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CHAPTER 1: INTRODUCTION 

1.1 General introduction  

Polyhydroxyalkanoates (PHAs) are the biodegradable polyester composed of hydroxyl 

fatty acids which is produce naturally in numerous of pseudomonads (Brandl et al., 1990; 

Steinbüchel and Valentin, 1995). PHAs served as energy storage materials in the cytoplasm 

granules of the microbial (Stubbe and Tian, 2003). Anderson and Dawes, (1990) reported 

that there are two groups of PHAs: short-chain-length polyhydroxyalkanoates (scl-PHA) 

and medium-chain-length polyhydroxyalkanoate (mcl-PHA).  

The medium-chain-length polyhydroxyalkanaoate (mcl-PHA) could be produced by 

numerous pseudomonads using variety of substrates including carbohydrates, oil, alcohols, 

fatty acids hydrocarbons and others (Ashby and Foglia, 1998; Kim et al., 2000). Indeed, 

Pseudomonas putida is a good mcl-PHA producer which is capable of accumulating PHA 

to about 40% of its cell dry weight (Marsudi at al., 2007). The monomeric units of the mcl-

PHAs are mainly β-hydroxyalkanoates with 4 to 16 carbon atoms (Brandl et al., 1988).  

P. putida PGA1 does not produce lipase, therefore it is incapable to metabolise oils directly 

as carbon source for PHA production (Tan et al., 1997). In order for P. putida PGA1 to 

synthesis the PHA using palm oil, the lipid compound has to be digested into simple fatty 

acids by saponification in order for the bacteria to uptake. However, the saponification 

process would increases the cost of PHA production and would not be practical for bulk 

production of PHA. Some pseudomonads had been reported to be able to utilize lipid for 

PHA bio-synthesis but the production is low (Solaiman et al., 1999). For example, 

Pseudomonas aeruiginosa accumulated PHA about 15% of its cell dry weight and 
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Pseudomonas fluorescens accumulated PHA to only 1 to 2% of its cell dry weight 

(Huisman et al., 1989).  

The objective of this study was to construct an Escherichia coli strain which is capable of 

synthesizing PHA using palm oil as carbon source. For this objective, two recombinant E. 

coli strains were generated: recombinant fab B¯ E. coli LS1298 (1) that harbours both lip 

gene obtained from P. fluorescens ATCC13525 and phaC1 gene from P. putida PGA1 and 

(2) that harbours only phaC1 gene from P. putida PGA1. The recombinant E. coli strains 

were then tested for PHA synthesis using several carbon sources including palm oil. This 

study was carried out in five major experiments which consisted of: 

1. Amplification and cloning of the lip gene from P. fluorescens ATCC13525 and 

phaC1 gene from P. putida PGA1. 

2. Construction of recombinant E. coli which is capable of utilizing palm oil as carbon 

substrate for PHA synthesis.  

3. Determination of the heterologous gene expression in mRNA level by reverse 

transcriptase polymerase chain reaction technique.  

4. Determination the lipase activity in the lipase producing recombinant E. coli strains 

using spectrophotometric. 

5. Determination of the monomers composition and estimation of PHA content 

produced by the constructed recombinant E .coli strains using gas chromatography 

analysis.  
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CHAPTER 2: LITERATURE REWIEW 

2.1 Polyhydroxyalkanoates (PHAs) 

For the past decades, synthetic polymers (plastics) have been widely used due to its 

physical structure which can be chemically manipulated according to the desired shapes, 

strengths and elasticity (Reddy et al., 2003). However, the synthetic plastics with high 

molecular size are one of the factors that render to its non-biodegradability (Fakirov and 

Bhattacharyya, 2007)

Hence, the potential commercial values of the biodegradable plastic materials demand an 

intensive study to determine their productions and applications. PHA is a group of 

polyester compounds that can be found in the cytoplasm of various bacteria as energy 

storage (Madison and Huisman, 1999). Generally, PHA producers convert the available 

carbon source such as lipids and carbohydrates into PHA granules in the cells (Anderson 

and Dawes, 1990). Although the needs of biodegradable materials to replace the non-

biodegradable plastics in various applications have increased tremendously, PHA is not 

practical to use as the cost for PHA production is relatively high due to its low yield and 

low efficiency in its downstream process (Witholt & Kessler, 1999). Therefore, an effective 

approach to reduce the cost of PHA production is necessary to overcome this problem. In 

order to fulfill the high demands of PHA in the market, several important issues are 

required to be resolved (Byrom, 1987). These include the production cost, the quality of the 

PHA produced, the method used to produce PHA, the selection of the raw materials as well 

as the handling of the waste products (Reddy et al., 2003). 

. The public anxiety of the harmful effects of incomplete degradation 

of those conventional synthetic plastics to the Earth led to the discovery of comparable 

materials that can be eliminated from the biosphere.  
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2.2 Properties of PHAs  

PHA is mainly made up of (R)-β-hydroxyl fatty acid monomers with different carbon chain 

length (Figure 2.1) whereby the R group can varies from C1 to C16 (Lee, 1996).  

                               

Figure 2.1 : General structure of PHA (Lee, 1996).  
 
 

There are numerous types of homopolyester or copolyester (with diverse hydroxyalkanoic 

acids) generated by microorganism such as poly-3-hydroxybutyrate (P3HB), copolymers of 

hydroxybutyrate and hydroxyvalerate Poly-(3HB-co-3HV) and copolymers of 

hydroxybutyrate and hydroxyoctanoate Poly-(3HB-co-3HO) (Antonio et al., 2000; 

Steinbüchel and Valentin, 1995).                               
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Based on the number of carbon atoms in the monomer units, PHAs are categorized into two 

main groups (Anderson and Dawes, 1990). The first group of PHA is the short-chain-length 

PHA (scl-PHA) which consists of hydroxyl fatty acid monomers with repeat units of 3 to 5 

carbon atoms such as the polyhydroxybutyrate (PHB) (Poirier et al., 1995). Another group 

of PHA is the medium-chain-length PHA (mcl-PHA) comprising of hydroxyl fatty acid 

monomers with repeat-units of 6 to 14 carbon atoms such as (3)-β-polyhydroxyoctanoate 

(Rehm and Steinbüchel, 1999). Table 2.1 (Chen, 2001; Doi et al., 1995; Galegoa et al., 

2000; Khanna and Srivastava, 2005; Ljungberg and Wesslen, 2002; Spyros and 

Marchessault, 1996; Steinbüchel, 1991; Sudesh at al., 2000; Suyatma et al., 2004; Wang et 

al., 2009; Zhang and Sun, 2004) shows the material characteristics of melting temperature 

(Tm), glass-transition temperature (Tg

Table 2.1: Properties of various PHAs 

), tensile strength (MPa) and the elongation at break 

of various PHAs. 

Polymers Tm T (°C) g Tensile strength 
(MPa) 

 (°C) Elongation at 
break (%) 

poly-3-hydroxybutyrate (PHB) 177 4 43 5 

Polypropylene 170 - 34 400 

Poly-4-hydroxybutyrate P(4HB) 60 -50 104 1000 

PHA 60 to 177 -50 to 4 17 to 104 2 to 1000 

Poly-lactic acid (PLA) 175 60 49.6 to 61.6 5.2 to 2.4 
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2.3 Applications of PHAs 

PHAs have a wide range of applications due to their novel biodegradable and 

biocompatible features (Zhao et al., 2003). Besides, PHAs could be produced from 

renewable resources such as plant oils. Thus, PHAs have become a suitable eco-friendly 

material that can replace the synthetic plastics (Koning and Witholt, 1996). The bio-

degradation of the synthetic plastics in nature is slower than that of natural polyesters and 

this advantage has apart the PHAs from conventional plastics. It depends on the 

environmental factors as well as the microorganisms that involved in their surroundings 

(Albertsson et al., 1994; Cruz-Pinto et al., 1994).  

Till date, there are few commercially-available PHA products. For example, copolyesters 

produced from 3-hydroxybutyrate and 3-hydroxyvalerate (BIOPOLTM

Besides, the biocompatibility and biodegradation characteristics of PHA are the ideal 

criteria for the usage of biomaterial in surgical applications (Ueda and Tabata, 2003). This 

is to avoid immune-rejection and inflammation in the patients as well as to eliminate the 

non-degradable foreign substance that remains in patients during surgery. Moreover, it is 

suitable if the implanted device can be absorbed and disappears during the recovery after 

the surgery (Nebe et al., 2001). This can prevent the risk of a second operation to remove 

the device which may cause complications in patients. There are a numbers of medical 

materials commercially available for medical application and pharmaceutical industries 

such as, dental implants, bone fixation, implants for plastic surgery, orthopedic implants, 

) are distributed in 

the U.S. from the company Monsanto and Metabolix. Brandl et al. (1990) had reported that 

biopolymers are widely used in the packaging industry.  
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surgical staple and surgical joints for orthopedics applications, cardiovascular patches, 

articular cartilage repair devices, tendon repair devices and others.  

The traditional method to repair damage skin caused by burns and skin diseases is to 

harvest the healthy skin from other parts of patient’s body and transfer to the infected sites. 

However, this technique has its disadvantage as the patient may not have enough skin 

available and this may create more skin damages (Loss et al., 2000). Patients with severe 

skin damage need a relatively safe, rapid and effective wound management in order to 

prevent further aggravation (Van der Veen et al., 2010). Using artificial skin as a protection 

membrane to cover the damaged skin is one way to avoid dehydration and infection 

(Cooper et al., 1991). It functions as a barrier to the wound from direct exposure to the 

outside environment which can help in infection and inflammation resistance as well as to 

prevent dehydration.  

In tissue engineering, a medical materials scaffold is normally required to support the 

growth of the regeneration tissue (progenitor cells or stem cells) (Ishuang at al., 1997). The 

physical properties of the scaffold for example the porosity and pore size, affect the growth 

factor delivery and cells attachment, migration, differentiation and proliferation (Ma and 

Lui, 2003). Indeed, polyhydroxyalknoates with the biodegradation, and biocompatible 

characteristic is the good preference to engineer this scaffold such as poly-lactic acid (PLA), 

poly-glycolic (PGA) and poly-ɛ-caprolactone (PCL) (Ueda and Tabata, 2003). Kinoshita at 

al. (1993) reported that the clinical application using poly-L-lactides (PLLA) with bone 

marrow transplant for the mandibular defects.   

 

 

http://en.wikipedia.org/wiki/Cartilage�
http://en.wikipedia.org/wiki/Tendon�
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2.4 Natural PHA producing bacteria 

PHAs are synthesized and accumulated intracellularly in many bacteria species. Under 

controlled conditions, PHA can be accumulated up to 90% of the cell dry weight in some 

bacteria (Anderson and Dawes, 1990; Madison and Huisman, 1999). Studies showed that 

pseudomonads, rhizobacteria and bacillus are the common PHA-producing bacteria 

(Trainer and Charles 2006; Wang and Bakken, 1998). In natural environments, PHA is 

accumulated in the cell when the bacteria are exposed to stress conditions such as lack of 

essential nutrients (nitrogen, phosphorus

                              

, oxygen or magnesium) and with an excess of 

carbon sources (Anderson and Dawes 1990). Under such conditions, the growth of bacteria 

is suppressed due to the absence of nutrients, but they are capable to deposit the excess 

water soluble carbon substrates into insoluble granules in the cytoplasm as energy reserves 

(Figure 2.2) (Reddy et al., 2003). This becomes an alternative tactics to support the survival 

of bacteria when the growth conditions are not in favor (Zhao et al., 2007).  

