ADSORPTION OF PHOSPHATE BY PAPER MILL SLUDGE

AHMAD RAZALI BIN ISHAK

FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

2011

ADSORPTION OF PHOSPHATE BY PAPER MILL SLUDGE

AHMAD RAZALI BIN ISHAK

DISSERTATION SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE MASTER OF TECHNOLOGY (ENVIRONMENTAL MANAGEMENT)

DEPARTMENT OF CHEMISTRY FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

2011

ABSTRACT

ADSORPTION OF PHOSPHATE BY PAPER MILL SLUDGE

The utilization of paper mill sludge as adsorbent for removal of phosphates from aqueous solution has been investigated. The influences of experimental condition such as pH of solution, amount of adsorbent and initial concentration of phosphate were studied in detail. The adsorption of phosphate was pH dependant and adsorption process being more efficient in the basic pH region and maximum at pH 12. The adsorption isotherm and adsorption kinetics of paper mill sludge were studied. It shows that the Langmuir model is better in describing the adsorption isotherm process compared to Freundlich. The maximum adsorption capacity was 12.65 mg/g at pH 12 at room temperature. Two kinetics models, pseudo-first order and pseudo-second order were applied in order to analyze the kinetics data. It was found that the pseudo-second order model is the better choice to describe the adsorption behavior. The thermodynamics parameters have been evaluated. Thermodynamic calculations showed that the phosphate adsorption process of paper mill sludge was endothermic and spontaneous in nature. From the study, the paper mill sludge has the potential to be utilized as cost effective removal of phosphate from real water samples due to their low cost and high capability.

ABSTRAK

PENJERAPAN FOSFAT OLEH ENAPCEMAR KILANG KERTAS

Di dalam kajian ini, penggunaan enapcemar kilang kertas sebagai penjerap fosfat daripada larutan dikaji. Pengaruh pH, kuantiti penjerap, dan kepekatan permulaan fosfat dikaji dengan terperinci. Penjerapan fosfat adalah bergantung kepada pH dan penjerapan adalah lebih efektif pada pH beralkali dan maksimum pada pH 12. Selain daripada itu, penjerapan isotem dankinetik jerapan turut dikaji. Model isoterma Langmuir adalah model yang paling sesuai untuk menghuraikan penjerapan isotem oleh enapcemar kilang kertas. Penjerapan kapasiti maksimum adalah 12.65 mg/g pada pH 12 pada suhu bilik. 2 model kinetik digunakan iaitu tertib pseudo- pertama dan tertib pseudo-kedua digunakan untuk menganalisis data kinetik. Tertib pseudokedua adalah lebih sesuai digunakan berbanding tertib pseudo-pertama untuk menghuraikan penjerapan fospfat oleh enapcemar kilang kertas. Daripada pengiraan termodinamik, proses penjerapan fosfat adalah endotermik dan spontan. Pada keseluruhan kajian yang dijalankan, enapcemar kilang kertas berpotensi digunakan untuk menjerap fosfat daripada air kerana sangat efektif dan melibatkan kos yang rendah.

ACKNOWLEDGEMENTS

I would like to express my appreciation to all of the individuals who contributed to this project, especially my supervisor, Dr Sharifah Mohamad and my co-supervisor Dr. Nor Kartini Abu Bakar, for their guidance, constructive comments, continuous support and advice throughout the duration of this study.

I also want to express my appreciation to all the staff and Chemistry Department, Malaya University for their dedication in delivering technical assistance and contribution towards the research in this department. My appreciation also goes to all seniors and lab mates for their endless support throughout this dissertation especially Ms Fairuz Liyana, Ms Nurul Huda, Ms Nurul Yani and MsSiti Nurur Raihan.

Besides, I also would like to thank to Universiti Teknologi Mara for the finance support of my study. Last but not least, my deepest gratitude goes to my beloved parents for their continuous understanding and moral support throughout the period of my dissertation.

TABLE OF CONTENTS

		Page
ABSTRACTiACKNOWLEDGEMENTiiiTABLE OF CONTENTivLIST OF FIGURESviiLIST OF TABLESviiLIST OF SYMBOLS AND ABBREVIATIONix		
CHA	PTER 1:INTRODUCTION	1
1.1	Introduction to Solid Waste	2
CHAPTER 2: LITERATURE REVIEW		6
2.1	Solid waste in Malaysia	7
	2.1.1 Solid waste management	8
2.2	Adsorption	10
	2.2.1 Introduction	10
	2.2.2 Adsorbent from solid waste	11
	2.2.3 Paper mill sludge as adsorbent	15
2.3	Phosphate removal	17
	2.3.1 Introduction	17
	2.3.2 Phosphate adsorption using industrial waste	18
	2.3.3 Adsorption of phosphate using paper sludge	20

