Cu3O2(bipyramidal) 309.6 23.2 2
7 Cu3O2(bipyramidal) 492.6 41.7 1
8 Cu3O2(linear) 54.9 3.4 2
9 Cu3O2(linear) 396.3 7.2 1
10 Cu3O2(linear) 972.0 66.6 1
11 Cu3O3(bitriangular) 104.0 16.5 2
12 Cu3O3(bitriangular) 121.7 0.01 1
13 Cu3O3(bitriangular) 135.7 53.1 1
14 Cu3O3(bitriangular) 189.6 0.08 1
15 Cu3O3(bitriangular) 496.4 7.3 1
16 Cu3O3(bitriangular) 497.9 8.4 1
17 Cu3O3(bitriangular) 596.2 0.09 1
18 Cu3O3(bitriangular) 602.5 0.02 1
19 Cu3O3(bitriangular) 655.2 35.4 1
20 Cu3O3(bitriangular) 656.3 38.6 1
21 Cu3O4(linear) 32.2 1.4 2
22 Cu3O4(linear) 122.8 5.7 2
23 Cu3O4(linear) 287.0 41.6 2
24 Cu3O4(linear) 387.2 1.5 1
25 Cu3O4(linear) 756.3 10.7 1
26 Cu3O4(linear) 1016.5 50.2 1
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(xxvi) Cu3O5(asymmetric). In this model there are three Cu atoms. One oxygen atom

is attached to the central Cu atom and two oxygen atoms to each Cu atoms at

the ends of the molecule. The central Cu-O bond distance is 1.712 Å. The Cu-O

distance at the ends is 1.755 Å and Cu-Cu distance is 2.557 Å.

(xxvii) Cu3O6(triangular). The three Cu atoms are in a triangle and two oxygen atoms

are attached to each Cu atom. The Cu-Cu distance is 2.280 Å. The Cu-O distance

for the central Cu atom is 1.944 Å whereas for the Cu-O bonds at the two ends,

the Cu-O distance is 1.841 Å. Usually, all of the three Cu atoms will be symmetric

but there is a charge effect similar to the ionization which opens up the Cu-Cu-Cu

to form an angle. Therefore, there is a central Cu atom and two Cu atoms are

on the ends. The vibrational frequencies are given in Table 10.7.

(xxviii) Cu4O(pyramidal). The four Cu atoms form a square with one O atom on top

position. The Cu-Cu distance is 2.451 Å and O-Cu distance is 1.908 Å. The

vibrational frequencies are given in Table 10.8.

(xxix) Cu4O (Td). This molecule has a tetrahedral arrangement of atoms with one oxy-

gen atom in the centre. The Cu-O distance is 1.845 Å. The vibrational frequencies

are given in Table 10.8.

(xxx) Cu4O2(dumb bell). There are two oxygen atoms with a relatively large separation

of 4.182 Å. Two Cu atoms are attached to each oxygen atom with Cu-O distance

of 1.783 Å. The vibrational spectrum calculated from the first principles is shown

in Fig. 10.4. The vibrational frequencies are given in Table 10.8.

(xxxi) Cu4O3(linear). All of the seven atoms are arranged alternatively with Cu atoms

on both ends. The Cu-O bond length near the centre is 1.77 Å and 2.153 Å

near the ends. The vibrational frequencies are given in Table 10.8.

(xxxii) Cu4O4(cube). The eight atoms are alternately on the eight corners of a simple
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Figure 10.3: The vibrational spectrum of Cu3O5(extrabipyramidal) calculated from
the first principles.

Figure 10.4: The vibrational spectrum of Cu4O2(dumb bell) calculated from the first
principles.
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Table 10.6: The vibrational frequencies of Cu3On (n=5) along with intensities and
degeneracies.