Figure 2.2: PHB granules accumulated in Cupravidus necator (formerly known as 
Ralstonia eutropha) strains under nutrient limitation (modified from Stubbe and Tian, 
2003).  

 

Cupravidus necator 

Polyester granule 
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2.5 PHA synthases 

PHA synthase is the key enzyme for PHA polymerization in microbial system. Generally, 

PHA synthases can be classified into four major classes (Table 2.2) based on the 

composition of the protein subunits and substrate specificity of the enzyme (Rehm, 2003). 

Generally, Class I PHA synthase consists of one protein subunit with molecular mass of  

60 kDa to 73 kDa and polymerizes (R)-3-hydroxy fatty acids with 3 to 5 carbon atoms to 

scl-PHA. Cupravidus necator (formerly known as Ralstonia eutropha) is the representing 

bacteria species Class I PHA synthase (Jia et al., 2001, Rehm et al., 2002). 

Table 2.2: Four classes of polyester synthase (modified from Rehm, 2003) 

          

In the case of Class II PHA synthase (commonly found in Pseudomonas spp.), it has a 

substrate preference of (R)-3-hydroxy fatty acids with 6 to 14 carbon atoms for PHA 

synthesis (Qi et al., 2000). Similarly to Class I PHA synthase, Class II PHA synthase also 

consists of only one protein subunit with molecular mass about 60 kDa to 65 kDa.  
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PHA synthase from Allochromatium vinosum has been classified into Class III PHA 

synthase and it consists of two protein subunits and each is about 40 kDa (Aneja et al., 

2009). The PHA synthase from this group also prefers (R)-3-hydroxy fatty acid with 3 to 5 

carbon atoms as PHA substrates. The Class IV PHA synthase which can be found in genus 

Bacillus is made up of two protein subunits and has similar substrate specificity to those of 

Class I and Class III PHA synthases (Tajima et al., 2003).  
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2.6 Biosynthesis pathway of PHA production 

The biosynthesis of PHA involves several enzymatic reactions and the (R)-β-hydroxyacyl-

CoA is an important precursor in PHA polymerization (Rehm and Steinbüchel, 1999). This 

intermediate can be produced from several metabolic pathways: the glycolysis pathway, the 

fatty acid β-oxidation pathway and fatty acid de novo biosynthesis pathway (Sudesh et al., 

2000).  

 

2.6.1 PHA synthesis using carbohydrates  

Chen et al. (2001) reported that there are bacterial strains which can produce polyester 

using carbohydrates such as Cupravidus necator. Such bacteria produce PHA from 

glycolysis pathway (Figure 2.3).                           

                    

Figure 2.3: PHB synthesis pathway in Cupravidus necator. Modified from Kessler and 
Witholt, (2001).  
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In this pathway, two acetyl-CoA resulted from sugar degradation are condensed to form 

acetoacetyl-Co A by β-ketothiolase (encoded by phaA). The acetoacetyl-CoA is further 

reduced to (R)-3-hydrozybutyryl-CoA by NADPH-dependent reductase (encoded by phaB). 

Lastly, PHA synthase (encoded by phaC) polymerizes the (R)-3-hydrozybutyryl-CoA into 

poly(3-hydroxybutyrate). 

 

2.6.2 PHA synthesis via fatty acid β-oxidation pathway 

PHA synthesis in the bacteria via fatty acid β-oxidation pathway uses fatty acids as 

substrates (Lageveen et al., 1988). The fatty acids being uptake by the bacteria are 

activated by acyl-CoA synthase to give fatty acyl-CoAs before entering the β-oxidation 

pathway (Figure 2.4). In the β-oxidation pathway, the acyl-CoAs undergo three enzymatic 

reactions. Firstly, acyl-CoA is oxidized by acyl-CoA-dehydrogenase to give trans-2-enoyl-

CoA. The trans-2-enoyl-CoA then undergoes hydration reaction to form L-β-hydroxyacyl 

CoA by 2-enoyl-CoA hydratase. Subsequently, (L)-β-hydroxyacyl CoA is converted to (R)-

β-hydroxyacyl-CoA by 3-hydroxyacyl-CoA epimerase. Lastly, the carboxyl group of the 

(R)-β-hydroxyacyl-CoA undergoes esterification by PHA synthase with hydroxyl group of 

another monomer to form PHA (Lu et al., 2003).  

Other intermediates in β-oxidation biosynthesis pathway also participate in the PHA 

biosynthesis indirectly. For example, the key enzyme such as enoyl-CoA hydratase also 

channels the other intermediates from fatty acid oxidation pathway for the PHA 

biosynthesis (Taguchi at al., 1999). On the other hand, 3-ketoacyl-CoA intermediates from 

β-oxidation can also undergo reduction to form (R)-β-hydroxyacyl-CoA by 3-ketoacyl-

ACP-reductase which can be polymerized to PHA (Eggink et al., 1995).  

http://en.wikipedia.org/wiki/Enoyl_CoA_hydratase�
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Figure 2.4: Carbon flux for poly(3-hydroxyalkanoate) biosynthesis from fatty acids. An 
intermediate in L-oxidation, 3-ketoacyl-CoA is converted into (R)-3-hydroxyacyl-CoA by 
3-ketoacyl-ACP reductase in E. coli, not determined in P. putida, and R. eutropha, while 
enoyl-CoA is converted into (R)-3-hydroxyacyl-CoA by (R)-specific enoyl-CoA hydratase 
in A. caviae (Taguchi et al., 1999). 

 

2.6.3 PHA synthesis via de novo fatty acid synthesis pathway 

Recent studies have shown that the PHA can be synthesised via de novo fatty acid synthesis 

pathway (Figure 2.5) when bacteria are fed with the non-related carbon substrates such as 

gluconate, acetate or ethanol (Fiedler et al., 2000). An intermediate acetyl-CoA from 

carbohydrate degradation is carboxylated into malonyl-CoA by acetyl-CoA carboxylase. 

Subsequently, the malonyl-CoA is converted into malonyl-ACP by ACP- malonyl 

transferase.  
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Figure 2.5: PhaG-mediated metabolic route of mcl-PHAsynthesis from acetyl-CoA. 3HA, 
3-hydroxyalkanoate (Fiedler et al., 2000). 

 

In the first reaction of the de novo fatty acid synthesis pathway, acyl-ACP and malonyl-

ACP are condensed by β-ketoacyl-ACP synthase and this result in the formation of 3-

ketoacyl-ACP. Then, this 3-ketoacyl-ACP is further reduced to (R)-3-hydroxyacyl-ACP 

by β-ketoacyl-ACP reductase. In order to serve as substrate for PHA synthase, (R)-3-

hydroxyacyl-ACP must be converted to the corresponding CoA derivative by 3-

hydroxyacyl-ACP-CoA transacylase (encoded by phaG) which is the key enzyme in 

channeling the intermediates of de novo fatty acid biosynthesis pathway to PHA production 

from carbohydrates (Hoffmann et al., 2000).  

 

 

 

http://en.wikipedia.org/wiki/Acetyl�
http://en.wikipedia.org/wiki/Malonyl�
http://en.wikipedia.org/wiki/Beta-ketoacyl-ACP_synthase�
http://en.wikipedia.org/wiki/Acetoacetyl�
http://en.wikipedia.org/wiki/Acetoacetyl�
http://en.wikipedia.org/wiki/Acetoacetyl�
http://en.wikipedia.org/w/index.php?title=%CE%92-Ketoacyl-ACP_Reductase&action=edit&redlink=1�
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2.7 Approaches to increase PHA production 

PHAs have attracted interest in the various industries as they have similar physical 

properties as other conventional synthetic thermoplastics. Furthermore, PHAs have great 

potential in medical applications because PHAs are found to be biocompatible to human 

and others mammals (Zinn et al., 2001). However, the production cost of PHA is relatively 

high compared to the conventional thermoplastics.  

Hence, ways to increase the PHA productivity have been proposed to ensure the efficiency 

in PHA production in order to meet the market demands. The most common strategy 

employed in enhancing the PHA yield is the improvement of bacterial strains used in PHA 

production together with optimization of the fermentation operations. 

 

2.7.1 Strain improvement  

Improvement for bacterial strains used in PHA production can be achieved by genetic 

modification techniques. The basic genetic engineering of bacteria can be accomplished by 

directly deleting, altering or adding desired nucleic acid of its original genome with the use 

of recombinant DNA technology (Brown, 2006). As a result, the characteristics of that 

particular living microorganism are manipulated at the molecular level to become a desired 

useful product.  

The genetic metabolic engineering provides a wide range of strategies to perform PHA 

overexpression in natural PHA producer microorganism or in other expression host.). PHA 

depolymerases (encoded by phaZ) have been discovered as catabolic enzyme used by 

microorganism to hydrolyse PHA when carbon sources is required (Jendrossek and 
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Handrick, 2002). Therefore, PHA yield in microorganism could be improved via removing 

the PHA degradation mechanism. As reported by Cai et al. (2009) the PHA production in 

Pseudomonas putida KT2442 was improved when the PHA depolymerase gene was 

removed by chromosomal gene knockout technique.   

Based on the knowledge of the PHA biosynthesis, various PHA synthase from different 

bacteria strains had been successfully cloned and heterologous expressed in recombinant 

strains (Kolibachuk et al. 1999; Qi et al., 1997; Ren et al., 2005; Steinbüchel et al., 1998). 

Additionally, Lu et al. (2003) had been reported that the PHA production was improved 

when precursor supply of enoyl-CoA was enhanced in E. coli via manipulation of the fatty 

acid β-oxidation pathway. 

 

2.7.2 PHA production in Escherichia coli 

Various E. coli strains are widely used for heterologous gene expression, however it has 

been reported that wild-type E. coli are relatively poor in PHA synthesis (Steinbüchel et al., 

1998) because E .coli is problematic in providing major precursor for PHA polymerization 

from the fatty acid synthesis pathway (Park et al., 2005). 

Qi et al. (1997) had reported that, one of the solutions was to create a mutant E. coli strain 

which would be able to support the polyester synthesis by inhibition of key enzymes in the 

β-oxidation pathway such as fad A and fad B (Figure 2.6). This inhibition of the β-oxidation 

pathway led to the accumulation of the precursor (S)-3-hydroxyacyl-CoA which was then 

channelled for PHA synthase. As reported by Langenbach et al. (1997), the fad B¯ E. coli 

LS1298 have the strongest PHA accumulation using various fatty acids.  
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Figure 2.6: Metabolic engineering of the fatty acid biosynthesis pathway for production of 
PHA (Park et al., 2005). 
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2.8 Involvement of lipase in PHA production 

Lipases are the extracellular enzymes that hydrolyse the ester bonds of water insoluble lipid 

substrates and convert triglyceride to glycerides and fatty acids. There are numerous lipases 

found in bacteria, plant and animal (Saxena et al., 1999). It has been reported that microbial 

lipases are more stable compare with the animal or plant lipases (Hasan et al., 2006).  

