ABSTRACT

This study was carried out to evaluate the biological activities of *Penicilliopsis* sp. (KUM60280). The methanol and dichloromethane crude extracts were evaluated for their antimicrobial, antioxidant, cytotoxic and anti-human papillomavirus (HPV) activities. The amounts of total phenolic compound in the extracts were also evaluated. The antibacterial capacity was screened against Gram positive bacteria (Bacillus subtilis, B. cereus, Staphylococcus aureus, Streptococcus mutans, S. mitis, S. sanguis) as well as Gram negative bacteria (Escherichia coli, Pseudomonas auruginosa and P. vulgaris). Antifungal potentials on the other hand, were evaluated against Candida albicans, C. parasilopsis and Saccharomyces pombe by the disc diffusion method. The results of antimicrobial assay indicated that extracts of Penicilliopsis sp. were non-toxic against all the tested microorganisms. Antioxidant activity was assessed using the 2,2 diphenyl-1-picrylhydrazyl radicals (DPPH⁻) assay and the reducing power assay. The subfraction methanol and dichloromethane extracts of Penicilliopsis sp. was able to reduce the stable free radical DPPH⁻ with an EC₅₀ values of 26.8 mg/ml $\pm 0.05 \ \mu$ g/ml and 50.5mg/ml \pm 0.05 µg/ml, respectively. *Penicilliopsis* sp. crude extracts are powerful radical scavengers based on the inhibition of scavenging component. The reducing powers of methanolic extract and dichloromethane extracts from mycelia were 1.161 and 0.431 mg/ml, respectively at 5 mg/ml. The total phenolics content which was found to be higher in methanol crude extract as compared to the dichloromethane crude extract were 107.87g GAE/100g and 58.43g in GAE/100g, respectively. The methanol and dichloromethane extracts of *Penicilliopsis* sp. were evaluated for their cytotoxic

potentials against the human mouth epidermal carcinoma cell line (KB), human epidermal carcinoma of cervix cell line (CaSki), human colorectal cancer cell line (HT29 and HCT119), human breast cancer cell line (MCF7), human ovarian cancer cell line (SCOV3) and the normal human fibroblast cell (MRC5) using the in vitro neutral red cytotoxic assay. Generally, extracts of *Penicilliopsis* sp. produced ED₅₀ values of more than 20 µg/ml and were therefore considered not cytotoxically active. Extracts were analyzed qualitatively at various concentrations for anti-HPV 16 E6 activities in HPV 16-containing cervical cancer-derived cell (CaSki) line using immunocytochemistry technique. Generally, the HPV 16 E6 oncoprotein was not suppressed in CaSki cells by the crude extracts of *Penicilliopsis* sp. Therefore, the extracts could be suitable as antioxidative agents and have a potency to become one of antioxidant drugs.

ABSTRAK

Penyelidikan ini dijalankan untuk mengkaji aktiviti biologi Peniclliopsis sp. (KUM60280). Ekstrak methanol dan estrak dikloromethane disaring untuk melihat aktiviti antimikrobial, antioksidan, sitoktoksi dan anti human Papillomavirus. Kuantiti jumlah komponen phenolik juga dijalankan. Kapasiti antibakteria disaring menentang bakteria Gram positif (Bacillus subtilis, B. cereus, Staphylococcus aureus, Streptococcus mutans, S. mitis, S. sanguis) disamping bakteria Gram negatif Escherichia coli, Pseudomonas auruginosa and P. vulgaris dan kajian antikulat pula menggunakan Candida albicans, C. parasilopsis dan Saccharomyces pombe dijalankan menggunakan kaedah cakera penyerapan. Keputusan antimikrobial menunjukkan semua mikroorganisma yang terlibat dalam kajian ini resistan terhadap ekstrak-ekstrak Penicilliopsis sp. Penyaringan antioksidan pula dijalankan menggunakan keupayaan exktrak menyingkirkan radikal 2,2 diphenyl-1-picrylhydrazyl radicals (DPPH) dan esei penurunan kuasa terhadap ekstrak-ekstrak. Subfraksi exktrak methanol dan ekstrak dikloromethane *Penicilliopsis* sp. berupaya menurunkan kestabilan radikal bebas DPPH⁻ dengan EC₅₀ masing-masing 26.8 mg/ml \pm 0.05 µg/ml dan 50.5mg/ml \pm 0.05 µg/ml. Penurunan kuasa juga menunjukkan kesan yang signifikan terhadap estrak Penicliopsis sp. (KUM60280). Kajian menunjukkan kesan ekstrak methanol lebih baik berbanding dikloromethane iaitu 107.87g GAE/100g dan 58.43g in GAE/100g masingmasing. Kesan sitotoksik bagi estrak Penicliopsis sp. menentang human mouth epidermal carcinoma cell line (KB), human epidermal carcinoma of cervix cell line