S.No. Cluster Frequency Intensity Degeneracy
(cm−1) km/mol

1 Cu3O5(extrabipyramidal) 58.9 23.6 1
2 Cu3O5(extrabipyramidal) 60.4 0.9 1
3 Cu3O5(extrabipyramidal) 72.3 3.3 1
4 Cu3O5(extrabipyramidal) 76.2 1.4 1
5 Cu3O5(extrabipyramidal) 77.0 12.9 1
6 Cu3O5(extrabipyramidal) 153.2 1.3 1
7 Cu3O5(extrabipyramidal) 157.6 13.4 2
8 Cu3O5(extrabipyramidal) 218.0 2.08 1
9 Cu3O5(extrabipyramidal) 354.7 0.01 1
10 Cu3O5(extrabipyramidal) 365.1 0.01 1
11 Cu3O5(extrabipyramidal) 388.1 26.4 1
12 Cu3O5(extrabipyramidal) 396.3 17.5 1
13 Cu3O5(extrabipyramidal) 454.8 14.9 1
14 Cu3O5(extrabipyramidal) 616.5 3.7 1
15 Cu3O5(extrabipyramidal) 772.8 6.4 1
16 Cu3O5(extrabipyramidal) 774.4 4.2 1
17 Cu3O5(extrabipyramidal) 785.5 3.1 1
18 Cu3O5(asymmetric) 101.9 6.6 1
19 Cu3O5(asymmetric) 117.1 4.3 2
20 Cu3O5(asymmetric) 143.5 0.01 1
21 Cu3O5(asymmetric) 202.2 30.8 1
22 Cu3O5(asymmetric) 212.8 5.1 1
23 Cu3O5(asymmetric) 280.0 11.3 1
24 Cu3O5(asymmetric) 526.1 19.6 1
25 Cu3O5(asymmetric) 572.7 0.16 1
26 Cu3O5(asymmetric) 628.4 35.1 1
27 Cu3O5(asymmetric) 685.2 5.6 1
28 Cu3O5(asymmetric) 686.9 30.7 1
29 Cu3O5(asymmetric) 694.8 5.3 1
30 Cu3O5(asymmetric) 891.7 140.8 1
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cube. The Cu-O bond length is 1.946 Å. The vibrational frequencies are given in

Table 10.9.

(xxxiii) Cu4O5(linear). All of the nine atoms are in a straight line. The Cu-O distances

are 1.698, 1.713 and 1.716 Å. When there is a variety in the bond lengths, nat-

urally there is a variety in the vibrational frequencies. When small and bigger

bond occur, the vibrational frequencies are different. The vibrational frequencies

are given in Table 10.9.

(xxxiv) Cu4O6. The four atoms of Cu and four atoms of oxygen form a square. The

four O atoms are on the 4 corners of a square and then four Cu atoms are

on the side centres. The remaining two oxygen atoms are on top and bottom

positions forming a double pyramid. The Cu-O bond lengths are 1.777 and 2.453

Å, respectively. The vibrational frequencies are given in Table 10.9.

10.4 Jahn-Teller effect

Some of the clusters are not stable in isolation. Therefore, only those for which the bond

lengths and structures are optimized have been described. It may be noted from (ii) and

(iii) that the same number of atoms occur in two different configurations indicating

that two different configurations are stable so that there must exist a double well

potential [81]. This is due to the strong vibronic coupling interacting with degenerate

states which are not stable because of the interaction energy. Thus, the Jahn-Teller

effect removes some of the symmetries which are not found in stable crystals. The

clusters give information about the vibrations which upon cooling contribute to the

formation of Cooper pairs. The B.C.S. theory in the present form is written in terms

of simple integrals which assume isotropic electron-phonon interaction. Performing

the integrals numerically improves the transition temperatures but the expression,

~ω exp(−1/N(0)V ), for the transition temperature, with ω as the phonon frequency,
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N(0) as the electron density of states at the Fermi level and V the coupling constant

of the electron-phonon interaction, makes the Tc very small. Hence the work should

be done in the region where the exponential factor is almost 1. The anisotropy of the

interaction has not been included in the calculation of the transition temperature.

10.5 Vibrational frequencies

The vibrational frequencies of various clusters of Cu-O are given in Tables 10.1-10.9.