The selection of carbon substrates used in PHA production is significantly crucial which is 

influencing the production cost. Basically, oil is a potential substrate for PHA production 

because it is relatively cheap renewable carbon resources, readily available in large 

quantity and containing long fatty acid chain which can be incorporated into mcl-PHA.  

Tan et al. (1997) had reported that high yield production of mcl-PHA in P. putida using 

saponified palm kernel oil (SPKO). However, the P. putida could not utilize the 

unsaponified palm kernel oil (PKO) for PHA synthesis due to its inability to produce lipase 

in the cell. Additional chemical process to breakdown the palm oil by saponification for 

PHA synthesis is not cost effective in bulk production. Therefore, further studies on 

utilizing lipase to hydrolyse oil in PHA production are essential.  

 

2.8.1 Lipase secretion mechanisms in bacteria 

Translocation of bacterial lipases through cytoplasmic membrane is largely dependent on 

the differences in their protein folding structures. As reported by Rosenau and Jaeger 

(2000), there are three mechanisms of lipase secretion in bacteria: the ABC exporter system, 

secreton-mediated secretion system and the auto-transporter system (Figure 2.7).  

http://en.wikipedia.org/wiki/Enzyme�
http://en.wikipedia.org/wiki/Hydrolysis�
http://en.wikipedia.org/wiki/Ester�
http://en.wikipedia.org/wiki/Chemical_bond�
http://en.wikipedia.org/wiki/Lipid�
http://en.wikipedia.org/wiki/Triglyceride�
http://en.wikipedia.org/wiki/Fatty_acid�
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In ABC exporter system, the lipases that secreted by P. fluorescens contain C-terminal 

targeting signals which are recognized by the ABC exporter (Binet et al., 1997). The 

lipases are then transported extracellularly via a pore structure to cross over the periplasm 

between the cytoplasmic membrane and the outer membrane of the bacteria. 

The second type of lipase secretion in bacteria is by secreton, a complex secretion 

machinery made up of 14 or less different proteins (Pugsley et al., 1993). The Xcp protein 

is located both in inner and outer membrane, creating a pore which allows the 

transportation of lipase (Bitter et al., 1998). This secretion mechanism can be found in P. 

aeruginosa (Jaeger et al., 1994). There are some cases that the secreted lipase is firmly 

bound to surface of the bacterial cells. This type of lipase consists of N-terminal that is 

responsible for the catalytic activity and C-terminal which encodes for auto-transporter 

protein used in lipase translocation (Henderson at al., 1998).  

 

Figure 2.7: Secretion pathway used by lipolytic enzymes of gram-negative bacteria. 
(Rosenau and Jaeger, 2000). 
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 2.8.2 Pseudomonads lipases 

The lipases produce from Pseudomonas spp. are categorized into three groups based on 

their amino acid sequences homology which is Group I, II and III (Jaeger et al., 1994). 

Lipases categorized in Group I (representative strain is Burkholderia cepacia, formerly 

known as Pseudomonas cepacia) and Group II (P. aeruginosa) have molecular mass of 28 

to 33 kDa with approximately 300 to 320 amino acid residues. The lip genes coding the 

lipases in these two groups contain an export signal sequence and disulfide bridge 

(existence of cysteine residue) at the N-terminal. Lipases from these groups require a helper 

protein which plays a crucial role in assisting the folding of the lipase into a functioning 

conformation for translocation. This chaperone-like protein is encoded by the gene located 

at the downstream of lip gene.  

Contrary to Groups I and II, lipase in Group III (P. fluorescens) consist of proteins of larger 

molecular mass (55 kDa). The lip gene coding for Group III lipase does not contain an 

export signal sequence and thus a helper protein is not required. In this case, lipase is 

secreted extracellularly via an ABC-exporter system (Duong et al., 1994).  

Higgins et al. (1992) had reported that the ABC exporter protein consists of four 

membrane-associated domains which involved in membrane transporting system. Two of 

these domains are hydrophobic and membrane-embedded which create a channel for the 

substrate to travel across the membrane. The remaining two domains, located at the 

cytoplasmic side of the membrane are associated with ATP for transport purposes. 
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CHAPTER 3: MATERIALS AND METHODS 

3.1 Bacteria strains and culture condition 

All the bacterial strains used in this study (Table 3.1) were routinely cultured in Nutrient 

Broth medium (Merck, USA) at 30°C for 16 h in the orbital shaker incubator at 160 rpm. 

Table 3.1: Bacteria strains used in this study 

Bacterial strains Description ( relevant genotype, 
phenotype) 
 
 

Source 

One Shot® Top10 
E. coli (OS) 

F- mcrA Δ(mrr-hsdRMS-mcrBC) 
Φ80lacZ ΔM15ΔlacX74 recA1 araD139 
Δ(ara-leu)7697 galU galK rpsL (StrR

 

) 
endA1 nupG 

 

Invitrogen , USA 

−  OS_ pT-
phaC1 

One Shot®

 

 Top10 E. coli containing pT-
phaC1 

In this study 
 

−  OS_ p2T-lip One Shot®

 

 Top10 E. coli containing p2T-
lip 

 

In this study 
 

fad B¯ E. coli  
LS1298 (LS) 

F-tonA21 thi-1 thr-1 leuB6 lacY1 
glnV44 rfbC1 fhuA1 λ-fad B::Kan 
 

Concetta C. DiRusso, 
University of Nebraska, 
Lincoln, USA. 
 
 
 

−  LS_M3 E. coli  LS1298 containing both pT-
phaC1 and p2T-lip vector 
 
 

In this study 
 

−  LS_ pT-
phaC1 

E. coli  LS1298 containing pT-phaC1 
vector 
 

In this study 
 

−  LS_pT-lacZ E. coli  LS1298 containing pT-lacZ 
vector 
 

In this study 

Pseudomonas 
fluorescens  
 

ATCC 13525 ATCC  
 

Pseudomonas 
putida PGA1 

Wild type  Eggink, G., 
Agrotechnological 
Research Institute, 
Wageningen, 
Netherlands. 
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The One Shot®

 

 Top10  Escherichia coli strains (Table 3.1) were cultivated in Luria-Bertani 

(LB) Broth (containing 1.0% (wt/vol) Tryptone, 0.5% (wt/vol) Yeast Extract, 1.0% (wt/vol) 

Sodium Chloride) (Merck, USA) at 37°C for 16 h in the orbital shaker incubator at 160 rpm. 

3.2 Identification and amplification of lip gene and phaC1 gene  

To clone a functioning lipase (lip gene) and PHA synthase (phaC1 gene) genes from 

Pseudomonas spp., the genes of interest were identified and amplified by Polymerase 

Chain Reaction (PCR) technique. Genomic DNA of Pseudomonas fluorescens (ATCC 

13525) and Pseudomonas putida (PGA1) were used as PCR template. The combination of 

forward and reverse oligo primers (LF & LR and C1F & C1R to amplify lip gene and 

phaC1 gene respectively) were designed using GeneFisher software according to its 

functional amino acid sequences retreated from GenBank database. The designed oligo 

primers were subjected to Primer-BLAST analysis to ensure the oligo primers are specific 

to the targeted sequences in the desired bacteria. All oligo primers (Table 3.2) were 

custom-synthesized by First BASE Laboratories Sdn. Bhd., Malaysia.  

Table 3.2: Oligo primers used in this study 
 
Primers Sequences Targeted priming site 

 
C1F 

 
5’-ATG AGT AAC AAG AAC AAC GAT GAG C-3’ 

 
phaC1 gene in P. 
putida (PGA1) 
 

C1R 5’-GCC ACG GCG CTG TAA CTC A-3’  

 
TrxF 

 
5´-TTC CTC GAC GCT AAC CTG-3 

 
Sequencing primers 
for pBAD TOPO 
vector  
 

pBADR 5’-GAT TTA ATC TGT ATC AGG -3’ 
pBADF 
 

5’-ATG CCA TAG CAT TTT TAT CC -3’ 
 

 
LF 

 
5’-CAC CAT GGG TAT CTT TGA CTA TAA A-3’  

 
lip gene in P. 
fluorescens 
(ATCC13525) 

LR 5'-ACC GCC ACC GGT TTA TTA CG-3’ 
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In the PCR reaction, the bacteria lysate was used as DNA template. One mL of freshly-

grown bacteria cells in 100 mL of Nutrient Broth (Merck, USA) was collected by 

centrifugation at 10,000 ×g for 3 min and the cell pellet was washed with sterile distilled 

water twice. Cells were then resuspended in 200 µL sterile distilled water and were boiled 

at 95°C for 10 min before being used in PCR reaction.  

PCR gradient reaction was performed to determine the optimum annealing temperature for 

the oligo primers. The following thermal cycle condition was used: 94°C for 5 min, 

followed by 30 repeated cycles of 94°C for 30 s, gradient annealing temperature ranging 

from 50°C to 65°C for 30 s and extension at 72°C for 2 min and a final incubation at 72°C 

for 10 min (Mycycler ™, thermal cycler, Bio-Rad Laboratories Inc., CA). The PCR 

reaction mixture was prepared as shown in Table 3.3. 

Table 3.3: Reaction mixture for PCR 

Component Volume (μl) Final Concentration 

5× green or colourless GoTaq® 20 Flexi Buffer 1× 

MgCl2 6  solution (25 mM) 1.5 mM 

PCR nucleotide mix (10 mM each ) 2 0.2 mM each dNTP 

Upstream primer (10 mM) 5 0.5 μM 

Downstream primer (10 mM) 5 0.5 μM 

GoTaq® 0.5  DNA Polymerase (5 U/μL) 1.25 U 

DNA template  1 - 

Sterile distilled water  60.5 - 

Total 100  
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To amplify a blunt end PCR fragment, 100 µL of Pfx DNA polymerase reaction mixture 

(Invitrogen, USA) was prepared as showed in Table 3.4.  The amplification thermal cycle 

was as follow:  94°C for 5 min followed by 25 cycles 94°C for 15 s, 52.9 °C for annealing 

temperature which has been determined earlier for 30 s and extension at 68°C for 2 min and 

a final incubation for extension was at 68°C for 8 min.  

Table 3.4: Reaction mixture for blunt end PCR fragment 

 
Component Final Volume (μL) Final Concentration 

10× Pfx Amplification Buffer 10 1× 

MgSO4 2  solution (50 mM) 1.0 mM 

10 mM dNTP mixture 3 0.3 mM each 

Upstream primer (10 mM) 5 0.5 μM 

Downstream primer (10 mM) 5 0.5 μM 

Platinum Pfx DNA Polymerase 0.8 1 U 

DNA template 1  

Sterile distilled water  73.2  

Total  100  

The PCR products were then analyzed by agarose gel electrophoresis which was carried out 

in TAE buffer (50 mM tris-acetate, pH 8; 1 mM EDTA) at 90V for 50 min.  For each 

sample, 5 µL of PCR amplified product was mixed with 1 µL of 6× loading dye and was 

loaded into the well of 1.5% (wt/vol) agarose gel in 1× TAE buffer. The agarose gel was 

then stained with ethidium bromide and visualized under UV transilluminator (Syngen Bio 

Imaging, UK). The size of the amplified DNA product was determined by referring to the 

1kb DNA ladder (Promega, USA).   
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3.3 Construction of recombinant plasmids 

The amplified phaC1 PCR fragment from P. putida and lip PCR fragment from P. 

fluorescens were purified by using MEGAquick-spin™ PCR & Agarose Gel DNA 

extraction kit (INTRON Biotechnology, INC., Korea). The purification steps were carried 

out as recommended by manufacturer.  