(CaSki), human colorectal cancer cell line (HT29), (HCT119), human breast cancer cell line (MCF7), human ovarian cancer cell line (SCOV3) dan normal sel human fibroblast cell (MRC5) yang dikenalpasti menggunakan in vitro esei neutral red cytotoxicity. Secara keseluruhannya ekstrak-ekstrak *Penicilliopsis* sp. mempunyai nilai ED₅₀ kurang daripada 20ug/ml menunjukkan tiada aktiviti sitotoksik pada *Penicilliopsis* sp. Ekstrakekstrak *Penicilliopsis* sp. (KUM60280) telah dianalisa secara kualitatif pada kepekatan yang berbeza (25 µg/ml, 50 µg/ml, 100 µg/ml and 200 µg/ml) untuk aktiviti anti HPV 16 E6 di dalam sel terbitan kanser servik, CaSki menggunakan kaedah immunohistokimia. Kedua-dua ekstrak menunjukkan kesan yang lemah terhadap aktiviti penyekatan ekspresi HPV 16 E6 onkoprotein dalam sel CaSki. Daripada kajian yang dijalankan mencadangkan *Peniclliopsis* sp. berpotensi untuk diekploitasi secara efektif untuk digunakan agen pengoksidaaan dan berpotensi dalam industri pharmaseutikal.

ACKNOWLEDGEMENTS

I thank God for His love.

First and foremost I present my sincerest gratitude to my supervisor, Professor Dr. Noorlidah Abdullah who has supported me throughout my thesis with her patience and knowledge. I attribute the level of my Masters degree to her encouragement and effort and without her this thesis, too, would not have been completed or written.

My sincere appreciation to Associate Professor Dr. Nurhayati Zainal Abidin, my co-supervisor for her guidance and special advice. One simply could not wish for a better or friendlier supervisor.

I also thank the members of my graduate committee and friends for their guidance and suggestions, advice, encouragement, and financial assistance. In my daily work I have been blessed with a friendly and cheerful group of fellow students. I also thank the Mycology Lab, Institute of Biological Sciences, University of Malaya staff for their help.

Last but not least, I would like to specially acknowledge my beloved husband, Izmat Razwan Bin Mamat for his brilliant idea and mostly for his patience and understanding, for his constant support and lasting love to pursue this degree; my beautiful lovely princess Irdina Zahirah Binti Izmat Razwan for all happiness that she brings, my dearest Ummi and Abah for their financial support and encouragement, my parents in law for their support and my family members for their unfailing understanding.

TABLE OF CONTENTS

			Page
	Abstr	act	iii
	Abstr	ak	v
	Ackn	owledgement	vii
	Table	e of contents	viii
	List o	f figures	xi
	List o	f plates	xiii
	List o	f tables	xiv
	List o	f abbreviations	XV
10	INTE	RODUCTION	1
1.0			1
2.0	LITE	CRATURE REVIEW	6
	2.1	Characterization of Fungi	6
	2.2	Penicilliopsis sp	6
	2.3	The Production of Secondary Metabolite in Fungi	7
	2.4	Antimicrobial Activity in Fungus	10
	2.4.1	Antimicrobial Susceptibility Testing	13
	2.5	Antioxidanat Activity	14
	2.5.1.	Antioxidant Assay	17
	2.5.1.	1 The 2,2-diphenyl-1-picrylhydrazyl (DPPH) Assay	17
	2.5.1.	2 The Reducing Power Assay	19
	2.5.2	Total Phenolic Contents in Fungal Metabolites	20
	2.6	Cytotoxicity of Fungal Metabolites	22
	2.6.1	In vitro Cytotoxicity Assay	25
	2.7	Human Papillomavirus	27
	2.7.1	Immunohistochemistry	32 31