For one Cu atom, the values are given in Table 10.1 and 10.2. The highest frequency

has been looked in analogy with a cutoff model and plot this frequency as a function

of number of atoms. This simulates the doping of the Cu atom with oxygen. When

number of O atom increases from one O to two O atoms, the frequency increases but

when the frequency has been plotted as a function of number of O atoms from 1-10,

there are oscillations as shown in Fig. 10.5. The frequency of a harmonic oscillator is

ω =
√

k/m, which in the clusters appears as normal modes. Since, the mass is more

likely to be a constant, the variation in the frequency as a function of doping indicates

that the force constant is oscillating. The potential is related to the force as F=-grad

V. For a one-dimensional harmonic oscillator, V=(1/2)kx2. Therefore, the expression

F=-kx, indicates that the oscillations of the force constant are equivalent to oscillations

in the force. In the actual crystal F , k and x are matrices. From the data in Fig. 10.5,

it is found that the force oscillates upon doping one Cu atom with a variable number

of oxygen atoms.

Next, the calculation of the highest vibrational frequency of Cu2On with n = 1

to 7 has been performed. It is found that for n = 4, the vibrational frequency has a

peak and there is symmetry near this point as shown in Fig. 10.6. The oscillations in

the force as a function of doping are clearly visible. The phonons in the system have

oscillations due to the oscillating force. Hence, it is expected that the electron-phonon

interaction will also be affected by these oscillations.
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Figure 10.5: A plot of the largest vibrational frequency as a function of number of oxy-
gen atoms in the cluster with only one Cu atom as calculated from the first principles.
For n going from 1 to 2 the frequency increases, otherwise, it oscillates.

Next, the highest phonon frequency of Cu3On has been plotted for n = 1 to 6 as

shown in Fig. 10.7. As the number of oxygen atoms increases from 1 to 2, there is an

increase in the phonon frequency. When the number of oxygen atoms increases to 7,

there are oscillations in the frequency as a function of number of oxygen atoms. This

means that the electron-phonon interaction which depends on the phonon frequency

may also oscillate as a function of doping. The transition temperature qualitatively

depends on the phonon frequency and hence on the
√

k/m. Therefore, oscillations in

the force constant may lead to oscillations in the transition temperature. Next, the

phonon frequency of Cu4On has been calculated. In this system also, there is clearly

an increase in the phonon frequency as a function of doping from n=1-3.

Later for n ≥ 4, there are oscillations as shown in Fig. 10.8. Therefore, it conclude

that the transition temperature of a superconductor oscillates upon doping with oxygen
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Figure 10.6: A plot of the largest frequency as a function of number of oxygen atoms
with only two Cu atoms calculated from the first principles, showing a peak at n=4
and oscillations around it.

and hence often a large transition temperature is found.

10.6 Discussions.

The group theoretical study of CuO has been performed by Guha et al. [82] and the

vibrational frequencies found in pure CuO single crystals are of the same order of

magnitude as found in the present work but the basic idea of the present work is to

dope the CuO with oxygen. Another Raman study [83] of CuO thin films also identifies

Cu2O as well as CuO. However, in the case of clusters, valencies other than 1 and 2

are quite possible which have minimum energy configurations. The thermodynamic

stability of copper oxide surfaces has been discussed by Soon et al. [84]. It is also found

that nanostructures occur which support the idea of cluster formation [85]. The copper
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Figure 10.7: A plot of the largest frequency as a function of number of oxygen atoms
with only three Cu atoms showing increase in the frequency for n going from 1 to 2
and oscillations upon further doping.

oxide is an important component of the superconductors [86–89], which show increase

in the transition temperatures upon doping. Some of these materials have a normal

phase and superconductivity occurs only upon doping. Therefore, this calculation

of doping of copper oxide by excessive oxygen simulates the conditions in which the

superconductivity emerges.

10.7 Conclusions.

The first principles calculation of vibrational frequencies as a function of doping Cu

with oxygen atoms has been performed. The highest phonon frequency first increases

upon doping and then upon further doping shows oscillations. From these calculations,

it is found that the transition temperatures first increase upon doping CuO with oxygen
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Figure 10.8: A plot of the largest vibrational frequency of four Cu atoms upon dop-
ing with oxygen atoms showing increase in the frequency with increasing number of
oxygen atoms. For n > 3, there are oscillations. Since the transition temperature of a
superconductor depends on the vibrational frequency, the transition temperature upon
doping is expected to be increase.

atoms and later upon further doping shows oscillations. Hence for a given structure

the transition temperature can be increased by hole doping. In the B.C.S. theory the

oscillations occur in the x but not in k. In the present work, it is found that the force,

F=-kx, oscillates due to oscillations in k. The electron-phonon interaction is obtained

by assuming that only δx has phonon operators but ∂V/∂x should be evaluated at the

equilibrium, where V is the Coulomb potential. It means that the coupling constant

of the electron-phonon interaction oscillates and enhances the transition temperature

of a superconductor .
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Table 10.7: The vibrational frequencies of Cu3On (n=6) along with intensities and
degeneracies.