For each sample, 5 volume of BNL Buffer was added to the PCR reaction product and was 

mixed using vortex. The mixture was then transferred to the spin column assembly 

provided in the kit and centrifuged at 13,000 rpm for 1 min. The filtrate was discarded and 

the spin column was placed into the same collection tube. Subsequently, 700 μL of washing 

buffer was added to each column and again centrifuged at 13,000 rpm for 1 min. After 

discarding the filtrate, the column was then spin-dried by centrifugation at 13,000 rpm for 1 

min. The spin column was then placed into a sterile 1.5 mL microcentrifuge tube and 50 μL 

of Elution Buffer was directly added to the center of the column without touching the 

membrane with the pipette tip. The column was incubated at room temperature for 1 min 

and then centrifuged at 13,000 rpm for 1 min. The filtrate in the microcentrifuge tube 

contained purified DNA fragments and was stored at -20°C. 

The plasmids used in this study were listed in Table 3.5. To construct recombinant plasmid 

pT-phaC1 and p2T-lip, the purified PCR products of phaC1 and lip genes were ligated into 

pBAD-TOPO vector and pBAD202/D-TOPO vector respectively (Promega, USA). The 

reaction mixture for ligation was prepared as shown in Table 3.6. The mixtures were 

incubated for 5 min at room temperature and then placed on ice. The remaining reaction 

mixture was stored in -20°C for future use.  
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Table 3.5: Plasmids used in this study 

Plasmids Description ( relevant genotype, phenotype) 
 

Source 

pBAD-202 TOPO 
vector (p2T) 
 

Expression vector: Km Invitrogen, USA R 
 
 

pBAD-TOPO vector 
(pT) 
 
 

Expression vector: Amp Invitrogen, USA R 
 
 

pT-phaC1 pBAD-TOPO vector containing a 1.7 kb PCR 
product (phaC1 gene) cloned from P. putida 
 

In this study 
 
 

p2T-lip pBAD containing a 1.7 kb PCR product (lip 
gene) cloned from P. fluorescens 
 

In this study 
 
 

pUC19  Control vector 
 

Invitrogen, USA 
 

pBAD-
TOPO/lacZ/V5-His 
(pT-lacZ) 
 

Control vector containing β-galactosidase gene Invitrogen, USA 

 
 

Table 3.6: Reaction mixture for TOPO® cloning 

Reagent  Standard 
Reaction 

Positive 
Control 

Background 
Control 

pBAD202/D-TOPO Vector (10 ng/µL) or 
pBAD-TOPO Vector 
 

1 μL 1 μL 1 μL 

PCR product 0.5 to 5 μL - - 
 

Control Insert DNA  - 1 μL - 
 

Salt Solution (1.2 M NaCl and 0.06 M MgCl2) 1 μL 1 μL 1 μL 
 

Deionized water to a final volume of  6 μL 6 μL 6 μL 
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3.4 Transformation 

This transformation method references the protocol reported by Sambrook and Russel, 

(2001). Firstly, the recombinant plasmids were transformed into One Shot® Top10 E. coli 

strain and the fad B¯ E. coli LS1298 by heat shock method. E. coli One Shot® Top10 and 

LS1298 strains were cultured overnight in 100 mL Luria-Bertani (LB) Broth. Prior to 

transformation procedure, 1 mL of each culture was inoculated into 100 mL of fresh LB 

broth and incubated for 3 h at 37°C in an orbital shaker incubator until the OD600 of the 

culture was 0.5. The number of viable cells for cloning purpose should not exceed 108 cells 

/mL which give approximately 0.5 at OD600

The fresh-grown cells were then aseptically transferred into an ice-cold microcentrifuge 

tube and were kept on ice for 10 min. Cells were harvested by centrifugation at 1,500 × g 

for 2 min at 4°C. Cell pellet was washed twice with 1 mL of ice-cold 0.1 M of CaCl

.  

2 and 

resuspended in 0.5 mL cold 0.1 M of CaCl2

The cells were heat-shocked at 42°C for 30 s and placed on ice immediately after the heat-

shock treatment. Then, 100 μL of pre-warmed SOC medium (containing 2% tryptone, 0.5% 

Yeast Extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl

 followed by incubation on ice for 30 min. For 

each transformation reaction, 100 μL of cell suspension was used. Finally, 4 μL of the 

recombinant plasmid (from ligation mixture) were added into 100 μL of competent cells 

and incubated on ice for another 30 min.  

2, 10 mM MgSO4 and 20 mM 

glucose) was added into the cell suspension and incubated with shaking (160 rpm) at 37 °C 

for 1 h. After the incubation period, 50 μL of the transformed cells was spread on a pre-

warmed selective agar plate (LB agar medium containing 50 μg/mL of kanamycin or 100 

μg/mL ampicillin or both (Sigma, USA)) and incubated at 37°C. After 16 h of incubation, 
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white colonies were carefully picked and grown in 100 mL of fresh LB broth medium for 

subsequent analysis.  

For preparation of negative control, 2 μL of plasmid pBAD-TOPO/lacZ/V5-His (10 ng/μl) 

was transformed into fad B¯ E. coli LS1298 using the heat shock protocol as mentioned 

before. Blue colonies were then selected from the selective agar plates with 100μg/mL of 

ampicillin and 100 µg/ml of X-Gal. Meanwhile, pUC19 plasmid was used to determine the 

transformation efficiency of the E. coli One Shot® Top10. Here, 10 pg of pUC19 uncut 

plasmid which is provided in the TOPO cloning kit was used for transformation using the 

same procedure as mentioned before. Similarly, 50 μL of transformant cells were plated on 

LB agar containing 100 µg/mL of ampicillin and 100 µg/mL of X-Gal. The transformation 

efficiency should be about 1×108

 

 cfu/µg DNA in which ~ 250 colonies were obtained from 

average of four plates.  
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3.5 Transformants analysis 

3.5.1 PCR technique 

The presence and orientation of the insert in the recombinant transformant was confirmed 

by PCR technique. The PCR reaction mixture was prepared according to the description in 

Table 3.3. The primers that were used in this PCR procedure were the combination of TrxF 

primer or the pBADF primer and a primer that hybridizes within the insert (Table 3.2). The 

PCR products were then visualized and analyzed by 1.5% (wt/vol) of agarose gel 

electrophoresis as mentioned in section 3.2.  

 

3.5.2 DNA sequencing analysis 

The selected white colony was grown in 100 mL of fresh LB broth medium with 

appropriate concentration of antibiotics. The plasmid was then harvested by using DNA-

spinTM

The mixture was then incubated at 4°C for 5 min to enhance the precipitation. After 

centrifugation at 13,000 rpm for 10 min at 4°C, the supernatant was transferred into a spin 

 Plasmid DNA Purification Kit (INTRON, Korea) following the provided kit 

protocol. For each sample, 3 mL of overnight culture was harvested by centrifugation at 

13,000 rpm for 30 s in a microcentrifuge tube. The cell pellet was resuspended in 250 µL of 

Resuspension Buffer using vortex (RNase A Solution that provided in the kit was added 

into Resuspension Buffer before used). Subsequently, 250 µL of Lysis Buffer was added 

and the solution was mixed by inverting the tube several times with closed lid. Then, 350 

µL of Neutralization Buffer was added and the solution was mixed gently by inverting the 

tube several times with closed lid until cloudy and a flocculent precipitate was formed.  
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column provided in the kit. The column was centrifuged at 13,000 rpm for 60 s. The filtrate 

in the collection tube was discarded and the collection tube was re-used in subsequent step. 

Then, 500 µL of Washing Buffer A was added and the column was centrifuged at 13,000 

rpm for 60 s. The filtrate in the collection tube was again discarded. 

Next, 700 µL of Washing Buffer B was added and the column was centrifuged at 13,000 

rpm for 60 s. The excess buffer solution that was trapped in the membrane of the spin 

column was removed by centrifugation at 13,000 rpm for 60 s.  Lastly, the spin column was 

placed into a sterile 1.5 mL microcentrifuge tube and 50 μL of Elution Buffer was directly 

added to the center of the column without touching the membrane with the pipette tip. It 

was then incubated at room temperature for 1 min and then centrifuged at 13,000 rpm for 1 

min. The filtrate in the microcentrifuge tube containing extracted plasmids was then stored 

at -20°C. The DNA sequencing was performed by First BASE Laboratories Sdn Bhd, 

Malaysia using ABI BigDye Terminator V3.1 kit in ABI377-96 upgrade and ABI 3100 

Genetic Analyzer. The retrieved nucleotide sequences were analyzed with Molecular 

Evolutionary Genetics Analysis software version 4.0 (MEGA) (Tamura et al., 2007) and 

BLAST search in the National Center for Biotechnology Information (NCBI) database. 
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3.6 Reverse transcriptase polymerase chain reaction (RT- PCR) 

3.6.1 RNA extraction from bacterial cells 

An overnight cultured bacterial cell (1mL) was harvested by centrifugation at 500 × g at 

4°C for 5 min. Cell pellet was resuspended by vortex in 100 µL of the lysosyme solution 

which containing 10nM Tris-HCl (pH 8.0), 0.1 mM EDTA and 1mg of lysozyme. For each 

tube, 0.5 µL of 10% (wt/v) SDS solution was added to the mixture and was mixed by 

vortex. After 5 min of incubation at room temperature, 350 µL Lysis Buffer containing of 

1% (v/v) of 2-mercaptoethanol were added and mixed well by vortex. The lysate were 

transferred to a homogenizer inserted in an RNase-free tube and centrifuged at 12,000 × g 

for 2 min at room temperature.  

Then, 250 µL of absolute ethanol was added to each volume of bacterial cell homogenate 

and mixed thoroughly by vortex. The mixture was then transferred to a Spin Cartridge and 

centrifuged at 12,000 × g at room temperature for 15 s. The RNA sample that trapped in the 

Spin Cartridge were washed by 700 µL Wash Buffer I once and 500 µL Wash Buffer II for 

twice. The washing buffer was removed every time by centrifugation at 12,000 × g for 15 s. 

The Spin Cartridge was centrifuge again at 12,000 × g for 1 min at room temperature to dry 

the membrane with trapped RNA. The Spin Cartridge was then inserted to a RNase- free 

Recovery Tube. Then, 50 µL of RNase-free water was loaded to the center of Spin 

Cartridge and incubated for 1 min. The RNA was then harvested into the Recovery Tube by 

centrifugation at 12,000 × g for 2 min. 
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3.6.2 DNase treatment  

RNA samples were DNase treated to remove residual DNA. Briefly, 1 µL extracted RNA 

samples (10 µg/µL) were mixed with 1 µL of 1 U/µL DNase I (Invitrogen, USA), 1 µL of 

10× DNase I Buffer and 7 µL of DNase-free H2

 

0. This mixtures were then incubated at 

room temperature for 15 min and followed by heat inactivation at 65°C for 15 min after 

1µL of 25nM EDTA were added.  