3.0 MATERIAL AND METHODS

3.1	Penicilliopsis sp. Culture and Maintenance	35	
3.2	Production of Mycelial Biomass		
3.3	Preparation of Extracts	35	
3.4	Determination for Antimicrobial Activities in Penicilliopsis sp.	36	
3.4.1	Microorganisms Tested	36	
3.4.2	Preparation of Bacteria and Fungal Inoculum	36	
3.4.3	Antimicrobial Activity of Penicilliopsis sp.	37	
3.5	Antioxidant Activity of Penicilliopsis sp.	38	
3.5.1	Scavenging effect on 1-1-diphenyl-2-picrylhydrazyl (DPPH ⁻)	38	
radical	s		
3.5.2	Reducing Power Assay	39	
3.5.3	Statistical Analysis	39	
3.6	Total Phenolic Content	40	
3.7	Evaluation of Cytotoxic Activity of Penicilliopsis sp. Extract	41	
3.7.1	Preparation of Stock Solution	41	
3.7.2	Cell Lines	41	
3.7.3	Maintenance of Cell	42	
3.7.4	Revival of Cells Lines	42	
3.7.5	Subcultivation of Cells	43	
3.7.6	Cryopreservation of Cells	43	
3.7.7	Serial Dilution of Extract Stock Solution	44	
3.7.8	Incubation of Cell Lines with Extracts	44	
3.7.9	Neutral Red Cytotoxicity Assay	45	
3.7.10	Incubation of Cell Lines with Extracts	47	
3.7.11	Neutral Red Cytotoxicity Assay	47	
3.8	Analysis for Anti-HPV 16 E6 Oncoprotein Activity of Penicilliopsis sp.	47	

	3.8.1	Cell Line	47
	3.8.2	Serial Dilution of Penicilliopsis sp. (KUM60280) Stock Solution	47
	3.8.3	Incubation of CaSki Cells with Extracts	47
	3.8.4	Fixation of CaSki onto Slides	48
	3.8.5	Detection of Human Papillomavirus (HPV) E6 protein Using 2-	48
:	step In	direct Avidin-Biotin Immunoperoxidase Method	

4.0	RESU	JLTS	50
	4.1	Crude Extract and Mycelia Biomass from Penicilliopsis sp.	50
	4.2	Antimicrobial Activity of Penicilliopsis sp.	52
	4.3	Antioxidant Activity of Penicilliopsis sp.	53
	4.3.1	DPPH ⁻ Scavenging Effect	53
	4.3.2	The Reducing Power Assay	57
	4.4	Total Phenolic Content assay	58
	4.5	Cytotoxicity Activity of Penicilliopsis sp.	59
	4.6	Anti-HPV 16 E6 Oncoprotein Activity in Penicilliosis sp.	66
5.0	DISC	USSION	72
	5.1	Yield of Mycelial Biomass and Crude Extract of Penicilliopsis sp.	72
	5.2	Antimicrobial Activity of Penicilliopsis sp.	73
	5.3	Antioxidant activity of Penicilliopsis sp.	75
	5.3.1	DPPH ⁻ Free Radical Scavenging Activity	76
	5.3.2	The Reducing Power	78
	5.4	Total Phenolics Contents in Extract of Penicilliopsis sp.	80
	5.5	Cytotoxicity Activity of Penicilliopsis sp. Using in vitro Neutral Red	83
	5.6	Anti- HPV 16 E6 Oncoprotein Activity of Penicilliopsis sp.	87

6.0 CONCLUSION

92

7.0 **REFERENCES**

Appendix A Appendix B (Ecperimental Data) Appendix C (Statistic)