		Page
CHAPTER 3: METHODOLOGY 21		
3.1	Sampling of Paper mill sludge	22
3.2	Preparation of adsorbent material	22
3.3	Orthophosphate stock solution	22
3.4	Preparation of eluent for phosphate analysis using ion	23
	chromatography (IC)	
3.5	Adsorbent characterization	23
3.6	Batch adsorption study	25
3.7	Application to fresh water samples	26
CHAPTER 4: RESULT AND DISCUSSIONS 27		
4.1	Characterization of paper mill sludge	28
	4.1.1 Fourier Transform Infrared (FTIR) analysis.	28
	4.1.2 X-Ray diffraction (XRD) analysis.	30
	4.1.3 Determination of heavy metals.	31
4.2	Batch adsorption study	32
	4.2.1 Effect of pH on phosphate removal by paper mill sludge	32
	4.2.2 Effect of amount of adsorbent	35
	4.2.3 Kinetics and thermodynamic adsorption of phosphate by	37
	paper mill sludge	
	4.2.4 Effect of initial concentration on phosphate removal with	45
	0.5 g Adsorbent	
	4.2.5 Adsorption isotherm of phosphate by paper mill sludge	47
4.3	Removal of phosphate from fresh water sample by paper mill	53

7

sludge

CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS	54
APPENDIX	56
BIBLIOGRAPHY	62

LIST OF FIGURES

		Page
Figure 4.1	FTIR spectra of paper mill sludge	29
Figure 4.2	XRD plot of calcite in the paper mill sludge	30
Figure 4.3	Adsorption capacity and percentage of phosphate	32
	removal at various pH conditions	
Figure 4.4	Distribution diagram for different phosphate species as a	33
	function of pH	
Figure 4.5	Effect of amount of paper mill sludge on the percentage of	36
	phosphate removal and adsorption capacity	
Figure 4.6	Adsorption rate of phosphate by paper mill sludge	37
Figure 4.7	First-order kinetics plots for sorption of phosphate	40
Figure 4.8	Second-order kinetics plots for adsorption of phosphate	40
Figure 4.9	Van Hoff plot for adsorption of phosphate by paper mill	42
	sludge	
Figure	Arrhenius plot for adsorption of phosphate by paper mill	44
4.10	sludge	
Figure	Effect of Initial concentration of phosphate amount on the	46
4.11	adsorption capacity and percentage of phosphate removal	
Figure	Langmuir plot for solution of phosphate by paper mill	49
4.12	sludge	
Figure	Freundlinch plot for solution of phosphate by paper mill	50
4.13	sludge at room temperature	

LIST OF TABLES

Table 1.1	Adsorption capacities of different agro-industrial wastes	12
	as adsorbents in removal of various pollutants from	
	water.	
Table 1.2	Adsorption capacities of different industrial wastes as	13
	adsorbents in removal of various pollutants from water.	
Table 1.3	Adsorption capacities of different types of sludge as	14
	adsorbents in removal of various pollutants from water.	
Table 4.1	Summary of FTIR spectra	28
Table 4.2	Comparison of heavy metal concentration in the paper	31
	mill sludge with standard B of Environmental Quality	
	Act (Sewage and Industrial Effluent) Regulation 1979.	
Table 4.3	Kinetic parameters for adsorption of phosphate onto	41
	paper mill sludge at various	
Table 4.4	The value of Enthalpy, Entropy, and free Gibbs energy	43
Table 4.5	Isotherm constants and regression data for Langmuir	51
	and Freundlinch isotherm model for adsorption of	
	phosphate on paper mill sludge	
Table 4.6	R_L value at different initial concentration of phosphate	51
Table 4.7	Reported adsorption capacities (Q_m) of phosphate for	52
	some low-cost adsorbent	
Table 4.8	Percentage removal of phosphate from fresh water	53
	sample	

LIST OF SYMBOLS AND ABBREVIATION

ICP-MS	Inductively coupled plasma mass spectrometry
FTIR	Fourier transform infrared
XRD	X-ray diffraction
IC	Ion chromatography
ISWM	Integrated solid waste management
ΔH	Enthalpy
ΔG	Gibbs free energy
ΔS	Entropy
PO ₃ ⁴⁻	Phosphate ion
$H_2PO_4^-$	Dihydrogen phosphate ion
HPO ₄ ²⁻	Monohydrogen phosphate ion
CaCO ₃	Calcium carbonate
K ₁	The rate constant of pseudo-first order adsorption
K ₂	The rate constant of pseudo second order adsorption
q_t	The amount of phosphates adsorption (mg/g) at time
q_e	The amount of phosphate adsorption (mg/g) at equilibrium
K _d	The distribution coefficient
C _e	The concentration of phosphate at the equilibrium (mg/L)
R	The gas constant (8.314 J/Kmol)
Ea	Arrhenius activation energy
А	Pre-exponential factor or the Arrhenius factor
Q_m	Langmuir maximum adsorption capacity
b	Langmuir adsorption equilibrium constant
R_L	Langmuir dimensionless constant
K_{f}	Freundlich constant
n _f	Freundlinch coefficient

LIST OF APPENDICES

- Table A1Removal of phosphate by paper mill sludge at various pH
- Table A2Removal of phosphate at various amount of paper mill sludge
adsorbent
- Table A3Adsorption kinetics of phosphate by paper mill sludge at 7°C
- Table A4Adsorption kinetics of phosphate by paper mill sludge at 45°C
- Table A5Adsorption kinetics of phosphate by paper mill sludge at 30°C
- Table A6Adsorption isotherm of phosphate by paper mill sludge at room
temperature