3.6.3 Reverse transcriptase polymerase chain reaction (RT-PCR) 

The total RNA was reverse transcripted to cDNA using SuperScript ™ Ш First-Strand 

System (Invitrogen, USA). Firstly, RNA-primer mixture were prepared in a total volume of 

10 µL which contain 1 pg to 5 µg of total RNA, 5 µM of oligo (dT)20, 0.2 nM dNTP mix 

and DEPC-treated H2

Then, the cDNA synthase mixture were prepared which containing 2 µL of 10× RT buffer, 

4 µL of 25 mM MgCl

O. The mixture was incubated at 65°C for 5 min and then placed on 

ice for at least 1 min.  

2

 

, 2 µL of 0.1M DTT, 1 µL of RNaseOUT™ (40 U/µL), 1 µL of 

SuperScript™ III RT (200 U/µL) and 10 µL RNA-primer mixture. Followed by that, both 

cDNA synthase mixture and RNA-primer mixture were mixed and incubated at 50°C for 

50 min and heat inactivated at 85°C for 5 min. After reaction mixture was chilled on ice, 1 

µL of RNase H were added and incubated at 37°C for 20 min. The cDNA samples were 

used as the template for normal PCR immediately following section 3.2.  
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3.7 Determination of lipase activity in the recombinant strains 

3.7.1 Trioleoylglycerol agar plate   

Trioleoylglycerol agar was used to determine lipolytic reaction of bacteria (Kouker and 

Jaeger, 1987). Trioleoylglycerol agar contained 10 g of tryptone, 5 g of yeast extract, 10 g 

of sodium chloride, 20 g of agar and 0.3% (vol/vol) of emulsified olive oil per 1 L of 

medium. The emulsified olive oil was prepared by adding 100 mL of olive oil into 400 mL 

of warm distilled water with 1mL of Tween 80. The mixture was then homogenized in high 

speed blender and sterilize in autoclave at 121°C for 15 min. Then 30 mL of emulsified oil 

was added to the lukewarm sterilized media and was mixed thoroughly.  The recombinant 

transformants of the E. coli OS- p2T-lip and LS_M3 were cultured on trioleoytlglyrecol 

agar plate and incubated at 37°C for 48 h. Clear halo formation indicated positive lipolysis 

of recombinant strains. 

 

3.7.2 Lipase activity assay 

The constructed recombinant strains were cultivated in the LB broth containing 0.3% 

(vol/vol) of olive oil. The lipase activities of the recombinant strains were examined by 

spectrophotometric method using p-nitrophenyl laurate as a substrate. For each reaction 

sample, 25 µL of culture fluid were dissolved in 725 µL of 50 mM phosphate buffer pH 7.0 

and 100 µL of 25 mM p-nitrophenyl laurate in absolute ethanol. After 10 min of incubation 

period at 37°C, 250 µL of Na2CO3 were added to the mixture and were centrifuged at 

13000 rpm, 4°C for 10 min. Culture fluid were substituted with distilled H2O to serve as 

blank for the spectrophotometer. The reaction mixture was examined using a 
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spectrophotometer (UV-1601, UV-visible spectrophotometer, Shimadzu, Japan) at 420 nm. 

This experiment was repeated three times for each sample. 
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3.8 PHA analysis in recombinant strains 

3.8.1 Cultivation of recombinant strains in different carbon sources 

The recombinant strains harboring functioning PHA synthase gene was tested for the PHA 

production by shake-flask technique. To prepare the inoculums for PHAs production, the 

pure recombinant isolate was grown in 90 mL nutrient broth at 37°C in orbital shaking 

incubator at 180 rpm with five different concentrations of inducer, L-arabinose (0.00002%, 

0.0002%, 0.002%, 0.02% and 0.2% (wt/vol) respectively), together with 50 mg/mL of 

kanamycin or 100 µg/mL of ampicillin or both. After 12 h of incubation, 10 mL of carbon 

substrate such as emulsified palm kernel oil (PKO), sodium octanoic acid, saponified palm 

kernel oil (SPKO) and glucose were added respectively into the culture to achieve a final 

carbon substrate concentration of 0.2% (wt./vol). The culture was further incubated for 

another 36 h.  

The palm kernel oil used in this study was kindly supplied by Southern Acids (M) Ltd., 

Klang, Selangor. The saponified palm kernel oil (SPKO) was prepared by mixing 8 g of 

palm kernel oil with ethanolic sodium hydroxide solution (11.2 g of sodium hydroxide 

dissolved in 400 mL of absolute ethanol). The mixture was refluxed for 1 h at 75°C. Next, 

the semi-solid sodium salt of fatty acid was collected by removing the ethanol in the 

solution using rotary evaporator.  The SPKO was then further dried in the over at 60°C and 

stored in room temperature.  

After 36 h of incubation period, the culture was harvested by using large capacity 

refrigerated centrifuge (Continent-R, Hanil Science Industrial, Korea) at 8,000 × g for 30 

min at 10°C. The harvested cell pellet was then washed with 0.9 % saline to remove access 

supernatant. Finally, the harvested cells pellet was heat-dry in oven at 50°C to remove 

access water.  
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3.8.2 Microscopic analysis for PHA production in recombinant strains  

This analysis references the method reported by Ostle and Holt, (1982). After 48 h of 

incubation period of the bacteria culture, the heat-fixed smears of bacterial cells were 

stained with 1% (vol/vol) Nile Blue A at 55°C for 10 min in a coplin staining jar and 

washed with tap water to remove excess stain with 8% (vol/vol) acetic acid for 1 min. The 

stained smear were then washed and dried, remoistened with water, and covered with cover 

slip. The cover slip is necessary as standard immersion oil will extract some of the 

fluorescent dye and obscure the field with a general yellow fluorescence. The cover slip 

thus protects the stained cells from immersion oil. The slides were then examined under 

fluorescent microscope using 450 to 490 nm filter. Nile Blue A have the affinity with 

hydrocarbon compound and PHA granules accumulated within the bacteria cell will show 

fluorescing bright orange. 

 

3.8.3 Gas chromatography analysis of PHA production in recombinant strains 

The PHA content in the bacterial cells was subjected to methanolysis treatment (Brandl et 

al., 1988) and the resulting methyl esters of PHA monomers were analysed using gas 

chromatography. For each sample, 25 mg of the dry cells were resuspended in the mixture 

of 1 mL chloroform and 1 ml of methanol containing 15% (vol/vol) H2SO4 in a screw-

capped test tube. The mixture was then incubated at 100°C for 2 h with occasional shaking. 

After heating, the reaction was cooled to room temperature and 0.5 mL of deionized water 

was added. The mixture was then thoroughly homogenized using vortex and halted to 

separate the organic phase from the aqueous phase. The organic phase solution that set at 

the bottom layer was collected by Pasteur pipettes and transferred into a screw-cap sample 

vial.  
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Then, 1 µL of collected organic phase were injected and analyzed by GC-2014 gas 

chromatograph (Shimadzu, Japan) equipped with BP20 capillary column (30.0 m by 0.25 

mm; SGE Analytical Science)  operating in split mode (split ration 1:20). The column was 

temperature programmed with initial temperature at 120ºC for 2 min and followed by the 

temperature increment at rate 20°C/min until reached temperature at 230ºC and hald for 10 

min. Hydrogen was used as the carrier gas, the injection temperature was at 225ºC however 

the separated compound was detected at 230ºC by SFID1 column detector.  

The concentration of methyl esters compound were analyzed and calculated based on the 

peak area by GC Solution software (version 2.3). Each peak at different retention time in 

the gas chromatogram represents one compound of the sample mixture. By referring to the 

concentration of standard solution, concentration of the PHA that accumulated in the 

recombinant strains can then be determined. The compound of the mixture was identified 

by comparing to the retention times of the samples with the standard. The standard 

included methyl 3-hydroxybutanoate (C4), methyl 3-hydroxyhexanoate (C6), methyl 3-

hydroxyoctanoate (C8), methyl 3-hydroxynonanoate (C10), methyl 3-hydroxydecanoate (C12), 

methyl 3-hydroxydodecanoate (C14) and methyl 3-hydroxyhexadecanoate (C16) that were used 

in the experiment were purchased from Larodan Fine Chemicals (Sweden).   
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CHAPTER 4: RESULTS AND DISCUSSION  

4.1 Verification of lipase activity in Pseudomonas flourescens ATCC 13525 and PHA 

synthase activity in Pseudomonas putida PGA1  

There have been comprehensive studies on lipase activity in P. fluorescens (Tan et al., 

1992). The lipase production in P.  fluorescens ATCC 13525 purchased from American 

Type Culture Collection was verified by using trioleoylglycerol agar plate assay (Figure 4.1) 

whereby halo was observed around the culture after 48 h incubation on the plate. On the 

other hand, the ability of PHA accumulation in P. putida PGA1 was confirmed using Nile 

Blue A fluorescence micrograph (Figure 4.2). It was reported that P. putida PGA1 could 

accumulate mcl-PHA up to 40% of the cell dry weight in previous studies (Tan et al,. 1997).  

                            

Figure 4.1: Lipase production by P. fluorescens ATCC13525 on trioleoylglycerol agar 
plate. Lipolytic activity as indicated by a clear zone around the culture in comparison , P. 
putida PGA1 did not produce lipase.  

P. fluorescens 
ATCC 13525 

P. putida 
PGA1 
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Figure 4.2: Nile Blue A fluorescence micrograph of PHA accumulation in P. putida 
PGA1.   
 

Hence, the desired enzymatic reactions in P. fluorescens ATCC 13525 and P. putida PGA1 

were confirmed and thus they were used as the donor of the lip gene and phaC1 gene 

respectively in further analysis.  
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4.2 PCR amplification of lip gene and phaC1 gene 

In order to amplify lip gene from Pseudomonas fluorescens ATCC 13525 and phaC1 gene 

from Pseudomonas  putida PGA1, oligo primers were designed according to their coding 

regions in the respective strains. The DNA sequences of the lip gene in P. fluorescens PrtB 

(AF216702, region: 3814-5400) and phaC1 gene in P. putida KT2440 (AE015451, region: 

5699514-5701193) were retrieved from GenBank database and were used as the references 

in designing the oligo primers. The oligonucleotide primers PfF and PfR were designed to 

amplify the lip gene, whilst primers C1F and C1R were to amplify the phaC1 gene. 