S.No. Cluster Frequency Intensity Degeneracy
(cm−1) km/mol

14 Cu3O6(triangular) 99.8 0.01 1
15 Cu3O6(triangular) 175.9 1.8 1
16 Cu3O6(triangular) 181.7 7.0 1
17 Cu3O6(triangular) 184.5 26.8 1
18 Cu3O6(triangular) 208.1 1.2 1
19 Cu3O6(triangular) 259.8 2.3 1
20 Cu3O6(triangular) 384.3 1.5 1
21 Cu3O6(triangular) 452.8 0.2 1
22 Cu3O6(triangular) 453.2 0.04 1
23 Cu3O6(triangular) 480.6 103.3 1
24 Cu3O6(triangular) 563.8 0.6 1
25 Cu3O6(triangular) 569.5 65.7 1
26 Cu3O6(triangular) 574.7 24.7 1
27 Cu3O6(triangular) 680.0 126.8 1
28 Cu3O6(triangular) 727.1 0.01 1
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Table 10.8: The vibrational frequencies of Cu4On (n=1-3) along with intensities and
degeneracies.

S.No. Cluster Frequency Intensity Degeneracy
(cm−1) km/mol

1 Cu4O(pyramidal) 111.2 1.6 1
2 Cu4O(pyramidal) 128.3 2.2 2
3 Cu4O(pyramidal) 406.3 9.4 1
4 Cu4O(pyramidal) 441.9 24.5 2
5 Cu4O(Td) 524.2 5.6 3
6 Cu4O2(bipyramidal) 168.2 0.9 2
7 Cu4O2(bipyramidal) 265.1 2.2 2
8 Cu4O2(bipyramidal) 370.8 50.8 1
9 Cu4O2(dumb bell) 18.4 0.8 1
10 Cu4O2(dumb bell) 53.5 57.1 1
11 Cu4O2(dumb bell) 107.0 5.7 1
12 Cu4O2(dumb bell) 213.8 13.4 1
13 Cu4O2(dumb bell) 565.7 13.2 1
14 Cu4O2(dumb bell) 625.1 64.3 1
15 Cu4O3(linear) 26.2 2.0 2
16 Cu4O3(linear) 266.8 23.2 2
17 Cu4O3(linear) 324.0 2.1 1
18 Cu4O3(linear) 930.8 317.1 1
19 Cu4O3(linear) 1014.3 19.9 1
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Table 10.9: The vibrational frequencies of Cu4On (n=4-6) along with intensities and
degeneracies.

S.No. Cluster Frequency Intensity Degeneracy
(cm−1) km/mol

1 Cu4O4 153.1 2.27 3
2 Cu4O4 340.5 21.9 3
3 Cu4O4 486.5 26.1 3
4 Cu4O5 18.0 0.85 1
5 Cu4O5 41.6 0.01 1
6 Cu4O5 75.0 2.90 1
7 Cu4O5 117.6 0.03 1
8 Cu4O5 195.6 9.2 2
9 Cu4O5 305.4 0.21 1
10 Cu4O5 319.8 45.5 2
11 Cu4O5 750.8 27.6 1
12 Cu4O5 945.6 117.5 1
13 Cu4O5 997.0 0.02 1
14 Cu4O5 1035.9 34.9 1
15 Cu4O6 186.1 1.26 2
16 Cu4O6 227.9 5.9 2
17 Cu4O6 230.9 2.7 2
18 Cu4O6 281.6 48.5 1
19 Cu4O6 547.1 3.4 2
20 Cu4O6 649.6 0.06 1
21 Cu4O6 692.5 48.3 2
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Chapter 11

Vibrations in Selenium Glass

The density functional theory has been used for calculating the vibrational frequencies

of clusters of atoms. The bond distances and angles have been obtained for which the

energy of the Schrödinger equation is minimum. It is found that the bond distance

between two Se atoms to be 232.1 picometer when double zeta wave function is used.