List of figures

Figure 2.1	The genetic map of HPV	29
Figure 2.2	Organization of L1 and L2 proteins in the HPV particles	29
Figure 2.3	Phylogenetic Tree of the Sequences of High- and Low-risk Types of	31
	HPV	
Figure	Morphology of Penicilliopsis sp. by the light microscope of	51
4.1(a&b)	X400.	
Figure 4.2	DPPH scavenging activity extract fermented by Penicilliopsis	54
	sp. mycelial extracts	
Figure 4.3	DPPH scavenging activity of ascorbic acid and butylated	56
	hydroxylanisole (BHA)	
Figure 4.4	Reducing power of Penicilliopsis sp., ascorbic acid and butylated	58
	hydroxylanisole (BHA).	
Figure 4.5 (a)	KB cells incubated in Medium 199	61
Figure 4.5 (b)	CaSki cells incubated in RPMI 1640 medium	61
Figure 4.5 (c)	HT29 cells incubated in RPMI 1640 medium	61
Figure 4.6	The in vitro growth inhibitions of MCF7 cells by crude extract	62
	of Penicilliopsis determined by using the Neutral Red	
	Cytotoxic assay.	
Figure 4.7	The in vitro growth of CaSki cells by crude extract of	62
	Penicilliopsis determined by the Neutral Cytotoxic assay.	
Figure 4.8	The in vitro growth of KB cells by crude extract of	63
	Penilcilliopsis determined by the Neutral Red Cytotoxic assay	
Figure 4.9	The <i>in vitro</i> growth inhibitions of HT29 cells by crude extract of <i>Penicilliopsis</i> sp. determined by the Neutral Red Cytotoxic assay.	
Figure 4.10	The <i>in vitro</i> growth of SCOV3 cells by crude extract of <i>Penicilliopsis</i> sp. determined by the Neutral Red Cytotoxic assay.	64

- Figure 4.11 The *in vitro* growth of HCT119 cells by crude extract of 64 *Penicilliopsis* sp. determine by the Neutral Red Cytotoxic assay.
- Figure 4.12 The *in vitro* growth of MRC5 cells by crude extract of 65 *Penicilliosis* determine by the Neutral Red Cytotoxic assay.
- Figure 4.13 Staining intensities of CaSki cells treated with *Penicilliopsis* 68 sp.
- Figure 4.18 Anti HPV effect methanol extract of *Penicilliopsis* sp. on 70 CaSki cell
- Figure 4.19 Anti HPV effect of dichloromethane extract of *Penicilliopsis* 71 sp. on CaSki cell

List of plates

		Page
Plate 4.1	Penicilliopsis sp. mycelia growing on Glucose-Yeast-Malt-	50
	Peptone agar	
Plate 3 (a)	CaSki cells not treated with Penicilliopsis extracts but	67
	incubated with anti-HPV-16 E6 monoclonal antibody.	
Plate 3 (b)	CaSki cells not treated with Penicilliopsis sp. extracts without	67
	anti-HPV-16 E6 monoclonal antibody.	

List of tables

		Page
Table 2.1	Fungal secondary metabolites produced commercially for pharmaceutical, agricultural and research uses	8
Table 4.1	Percentage yield crude extracts of Penicilliopsis sp.	52
Table 4.2	Antimicrobial activity of the extract <i>Penicilliopsis</i> sp. (20 μ g/disc) against microorganism tested, based on disk diffusion method	55
Table 4.3	Scavenging effects of fractions of <i>Penicilliopsis</i> sp. extracts on DPPH ⁻ radical	57
Table 4.4	Amounts of total phenolics content equivalent gallic acid (GAE) in g GAE/100 g extracts	59
Table 4.5	ED ₅₀ values of <i>Penicilliopsis</i> sp. extracts against various cell lines	65

List of abbreviations

BHA	Butylated hydroxyanisole
BHT	Butylated hydroxytoluene
cfu	colony forming unit
DCM	Dichloromethane
DNA	Deoxyribonucleic acid
DMSO	Dimethyl sulfoxide
DPPH	1,1-diphenyl-2-picrylhydrazyl
EC ₅₀	Effective concentration to give 50% antioxidant activity
FRAP	Ferric reducing ability of plasma
g	Gram
GAE	Gallic acid equivalens
GYMP	Glucose-Yeast-Maltose-Peptone
H_2O_2	Hydrogen peroxide
IC ₅₀	Concentration that caused 50% inhibition
KUM	Kulat Universiti Malaya
MEA	Malt Extract agar
MHA	Muller-Hinton Agar
mg	Miiligram
ml	Mililiter
nm	Nanometer
NR	Neutral Red
ORAC	Oxygen radical absorption capacity
PBS	Phosphate buffer saline
PDA	Potato dextrose Agar
SDA	Sabouraud dextrose agar
ROS	Reactive oxygen species
μg	Microgram
YPDA	Yeast Peptone Dextrose Agar