The optimal annealing temperature of the designed oligo primers were determined by 

gradient PCR using annealing temperature ranging from 50.0°C to 65°C (Figure 4.3). The 

agarose gel picture revealed that lip gene fragment from P. fluorescens ATCC 13525 

(~1586 bp) was amplified at annealing temperatures 50.0°C, 51.0°C, 52.9°C and 55.5°C 

(Figure 4.3, lane 1 to 4). On the other hand, phaC1 gene fragments (~1680bp) from P. 

putida PGA1 were able to be amplified within the annealing temperature of 50°C to 65°C 

(Figure 4.3, lanes 9 to16). The size of amplified lip gene and phaC1 gene were coincided 

with the predicted sizes based on the retrieved sequences from GenBank database. Hence, 

the suggested optimum annealing temperature for both lip gene and the phaC1 gene was 

52.9°C. 
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Figure 4.3: Agarose gel electrophoresis analysis of PCR-amplified lip gene from P. 
fluorescens ATCC 13525 and phaC1 gene from P. putida PGA1. Lanes 1 and 9: 50.0°C; 
lanes 2 and 10: 51.0°C; lanes 3 and 11: 52.9°C; lanes 4 and 12: 55.5°C; lanes 5 and 13: 
59.1°C; lanes 6 and 14: 62.0°C; lanes 7 and 15: 63.8°C; lanes 8 and 16: 65.0°C; M: 1kb 
DNA ladder (Promega). 
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4.3 Screening of Escherichia coli transformants harbouring the lip gene or the phaC1 

gene 

Plasmid pT-phaC1 was constructed by ligating phaC1 DNA fragment into the pBAD-

TOPO vector, which was then transformed into the One Shot®

The vector with correctly-orientated insertion showed an amplified DNA fragment  

(~1830 bp which includes the 150 bp flanking end from the vector sequence before the 

inserted phaC1 gene). The agarose gel electrophoresis revealed that 4 out of 8 selected 

transformants contained vector with the correct-orientated insertion (Figure 4.4, lanes 1, 5, 

6 and 7). The transformant analysed at lane 7 was designated as OS_ pT-phaC1 and used in 

subsequent experiments.  

 Top10 E. coli by heat shock 

treatment. The orientation of the inserted fragment in the transformants was determined by 

PCR using a combination of primers pBADF (targeted to vector located at distance about 

~150 nt upstream from the cloning side) and C1R (hybridized to phaC1 gene).  

                      

Figure 4.4: Agarose gel electrophoresis analysis of PCR-amplified phaC1 gene from 
selected transformants. Lanes 1 to 8 represent 8 individual transformant; M: 1kb DNA 
ladder (Promega); N: negative control; P: phaC1 gene fragment from P. putida. 

 

   M       1          2         3        4          5         6         7        8         M        N         P                               

  1,500 bp 

 2,000 bp 
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Plasmid p2T-lip was constructed by ligating amplified lip DNA fragment from 

Pseudomonas flourescent into pBAD-202 TOPO vector and was transformed into the One 

Shot®

                       

 Top10 E. coli. The p2T-lip positive clones harboring lip gene were selected by 

selective medium LB agar with 50 μg/mL of kanamycin. Similarly, the orientation of the 

insertion in transformants was also verified by PCR technique. A combination primers set 

TrxF (hybridized to vector located at distance about ~150 nt upstream from the cloning side) 

and LR were used for this PCR. Agarose gel electrophoresis showed that all 8 selected 

clones contained the correctly orientated insertion (Figure 4.5). The transformant analysed 

at lane 8 was designated as OS_p2T-lip and used in subsequent experiments. 

Figure 4.5: Agarose gel electrophoresis analysis of PCR-amplified DNA lip gene from 
selected transformants. Lanes 1 to 8 represent 8 individual transformant; M: 1kb DNA 
ladder (Promega); N: negative control; P: lip gene fragment from P. fluorescens. 
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4.4 Nucleotides sequences analysis   

The vector p2T-lip from E. coli OS_p2T-lip was sequenced (Appendix A) and the analyzed 

nucleotide sequences of the lip gene by ClustalW revealed that a distinctive repeat of C-

terminal signal sequence GGXGXD was found at the C-terminus (Appendix B). This 

repeated sequence was significantly homologous to the lipases from P. fluorescens 

retrieved from GenBank database (Appendix B). Ahn et al. (2001) reported that this 

glycine-rich consensus sequence is recognized by the ABC transporter, one of the lipase 

secretion mechanisms. Besides, the amino acid sequences that encode for substrate-binding 

domain of lipase enzyme (VVVSGHSLGGLA) were also identified and showed significant 

homology to others P. fluorescens strains by multiple-alignment using ClustalW (Tan et al., 

1992).  

The purified plasmid from E. coli OS_ pT-phaC1 was sequenced by using primers pBADF 

and pBADR (Appendix C). The multiple-alignment result showed that the amplified phaC1 

synthase from P. putida PGA1 strain have conserved catalytic residues (His, Cys and Asp) 

which is significantly homologous to other class II PHA synthase (Appendix D). In a 

previous study by Amara and Rehm (2003), these catalytic residues at C terminal region in 

phaC1 synthase belong to the active site of α/β-hydrolase superfamily domain. 

The Class II PHA synthase consists of two PHA synthase genes, phaC1 and phaC2 which 

are located at the PHA gene cluster and separated by the PHA depolymerase gene (phaZ) 

(De Eugenio et al., 2007). In this study, phaC1 from P. putida was amplified for cloning 

purpose. It has been proposed that phaC1 and phaC2 genes have same properties and they 

are capable to operate independently in transgenic host. Rehm and Steinbüchel (1999) had 

reported that both PHA synthase perform similar properties and exert a similar substrate 

specificity and that 3-hydroxydecanoyl-CoA is the main substrate.  
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4.5 Screening of Escherichia coli LS1298 transformants with the lip and/or phaC1 

genes 

The fab B¯ E. coli LS1298 strain was used as the host for lipase as well as PHA synthase 

expression in this study. Expression of phaC1 in E. coli LS1298 was performed by 

transformation of pT-phaC1 vector which was extracted and purified from E. coli OS_ pT-

phaC1. Transformants were selected on LB agar containing 50 μg/mL of kanamycin and 

100 μg/mL of ampicillin. The existence of plasmid pT-phaC1 in the transformants was 

verified by PCR technique using oligo primers set pBADF and C1R, whereby the positive 

transformant will give a DNA fragment of ~1830 bp. The agarose gel picture showed 8 

selected transformants which contained vector pT-phaC1 (Figure 4.6). Transformant 

analysed at lane 1 was designated as LS_pT-phaC1 and used in subsequent experiments. 

                       

Figure 4.6: Agarose gel electrophoresis analysis of PCR-amplified phaC1 gene fragment 
from selected E. coli LS1298 transformants with pT-phaC1 vector. Lanes 1 to 8 represent 8 
individual transformant; M: 1kb DNA ladder (Promega); N: negative control; P: phaC1 
gene fragment from P.  putida. 

 

Construction of fab B¯ E. coli that was capable of expressing both the lip and phaC1 was 

accomplished by inserting equal volume of both vectors p2T-lip and pT-phaC1 harvested 

from OS_ p2T-lip and OS_ pT-phaC1 respectively into the same cell. PCR was performed 

   M         1         2         3          4         5         6        7          8        M        P         N                                                                                                                                                   

2,000 bp 

1,500 bp 
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to screen the transformed E. coli LS1298 strain harboring both vectors p2T-lip and pT-

phaC1 by using a combination of oligo primers TrxF and LR (for confirmation of lip), as 

well as pBADF and C1R (for confirmation of phaC1). Agarose gel electrophoresis showed 

that 3 out of 8 picked transformants (Figure 4.7, lane 3, 4 and 8) were found to contain both 

vectors. Transformant analysed at lane 3 was designated as LS_M3 for subsequent 

experiments.  

(A) lip 

                      
 

(B)phaC1 

                      
 
Figure 4.7: Agarose gel electrophoresis analysis of PCR-amplified lip gene (A) and phaC1 
gene (B) fragment from selected E. coli LS1298 transformants with both p2T-lip and pT-
phaC1 vectors. Lanes 1 to 8 represent 8 individual transformant; M: 1kb DNA ladder 
(Promega); L: lip gene fragment from P. fluorescens; N: negative control; P: phaC1 gene 
fragment from P. putida. 

    M         1         2          3          4         5         6         7         8         M         P        N                                                                                                                                                   

     M         1         2          3          4         5        6        7           8        M        L         N                                                                                                                                                   

2,000 bp 
1,500 bp 

2,000 bp 
1,500 bp 
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4.6 Detection of mRNA for lip and phaC1 genes in the transformants fad 

B¯ 

Reverse

Escherichia coli LS1298 

 transcription polymerase chain reaction (RT-PCR) was used to detect the mRNA 

in the recombinant E. coli. It is a useful indicator of gene expression within the cells even 

in a low gene copy number. The expression of lip gene from P. fluorescens and phaC1 

gene from P. putida in the respective recombinant E. coli 

Figure 4.8 (lanes A1 and A2) illustrates that lip gene was detected in cDNA from P. 

fluorescens and E. coli LS_M3 (containing both lip and phaC1 genes) using primers set LF 

& LR. However, in Figure 4.9 (lanes X1, X2 and X3) phaC1 gene was detected in cDNA 

from P. putida, E. coli LS_M3, E. coli LS_pT-phaC1 (containing only phaC1 gene) using 

primers C1F & C1R.  

strains was studied at the mRNA 

level. The mRNA in the recombinant strains was first reverse-transcribed into cDNA. A 

frequent problem encountered in performing RT-PCR is DNA contamination. Therefore, 

the extracted total RNA was first treated with DNase. This precautionary measure was to 

prevent potential false positive results.  
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Figure 4.8: Agarose gel electrophoresis analysis of PCR-amplified targeted lip gene from 
cDNA (A) and mRNA (B) of various bacteria strains. M: 1kb DNA ladder (Promega). 
Lanes A1 and B1: P. fluorescens; A2 and B2: E. coli LS_M3; A3 and B3: E. coli LS_pT-
phaC1; A4: LS_pT-lacZ; A5: PCR negative control. 
 

 

                               
 
Figure 4.9: Agarose gel electrophoresis analysis of PCR-amplified targeted phaC1 gene 
from cDNA (X) and mRNA (Y) of various bacteria strains. M: 1kb DNA ladder (Promega). 
Lanes X1 and Y1: P. putida; X2 and Y2: E. coli LS_M3; X3 and Y3: E. coli LS_ pT-
phaC1; X4: LS_pT-lacZ; X5: PCR negative control. 
 
 

 

 

4.7 Determination of lipase activity in recombinant strains 

2,000 bp 
1,500 bp 

2,000 bp 

1,500 bp 
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The lipolytic activity in the constructed recombinant strains was preliminarily examined on 

the trioleoylglycerol agar plate (method refer to section 3.7.1). Wild-type P. fluorescens, 

One Shot® Top10 E. coli, the fad B¯ E. coli LS1298 recombinant strain E. coli OS_p2T-lip 

and LS_M3 were spot cultivated on the trioleoylglycerol agar plate containing 0.002% 

(vol/vol) of arabinose and 0.3% (vol/vol) of olive oil.  Wild-type P. fluorescens and the 

recombinant strains E. coli OS_p2T-lip and LS_M3 showed distinctive halo area around 

the culture (Figure 4.10), indicating the lipolytic activity in those two strains. Both the One 

Shot®

Lipase production by the recombinant strains were then quantified by spectrophotometric 

assay method using p-nitrophenyl laurate as substrate (method refer to section 3.7.2). A 

lipase activity standard curve was first constructed (Figure 4.11) based on the absorbance 

reading of reaction mixture with known lipase concentrations (0.05, 0.1, 0.2, 0.4, 0.6, 0.8 

and 1 mU/mL of purified lipase enzyme from Pseudomonas sp. (Sigma-Aldrich, Germany, 

Cat. No.: L9518)). The standard curve showed that the p-nitrophenol liberated in the lipase 

activity assay was directly proportional to the concentration of lipase used. However, the 

standard graph plateaued off at lipase concentrations above 0.40 mU/mL. Therefore, a best 

fitting line was drawn using the data from lipase concentrations of 0.05 mU/mL to 0.40 

U/mL. The linear regression line showed the correlation value (R

 Top10 E. coli and the fad B¯ E. coli LS1298 did not show any halo area. 