The frequency of oscillations is calculated to be 325.3 cm−1 but the intensity is zero so

that Se2 molecule is in very small number. When polarized double zeta wave function

(DZP) is used, the bond length of Se2 is found to be 223.1 pm and the frequency is

367.4 cm−1. Similarly, for double zeta wave functions (DZ), Se3 linear molecule has

a frequency of 247.18 cm−1 and bond length of 248.6 pm. For the (DZP), the bond

length of Se3 is 238.3 pm and the vibrational frequency is 260.1 cm−1. For triangular

Se3 (DZ), gives 253.8 pm and 217.3 cm−1. For triangular Se3 (DZP), gives 241.3 pm

and 248.38 cm−1. The experimental Raman spectra give 250 cm−1 for a selenium glass.

By comparing the experimental frequencies with those calculated, it found that linear

Se3 is present in the glass. This indicates the possibility of linear growth in the glass.
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11.1 Introduction

The study of glasses is important for the understanding of its strength and for

the knowledge of their elastic properties. In some glasses, the phenomenon of self-

organization can be learned [22]. In some glasses, there are soft phonons [23], the

frequencies of which go to zero. In the Raman spectra, the frequency of the soft phonon

becomes so small that it merges with the Rayleigh line . The experimental measure-

ments of the Raman spectra have been carried out by Boolchand [24, 91]. In recent

years, the vibrational frequencies have been calculated from the first principles [25,27].

In glasses of the GeSI, the calculated values [25] of the vibrational frequencies are in

good agreement with those found experimentally from the Raman spectra. In the case

of GePS glass [27] also the calculated values are close to the experimental values ob-

tained from the Raman spectra. The calculated values are so good that it confirms

our faith in quantum mechanics. Therefore, an effort has been made to determine the

vibrational frequencies in selenium, Se metal. Many different models have been made

by using the density functional theory and calculated the vibrational frequencies in

each case. The smallest molecule Se2 is not formed at all and there are a minimum

number of atoms before which the system can stabilize.

The calculation of vibrational frequencies of clusters of Se atoms have been reported.

It is found that Se3 is the smallest cluster for which the stability is obtained and the

vibrational frequencies are calculated. The calculation is performed by having double

zeta wave functions with and without polarization. Many different clusters have been

studied. The molecules Se2, Se3, Se3-linear, Se3-ring, Se4-linear, Se4-pyramid, Se4-

square, Se5-linear, Se5-pyramidal and Se5-ring have been optimized and their bond

lengths are obtained for the minimum energy. The vibrational frequencies have been

calculated in each case. The calculated frequencies are compared with those found in

the experimentally measured Raman spectra of Se glass. This comparison shows that

Se3 is present in the glass and Se2 is not stable due to its zero intensity.

131



11.2 Calculated Frequencies

The density functional theory is used to make a model of several atoms. The energy

of the Schrödinger equation is minimized to obtain the bond lengths and angles in

the cluster models. The vibrational frequencies are obtained for the optimized clusters

and several clusters have been made with a variety of wave functions. The double zeta

wave functions are used with and without the polarization. Some of the calculated Se

clusters are described below.

(i) Se2-linear cluster: The Se2 molecule is made and optimized for the minimum en-

ergy. The optimized bond length is found to be 232.1 picometer. In this case, the

intensity of the vibrational spectrum is almost zero, indicating that the number

of molecules formed is very small. The vibrational frequency is found to be 325.3

cm−1 but zero intensity shows that it is unlikely to be observed. The double zeta

wave function (DZ) is then replaced by the polarized wave function. The double

zeta wave function with polarization (DZP) changed the bond distance to 223.1

pm and the vibrational frequency to 367.4 cm−1 but the intensity continued to

be negligibly small ∼ 0.000000 km/mol. The intensity of vibrations of the A1

mode of NH3 in the DZP becomes very small such as 0.7 in LDA compared with

57.8 for the doubly degenerate mode as discussed by Fan and Zeigler [90]. From

this calculation, the intensity of the linear diatomic Se2 molecule is indeed zero

so it can be assume that these molecules do not exist in the metal, except in the

negligibly small quantity. This raises an interesting question, namely that, then

what is vibrating in the pure selenium glass?