2

For lipolytic analysis in bacteria culture, 1 mL of culture from the LB broth containing 

0.002% (vol/vol) of arabinose and 0.3% (vol/vol) of olive oil were collected and subjected 

for lipase activity determination by spectrophotomety. The value of estimated lipase in the 

bacteria culture was calculated based on the lipase standard linear regression line and was 

presented in Figure 4.12. P. fluorescens ATCC 13525 showed the highest lipase production 

in comparison to the recombinant strains OS_p2T-lip (harboring only lip gene) and LS_M3 

) was 0.864. 
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(harbouring both lip and phaC1 genes), whereas no lipase was detected in One Shot®

The results also showed that the lipase activity in recombinant E. coli strains OS_p2T-lip 

and LS_M3 were 19% and 53% lower in comparison to wild-type P. fluorescens. The 

possible reasons that the lower the lipase expression efficiency in recombinant strains E. 

coli LS-M3 in comparison to LS_ pT-phaC1 could be attributed to the to the presence of 

other expression vector in E. coli LS-M3 and yet to be determined.  

 

Top10 E. coli and E. coli strain LS_pT-lacZ. This coincided with the trioleoylglycerol agar 

plate assay whereby lipase was detected in P. fluorescens,  E. coli stains LS_M3 and LS_ 

pT-phaC1.  

                                        
                                 
Figure 4.10: Lipolytic production of P. fluorescens ATCC13525 and recombinant E. coli 
strains on trioleoylglycerol agar plate. The bacteria strains A: P. fluorescens (positive 
control), B: recombinant strain E. coli OS_p2T-lip, C: recombinant strain E. coli LS_M3, 
D: One Shot® Top10 E. coli (negative control) and (E) E. coli strain LS_pT-lacZ (negative 
control) Lipolytic activity as indicated by a clear zone around the culture in comparison D 
and E (negative control). 

B 

A, +ve C 

D, -ve 
E, -ve 
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Figure 4.11: Lipase activity standard curve. Vertical bars denote standard deviations from 
independent experiments done in triplicate.  

 

 

Figure 4.12: Lipase activity assay of different bacteria strains. Vertical bars denote the 
standard deviation from independent experiments done in triplicate.  
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4.8 PHA synthesis in recombinant strains 

4.8.1 Detection of PHA accumulation by Nile Blue A staining 

The ability of fad B¯ E. coli LS1298 harboring phaC1 gene for the PHA accumulation was 

initially verified by cultivating it in sodium octanoate. The expression of PHA synthase in 

recombinant strains was tested in various concentration of inducer (L-arabinose). Nile Blue 

A staining was used for the primary detection of PHA granules in the recombinant strains 

(Figure 4.13). The microscopic analysis showed increasing intensity in bright orange 

fluorescence when the recombinant E. coli strain LS_pT-phaC1 was cultivated in 

increasing concentration of L-arabinose (Figure 4.13). The culture with 0.002% L-

arabinose had the highest intensity out of the five tested concentrations (Figure 4.13c), 

hence 0.002% of L-arabinose was used in the following experiments. 

The microscopic observation also revealed that recombinant E. coli strains LS_pT-phaC1 

cells with accumulated PHA have elongated shape compared to the E. coli cells without 

PHA accumulation (rod-shaped). This change could be caused by the accumulated PHA 

granules in the cells cytoplasm, but this is yet to be determined by transmission electron 

microscopy (TEM).  
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                  Bright-field                           
(a) 0.00002% 

Nile Blue A fluorescence 

 

 

 

(b) 0.0002% 

 

 

 
 

(c) 0.002% 

 

 

 
 

                Bright-field                           
(d) 0.02% 

Nile Blue A fluorescence 

 
 

 

 
 

(e) 0.2% 

 
 

 

 

 
Figure 4.13: Bright-field and Nile Blue A fluorescence micrograph 
of recombinant E. coli strains LS_pT-phaC1 in different 
concentrations of L-arabinose (a) 0.00002%; (b) 0.0002%; (c) 
0.002%; (d) 0.02% ; (e) 0.2%. Cells containing PHA (a, b and c) 
would fluoresce when stained with Nile blue A. Cells in (d) and (e) 
did not contain PHA, so no fluorescence. 
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4.8.2 Detection of monomers composition and estimation of PHA content by gas 

chromatography (GC) 

The PHA production in LS_M3 and LS_pT-phaC1 using various carbon substrates was 

quantified by GC technique. According to the PHA standard gas chromatogram, the 

retention times for each methyl esters of 3-hydroxy fatty acids standards were determined: 

methyl 3-hydroxybutanoate (C4) at 4.01 min; methyl 3-hydroxyhexanoate (C6) at 5.13 

min; methyl 3-hydroxyoctanoate (C8) at 6.49 min; methyl 3-hydroxynonanoate (C10) at 

7.71 min; methyl 3-hydroxydecanoate (C12) at 9.02 min; methyl 3-hydroxydodecanoate 

(C14) at 10.75 min and methyl 3-hydroxyhexadecanoate (C16) at 13.42 min (Figure 4.14). 

However, the peak presented at retention time of 8.5 min in Figure 4.15, 4.16 and 4.17 was 

ignored due to this peak was detected in the negative control (E. coli strain LS_pT-lacZ) 

and the identity of this compound is yet to be determined. 

Based on the GC results, both the recombinant E. coli strains containing the phaC1 gene 

were able to accumulate PHA to 6.1% and 8.1% of cell dry weight respectively (Table 4.1). 

The GC results in this study was similar to the study by Ren et al. (2005) which 

demonstrated their recombinant E. coli JMU193 with phaC1 from P. putida GPo1 was able 

to accumulate PHA up to 8% of total cell dry weight when in cultivated in LB 

supplemented with 15 mM octanoate. However, the production was found to be much 

lower than that in the wild-type P. putida (30%). In contrary, a similar study by 

Langenbach et al. (1997) had revealed that the recombinant strain fab B¯ E. coli LS1298 

harbouring phaC1 gene from P. aeruginosa PAO1 capable to acuumulate21% of the cell 

dry weight using 0.5 (wt/vol) decanoate as carbon substrate.  

The GC analysis revealed that PHA was detected in recombinant E. coli strain LS_pT-

phaC1 cultivated with sodium octanoate or saponified palm kernel oil (SPKO) as carbon 
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source but not with glucose or palm kernel oil (PKO) as carbon source. GC analysis 

demonstrated that PHA accumulation of 8.1% of cell dry weight in recombinant E. coli 

strain LS_pT-phaC1 which cultivated in LB supplemented with sodium octanoate and 

containing only 3-hydroxyoctanoate monomer. PHA was also detected in E. coli strain 

LS_pT-phaC1 when cultivated in LB broth with SPKO in which contributing 

approximately 8.1% of cell dry weight. The PHA monomers were composed of 51.8% 3-

hydroxyoctanoate, 35.8% 3-hydroxynonanoate and 12.4% 3-hydroxydecanoate.   

PKO is a triglycerides which mainly made up of saturated fatty acids like lauric acid (C12), 

myristic acid (C14), palmitic acid (C16) and oleic acid (C18:1). It had been reported that 

the fatty acids derivatives from the PKO are the suitable carbon substrate for the production 

of mcl-PHA (Tan et al., 1997). Normally, PKO can be broken down to its fatty acid 

compounds by chemical (such as saponification) or enzymatic hydrolysis by lipase. Many 

of the pseudomonads are known to accumulate PHA from a variety of carbon substrates 

(Eggink et al., 1995) but only few of them can utilize lipid directly for PHA synthesis, such 

as Pseudomonas oleovorans (Füchtenbusch et al., 2000) and P.  aeruginosa (Solaiman et 

al., 1999). In this study, a recombinant E. coli strain LS_M3 which harboured both lip and 

phaC1 genes have the capability to accumulate PHA by utilizing PKO as carbon substrate.  

GC analysis showed that E. coli LS_M3 could produce PHA up to 7.8% of cell dry weight 

using PKO as carbon substrate, and the monomeric composition comprised 49.6% wt of 3-

hydroxyoctanoate, 36.9% wt of 3-hydroxynonanoate and 13.5% wt of 3-hydroxydecanoate. 

The level of PHA production in E. coli LS_M3 was much lower than the values reported by 

a similar study (Solaiman et al., 2001), whereby a genetically-modified PHA producer P. 

putida (pCN51lip-1) with lipolytic ability could accumulate PHA up to 53% of the cell dry 

weight.  
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As Pseudomonas members are naturally PHA producers, they have advantage over non-

PHA-producing bacteria such as E. coli as some of the pathways involved in PHA 

production are readily available. The phaC1 gene is the key enzyme to polymerize the 

monomers into long-chained polymers. However, other enzymes involved in formation of 

these PHA monomers might not be present in E. coli. Thus, this could be one of the 

contributing factors that cause the low production of PHA in recombinant E. coli strain in 

this study. 

On the other hand, when E. coli LS_M3 was fed with sodium octanoate, about 6.6% of cell 

dry weight PHA was produced and the only constituent was 3-hydroxyoctanoate. On the 

other hand, PHA up to 8.0% of cell dry weight was observed in the E. coli LS_M3 that fed 

with SPKO (with PHA constituents 50.3% 3-hydroxyoctanoate, 36.8% 3-

hydroxynonanoate and 12.9% 3-hydroxydecanoate). However, PHA was not detected when 

the recombinant strains was fed with glucose. No PHA was detected in both recombinant 

strains E. coli strains LS_pT-lacZ and LS_pT-phaC1 which were used as negative controls. 

PHA was detected in both recombinant strains that cultivated in sodium octanoate, PKO 

and SPKO even though biomass was much lower in comparison with cells grown in LB. In 

contrary, although glucose seems to have highest biomass in both recombinant strains, no 

PHA was detected. The possible reasons to this occurrence could be attributed to the 

substrate specificity of the PHA synthase. Indeed, the PHA synthase from Pseudomonas 

spp. was reported to utilize intermediate (R)-3-hydroxyacyl-CoA from the β-oxidation 

pathway as main substrate (Huijberts et al., 1992). However, there are several 

pseudomonads capable to accumulate PHA from non-related carbon source such as 

gluconate (Timm et al., 1990; Lee, 1996) and it is involves in the conversion of an 

intermediate from the fatty acid de novo synthesis pathway by transacylase phaG to the 
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desired substrates in order to be recognized by PHA synthase for polymerization (Rehm, et 

al., 1998). Since the E. coli strain might not have the desired metabolic pathways to convert 

the non-related carbon source to a precursor which can be recognized by the PHA synthase 

with Pseudomonas origins, it is expected that the recombinant E. coli strains were 

incapable to produce PHA from glucose.  

In addition to that, it has been reported that glucose has a negative effect in activating 

arabinose (ara) operon (Miyada et al., 1984) in transgenic host. Basically, there are two 

activation events which mediate the activation of the ara operon (Schleif, 2000). One of the 

events is the binding of the inducer arabinose to the activator protein encoded by araC 

gene. Another is the CAP-cAMP catabolite repression system like in the lac operon; cyclic 

AMP activates a molecule (CAP), which then binds to the lac promoter and regulate the 

transcription.

 

 Both the AraC-arabinose complex and CAP-cAMP complex act as activator 

protein which activates transcription of the ara operon and allow transcription to begin. 

However, in the presence of glucose, it lowers the levels of 3’, 5’-cyclic AMP and thus 

decreases its binding to CAP (Guzman et al., 1995). As a result, the transcriptional process 

is drastically decreased. Hence, the addition of glucose in the recombinant E. coli culture 

might give an adverse effect on the PHA production.  
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Table 4.1: PHA content and monomer composition of recombinant E. coli LS_M3 and E. coli LS_pT-phaC1 cultivated in various carbon 
sources  

Strain Carbon source Cell dry weight (g/L) PHA content % CDW 
(wt/wt) 

Composition of PHA Monomer (% wt) 
3HO 3HN 3HD 

 
E. coli  
LS_M3 
 
 

      
LB ab + Sodium octanoate 0.755 c 6.6 100 - - 
LB ab + PKO 1.168  c 7.8 49.6 36.9 13.5 
LB ab + SPKO 1.102  c 8.0 50.3 36.8 12.9 
LB ab + Glucose 2.237  c 0 - - - 
LB
 

 ab 1.759 
 

0 
 

- 
 

- 
 

- 
 
        

E. coli  
LS_pT-phaC1 

LB ab + Sodium octanoate 0.786 c 8.1 100 - - 
LB ab + PKO 1.184  c 0 - - - 
LB ab + SPKO 1.100 c 8.1 51.8 35.8 12.4 
LB ab + Glucose 2.313 c 0 - - - 
LB 1.833  ab 0 - - - 

E. coli  
LS_pT-lacZ  

      
LB b + PKO 1.203  c - - - - 
LB b + SPKO 1.051 c - - - - 

E. coli  
OS_pT-lacZ 

      
LB b + PKO 1.099  c - - - - 
LB b + SPKO 1.164 c - - - - 

LB: Luria-Bertani broth 
a Supplement : 50 μg/mL of kanamycin, b Supplement : 100 μg/mL ampicillin, c 0.2% (wt/vol) of carbon source was added into the culture 
after 12 hours incubation in the 

3HO: 3-hydroxyoctanoate; 3HN: 3-hydroxynonanoate; 3HD: 3-hydroxydecanoate; 3HDD: 3-hydroxydodecanoat.

LB. 
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Figure 4.14: Chromatogram of methyl esters standards analysis by gas chromatography 
(GC). The text above the peak refers to the monomer of the PHA component, C4: methyl 3-
hydroxybutanoate; C6: methyl 3-hydroxyhexanoate; C8: methyl 3-hydroxyoctanoate; C10: 
methyl 3-hydroxynonanoate; C12: methyl 3-hydroxydecanoate; C14: methyl 3-
hydroxydodecanoate; C16: methyl 3-hydroxyhexadecanoate.  
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Sodium octanoate   

          

PKO 

         
SPKO 

          

LB 

         
 Glucose         

        
 

 
Figure 4.15: Chromatogram of methyl esters 
PHA by GC separation from the dry cell of 
recombinant E. coli LS_M3 by using 
different carbon sources. The text above the 
peak refers to the monomer of the PHA 
component that detected by GC, C8: methyl 
3-hydroxyoctanoate; C10: methyl 3-
hydroxynonanoate; C12: methyl 3-
hydroxydecanoate. 
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Sodium octanoate   
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Figure 4.16: Chromatogram of methyl esters 
PHA by GC separation from the dry cell of 
recombinant E. coli LS_pT-phaC1 by using 
different carbon sources. The text above the 
peak refers to the monomer of the PHA 
component that detected by GC, C8: methyl 
3-hydroxyoctanoate; C10: methyl 3-
hydroxynonanoate; C12: methyl 3-
hydroxydecanoate. 
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PKO 

              

SPKO 

       
Figure 4.17: Chromatogram of methyl esters PHA by GC separation from the dry cell of 
recombinant E. coli LS_pT-lacZ by using different carbon sources. The text above the peak 
refers to the monomer of the PHA component that detected by GC, C8: methyl 3-
hydroxyoctanoate; C10: methyl 3-hydroxynonanoate; C12: methyl 3-hydroxydecanoate. 
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4.9 Problems encountered in heterologous expression of lip and phaC1 genes in 

recombinant Escherichia coli 

Heterologous expression of PHA synthase from various bacteria strain in E. coli has 

successfully achieved for the past decades (Langenbach et al., 1997; Park et al., 2005; Qi et 

al., 1997; Ren et al., 2000). This approach was widely applied because the expression of 

heterologous protein in recombinant E. coli by genetic engineering has been reported as a 

well-developed approach in order to obtain high yields of the desired protein (Elvin et al., 

1990). One of the major criteria to be fulfilled by the bacteria host in order for the 

heterologous expression of PHA synthase in E. coli is containing a suitable PHA 

biosynthesis pathway. 

Despite the development of sophisticated cloning techniques, there are difficulties 

encountered in expressing a foreign gene in recombinant E. coli. Based on the overall result 

that presented in this study, neither the PHA production nor the lipase activity in the 

constructed recombinant strains achieved to the levels similar to those expected levels in 

the wild-type bacteria and other reported recombinant strains. One of the factors that may 

contribute to the low yield of PHA and lipase in the recombinant strains is the stability of 

the antibiotic subjected during the bacterial cultivation.  

In this study, the selectable markers (ampicillin or kanamycin resistance gene) on the 

expression vector were used to distinguish the recombinant strains harboring desired gene 

from the plasmid-free strain. Indeed, the population of the recombinant strain that contain 

the desired plasmid was dependent on the stability of the antibiotic. It has been reported 

that some of the marker antibiotics such as ampicillin was degraded over time by E. coli 

(Sambrook and Russel, 2001). The degradation of the antibiotic may cause the loss of the 

desired plasmid and eventually it led to the plasmid-free cells overgrew the recombinant 

cell population (Dong et al., 1995). 
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Another contributing factor could be the choice of promoter used in the gene expression. In 

order for the transcription to take place, the promoter plays an important role for the 

polymerase to bind to. 

The promoter is normally located near the genes they regulate and it is the key element of 

an expression vector to initiate the gene expression in the beginning stage. Most of the 

frequently used promoters in the expression vectors are lac promote and trp promoter. The 

expression of the heterologous gene in the recombinant E. coli can be regulated either by 

using its own native promoter or by an external promoter within the expression vector. 

However, Deretic et al. (1989) had reported that the transcription of many pseudomonads 

genes is highly regulated by their own promoter and which might not be recognized by the 

E. coli RNA polymerase. This coincides to the finding reported by Ren et al. (2005) in 

which no PHA was produced in genetic engineered E. coli harboring the 

Larsen et al. (1984) had reported that the induction of a 

heterologous protein by a strong promoter can lead to uncontrollable overproduction which 

might induce stress response in the host cell and eventually termination of its growth. 

Moreover, it has been reported that protein accumulation to 30% of the total protein within 

the cells can cause damage to the rRNA and ribosome which was unfavorable for cell 

growth and viability (Dong et al., 1995).  

PHA synthase 

gene and the native 

An inducer that regulates

promoter from P. putida.  

 foreign genes expression of the promoter in vector systems also 

influences the yield of the desired protein. Hypothetically, high concentration of the 

inducer regulating the heterologous gene expression by the promoter in the recombinant E. 

coli results in increasing the heterologous protein production.  
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However, looking at the Nile Blue A staining micrographs (Figure 4.13), no PHA was 

detected in recombinant strains tested with the highest concentration of L-arabinose (2%) 

while the recombinant strains induced with 0.002% of L-arabinose had high fluorescence 

intensity. This revealed that an appropriate concentration of the inducer is very crucial in 

gene expression. Excessive overproduction of heterologous protein by high concentration 

of inducer 

There are relationship between the cell growth and its PHA content in which the cell 

density defines the amount of PHA accumulated. A low cell density with high PHA content 

or high concentration cell density with low PHA content will result in low final PHA 

concentration. However the best PHA productivity can be obtained in high concentration of 

cell density with high PHA content. Therefore, the cell growth and the PHA synthesis need 

to be balanced to reach a point in order to achieved maximum PHA accumulation in the 

bacteria.  

might cause toxicity which is detrimental to E. coli (Blum et al., 1992). But, 

overall PHA yield in the recombinant E. coli strains in 0.002% concentration of inducer 

was still comparatively low. This could be due to the degradation of the antibiotic and led 

to the over-growth of the plasmid-free E. coli in the overall population which contributed to 

the total biomass.  
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CHAPTER 5: CONCLUSION  

Some pseudomonads were found to be capable of synthesizing mcl-PHA by utilizing oil as 

sole carbon substrate but the yield was relatively low when compared with those produced 

from carbohydrates, alcohols and fatty acids. The aim of this study was to construct a 

recombinant Escherichia coli strain which capable to utilize palm kernel oil directly as 

carbon substrate for PHA synthesis. 

In this study, phaC1 gene from Pseudomonas putida and lip gene from Pseudomonas 

fluorescens ATCC13525 were amplified and inserted into pBAD-TOPO and pBAD202/D-

TOPO vectors respectively. The two recombinant plasmids were cloned into fad B¯ E. coli 

LS1298 and the resulting recombinant E. coli strains were obtained: LS_pT-phaC1 with 

phaC1 gene only, and LS_M3 with both phaC1 gene and lip gene. 

The lipase activity of the recombinant E. coli LS_M3 was quantified by using lipase 

activity assay. Results showed that 1.01 mU/mL of lipase was produced by recombinant 

LS_M3 and was approximately 53% lower than that in P. fluorescens ATCC13525, the lip 

gene donor strain.  

The PHA production in both recombinant strains was tested by growing in the LB media 

containing different carbon substrates, followed by gas chromatography analysis to 

quantify the PHA in the cell. The PHA yield of both recombinant E. coli strains were much 

lower (6 to 8.1% of its cell dry weight) as compare to the PHA production in P. putida 

(40% of its cell dry weight), which as the phaC1 gene donor strain. However, recombinant 

E. coli LS_M3 showed low amount of PHA production using palm kernel oil, whilst P. 

putida cannot synthesis PHA from oil.  
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CHAPTER 6: FUTURE WORK 

In practice, the satisfactory yield of enzyme in recombinant bacteria is often difficult to 

obtain. The levels of PHA accumulation as well as the lipase activity of constructed 

recombinant E. coli stains in this preliminary study were not optimized and further 

improvement should be pursued in future studies. The PHA synthase plays a crucial role in 

PHA polymerization, however other functionally genes encoding proteins participating in 

the PHA metabolism are also important. These include the phaJ gene encoding (R)-specific 

enoyl-CoA hydratase (Fiedler et al., 2002) and phaP gene encoding phasing enzyme 

involved in stabilize PHA granules (

Thus, many other research activities can be performed 

Steinbüchel et al., 1995).  

 

in order to understand the PHA 

synthesis and its pathway in the recombinant strains in order to resolve the problem 

encounter during this study that a feasible high yield of PHA production can be achieved. 

Improvements such as heterologous expression of desired genes in a high performance 

cloning vector and optimization of inducer concentration for gene expression in the 

recombinant strain could be carried out.  

 

 

 

 

 