(ii) Se3-ring: The three atoms of Se are arranged in a triangular form. The DZ

wave function gives 253.8 pm as the bond distance with degenerate two values

of the vibrational frequency of 217.2 cm−1 each. The DZP wave function for this

triangular molecule gives 241.3 pm for the bond distance and 248.38 cm−1 for
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the vibrational frequency with intensity 0.0639 km/mol. A strong vibrational

spectrum is obtained as shown in Fig. 11.1.

Figure 11.1: The vibrational spectrum of Se3 ring calculated from first principles.

(iii) Se3-linear: The DZ wave function gave the bond length 248.6 pm and the vi-

brational frequencies 247.2 cm−1 for the optimized linear arrangement of three

atoms with strong intensity ∼ 35.7 km/mol. The DZP for this system gives 238.3

pm for the bond length, 260.1 cm−1 for the frequency and 68.6 km/mol for the

intensity.

(iv) Se4-linear: The DZ wave function for four atoms of Se in a linear configuration

gives the bond length of 233.1 pm and a vibrational frequency of 313.5 cm−1

with strong intensity of 33.0 km/mol, while the DZP wave function gave the

bond length of 233.0 pm with frequency 313.79 cm−1.

(v) Se4-pyramidal: The three atoms sit on a triangle and the fourth atom on the

top position so that a pyramidal molecule is formed. The DZ wave function gave

287.4 pm for the bond length and three values of the vibrational frequency of

1183.7 cm−1. The DZP gave 271.3 pm for the bond length and 50.9 cm−1 for the
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Figure 11.2: The picture of Se3 ring structure.

frequency. Therefore, the effect of polarization in this model is very strong.

(vi) Se4-square: The set of 4 atoms on the corners of a square when optimized for

the minimum energy using the density-functional theory with DZ wave function

gave 257.3 pm for the bond length and 229.07 cm−1 for a doubly degenerate

vibration. When DZP is used the optimized bond length became 254.0 pm and

the frequency got shifted to 261.7 cm−1 with intensity 1.13 km/mol. A strong

vibrational spectrum is obtained as shown in Fig. 11.3.

(vii) Se5-linear: Five atoms of Se arranged linearly give 258.1 pm for the bond length

and weak vibrations, with DZ wave function, at 31.7 cm−1 (two values of intensity

0.089 km/mol each) and 147.9 cm−1 (two values of intensity 0.039 km/mol each).

There is one more vibration at 225.7 cm−1 (intensity 24.3 km/mol) and strong

vibration at 256.8 cm−1 (intensity 97.4 km/mol). Considering the intensities,

the strong vibration is located at 256.8 cm−1. The DZP wave function gives

229.5 pm for the bond length and weak oscillations at 39.69 cm−1 (two values

0.0008 km/mol each), 194.8 cm−1 (intensity 19.38 km/mol) and strong vibration
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Figure 11.3: The vibrational spectrum of Se4 (square) calculated from the first princi-
ples.

at 303.4 cm−1 (intensity 25.4 km/mol). A strong vibrational spectrum is obtained

as shown in Fig. 11.4.

(viii) Se5-pyramidal: There are 4 atoms in the base and one on top. The DZ wave func-

tions give 274.0 pm for the bond length and 113.7 cm−1 (intensity 16.3 km/mol),

with strong oscillation at 242.09 cm−1 (intensity 0.418 km/mol). The polarized

wave function DZP gave 274.0 pm for the bond length and 131.37 cm−1 (0.003

km/mol) for a weak vibration and 235.0 cm−1 (12.06 km/mol) for a doubly de-

generate strong vibration.

(ix) Se5-ring: The ring model with five atoms by using DZ wave function gives 252.1

pm for the bond length and the ring frequency is 232.4 cm−1 (2.7 km/mol). The

polarized wave function gave the bond length of 241.4 pm and the ring frequency

of 259.8 cm−1 (1.01 km/mol). A vibrational spectrum is obtained as shown in

Fig. 11.5 and the structure as shown in Fig 11.6.
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Figure 11.4: The vibrational spectrum of Se5 (linear) calculated from the first princi-
ples.

Figure 11.5: The vibrational spectrum of Se5 ring with DZ wave function calculated
from the first principles.
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Figure 11.6: The picture of Se5 ring structure.

11.3 Raman Spectra

The most detailed experiment studies of the Raman spectra in glasses have been per-

formed by Boolchand [91]. The spectra of GexSe1−x with varying concentration lead to

the discovery of rigidity transition. The cluster of Ge-Se and its vibrational frequencies

have been computed [27]. During this study it was clear that Se-Se bond is not well

understood. According to the experimental study, Se-Se stretch mode of Sen - chain

(chain mode) occurs at about 250 cm−1. The calculations of Se clusters show that this

experimental value occurs in Se3 and the Se2 are not formed due to metallic character

of the glass as shown in Table 11.1.

Table 11.1: The experimental Se vibrational mode compared with calculations

Experimental Calculated Model
cm−1(SZ) cm−1

250 247.2 Se3-linear
248.3 Se3-ring
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The Se3 cluster with linear shape has 4 vibrational modes while the ring shape of

Se3 cluster has 3 vibrational modes. In the Cartesian coordinates, a molecule has 3n

degrees of freedom while n is number of atom consist in the molecule. A linear molecule

has 2 degrees of rotational and 3 degrees of translational so total of vibrational mode

is 3n − 5. For nonlinear shape, total of vibrational mode is 3n − 6 with different in

degree of rotational which is 3 degrees. That mean the diatomic molecule has only

one vibrational modes, 3 × 2 − 5 = 1. A selenium diatomic molecule showed zero

intensity for the vibrational frequency, 325.3 cm−1. This vibration did not produce

any changing in the dipole moment of the molecule Se2 because of the symmetrical

vibration. It showed that Se2 has a very small energy due to the small number of

atoms. Hence, the vibrations of Se2 diatomic cannot be observed in the vibrational

frequency.

11.4 Conclusions

The ab initio calculations of vibrational frequencies in several different models of sele-

nium have been performed. From these calculations, the Se3 molecules has been found

performed in the Se glass. The calculated values are close to those measured in Se

glass. The comparison of the calculated values with the Raman spectra proved that

Se2 is not formed in the metal and the Raman spectra are due to Se3.
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Chapter 12

Conclusions

The vibrational frequencies of clusters have been calculated by using the density func-

tional theory (DFT). The values calculated by this method agree with the experimental

results. The DFT has been described in chapter 1 including Hohenberg-Kohn theo-

rems, Kohn-Shams equation, local density approximation and self consistent fields.

These equations are solved by using the ADF and DMol3 softwares.

Chapter 2 discusses the ab initio calculation of AgGeSe glass. The clusters of

pure silver, clusters of AgGe and clusters of AgSe have been made to calculate the

vibrational frequencies. The calculated vibrational frequencies have been compared

with the experimental data and found that Ag2Ge is formed in the glass. Amongst the

pure silver clusters, Ag3 is the smallest cluster formed.

Chapter 3 gives the vibrational frequencies of arsenic selenide (AsSe) glass. The

clusters of As and Se have been optimized to the minimum energy then calculated

to get the vibrational frequencies. The values calculated for a linear system are in

accord with the experimental values. The linear bonds of As2Se has been identified

and present in the AsSe glass. These bonds appearing in As2Se (linear), are important

for the strength of the glassy state.

Chapter 4 continues with arsenic sulphide (AsS) glass. From this calculation, it is

found that AsS consists of several different compositions mixed together. It is found
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that AsS3 (triangular), AsS3 (pyramid), AsS4 (3-1 model), AsS4 (Td), As4S4 (ring),

As2S3 (bipyramid), As4S4 (cubic), As2S3 (zig-zag), As4S3 (linear), As2S6 (dumb bell)

are predicted on the basis of quantum mechanical first principle calculations including

the well known minerals like realgar (AsS) and orpiment (As2Se3). This prediction

agrees with the experimental Raman spectra. The existence of these molecules is

also apparent from the decoloration in the samples of the minerals. The usefulness of

quantum mechanics for the study of glass structures is therefore well demonstrated.

In chapter 5, the first principle calculations of the vibrational frequencies have been

performed in a large number of clusters containing arsenic oxides (AsO). The clusters

present in the actual sample have been identified by comparing the calculated values

with those found in the data. The frequencies of AsO2, AsO4 (Td), As2O2 (rectangular),

AsO2 (triangle), AsO3 (pyramidal) and AsO2 (triangle) agree with the experimental

values. A method to identify new clusters and molecules found in the minerals has

been found. It is found that the vitreous state of As2O3 is made of several clusters of

different valencies.

In chapter 6, the law force in iron-phosphorous (FeP) clusters of atoms has been

determined. The LaFePO becomes superconducting upon doping with calcium (Ca)

or fluorine (F). It is found that in FePn the law of force is not linear but in Fe2Pn

for small n, a power law is possible. According to the law of force, F = -kx = -n

ω2x, the frequency is a constant. The ω found oscillates upon doping Fe atoms with

phosphorous.

In chapter 7, a superconducting material FeAs has been calculated to get the vibra-

tional frequencies and found the largest vibrational frequency oscillates as a function

of number of As atoms in FeAsn and Fe2Asn. The vibrational frequencies indicate

oscillations in the transitions temperature of a superconductor upon doping. Usually,

the B.C.S. theory of superconductivity relies upon the electron-phonon interaction in

the conduction band where the strength depends on the translational symmetry. In
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the present case, the superconductivity arises upon doping which lacks in translational

symmetry. Hence, the phonon-induced B.C.S. theory is not taken into account but the

chances that theory showed will be based on doping. The doping and the conductivity

are not consistent so that a Hubbard type additional term is needed.

In chapter 8, there is considerable effect of ion exchange on the vibrational frequen-

cies. For example, comparison of CN3 (pyramidal) with C3N (pyramidal) shows that

CN3 has 561.2 cm−1 whereas C3N has 309 cm−1 as the smallest frequency so that the

effect of force constant is much stronger than the effect of the mass. Several calculated

frequencies agree with the measured values. In this calculation it is very clear that the

bond distances depend on the structure. The population of the vibrations depends on

temperature. Hence there is a small effect of temperature on the bond formation.

In chapter 9, the calculation of vibrational frequencies of graphene has been made.

It is found that the energy of 18 meV is of electronic origin. Similarly, the gap of nearly

3100 cm−1 occurs in a system of 12 layers of atoms. If the same energy occurs in the

electrons as well as in phonons, the resonance effect are expected. Considering the

mass of the carbon atom, the frequency of 3100 cm−1 does not occur in the vibrational

spectra of graphene.

In chapter 10, the first principles calculation of vibrational frequencies as a function

of doping Cu with oxygen atoms has been performed. The highest phonon frequency

first increases upon doping and then upon further doping shows oscillations. From these

calculations, it is found that the transition temperatures first increase upon doping

CuO with oxygen atoms and later upon further doping shows oscillations. Hence for

a given structure the transition temperature can be increased by hole doping. In the

B.C.S. theory the oscillations occur in the x but not in k. In the present work, it is

found that the force, F=-kx, oscillates due to oscillations in k. The electron-phonon

interaction is obtained by assuming that only δx has phonon operators but ∂V/∂x

should be evaluated at the equilibrium, where V is the Coulomb potential. It means
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that the coupling constant of the electron-phonon interaction oscillates and enhances

the transition temperature of a superconductor.

In chapter 11, the vibrational frequencies of selenium glass have been calculated.

The calculated value of vibrational frequencies show that Se3 molecules are formed in

Se glass. The experimental value of the vibrational frequency in Se glass is 250 cm−1.

The calculated value for the Se3 molecule is 247.2 cm−1 for the linear shape and 248.3

cm−1 for the ring shape.

For the conclusion, the objectives of this research have been achieved. The clusters

of molecules have been made for the first time and these calculation are not already

made by others. The vibrational frequencies in five glassy materials and five others ma-

terials including, iron-based material, graphene, carbon nitride and copper oxide have

been calculated. All of these materials have been choose because of the availability of

the Raman spectra done by experiment while the calculation have not been done by

others. The calculated values have been compared with the experimental data. These

calculations use first principles with local density approximation (LDA) of the DFT

which gives good agreement with the experiment data. For carbon nitride, generalized

gradient approximation (GGA) has been used as well as LDA to performed the calcu-

lations. The accuracy set in the computer programme is 0.001 cm−1. This method can

be applied to any other material to understand the structure of molecules.
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