SYNTHESIS, REACTION AND STRUCTURAL STUDIES OF TRIORGANOTIN CARBOXYLATES

THONG PUI YEE

DISSERTATION SUBMITTED IN THE FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR MAC 2010

Acknowledgement

My utmost gratitude goes to my supervisor, Assoc. Prof. Dr. Lo Kong Mun, whose encouragement, guidance and support from the initial to the final level enabled me to complete this project. My thanks goes to him for reading through the draft of the thesis and advice in the compilation of the thesis. I would like to express my deepest thanks to Prof. Dr. Ng Seik Weng for assistance in solving the crystal structures.

Besides, deepest appreciation to Mr. Chee Chin Fei. His willingness to motivate and guide me contributed tremendously. He has made available his support in a number of ways. Without him I might not be able to carry out the cytotoxicity tests. I am indebted to many of my colleagues, especially Ms. Yap Quai Ling, to support me and gave me a hand while I am in needs. I would like to express my sincere appreciation to Ms. Norzalida Zakaria, Mr. Azizul and Mr. Jasmi for guidance in the recording of the ¹³C NMR spectra.

An honorable mention goes to my family, especially Mr. Yee See Hoo, and friends for their understandings and encourages me in completing this project. Without helps of the particular that mentioned above, I would face many difficulties while doing this project. I also offer my regards and blessings to all of those not mentioned here who encouraged and helped me in any respect during the completion of the project.

Lastly,I would like to take this opportunity to thank to University of Malaya for providing tutorship and grants to fund this project.

P. Y. Thong

i

Abstract

Two series of carboxylic acids namely substituted cinnamic acids with the general formula p-Z-C₆H₄CH=CHCOOH where Z = H, CH₃, OCH₃, NO₂, Cl and diorganodithiocarbamylacetic acid with the general formula R'R"NCS2CH2COOH where R', R" = CH_3 , C_2H_5 , C_4H_9 , C_3H_7 , morpholinyl and piperidinyl were prepared. Triorganotin carboxylates with the general formula $R_3SnOCOCH=CHC_6H_4-Z-p$ where $R = C_4H_9$, Cyh and Bz; Z = H, CH₃, OCH₃, NO₂, Cl and R₃SnOCOCH₂CS₂NR'R" where R = Cyh; R' and R'' = CH₃, C₂H₅, C₄H₉, C₃H₇, morpholinyl and piperidinyl were prepared by reacting the triorganotin hydroxides with the respective carboxylic acids. These carboxylic acids and their triorganotin derivatives were charaterised by elemental analysis, infrared spectroscopic technique and ¹H and ¹³C NMR spectrometry. The crystal structures of *p*-nitrocinnamic acid and four triorganotin carboxylate derivatives namely tricyclohexyltin cinnamate (C6), tributyltin *p*-chlorocinnamate (C5), tribenzyltin *p*-nitrocinnamate (C14) and tricyclohexyltin dimethyldithiocarbamylacetate (D1) were determined by single crystal X-ray crystallographic technique. The carboxylic acids and triorganotin carboxylates prepared were also investigated for their bromination reactions using various types of brominating agents such as bromine liquid. *N*-bromosuccinimide, pyridinium tribromide and 4,4-dimethylaminopyridinium tribromide. In general, the bromination of the substituted cinnamic acids leads to the formation of bromine addition products such as substituted 2,3-dibromo-3phenylpropionic acids. The bromination of triorganotin carboxylates by bromine and 4,4-dimethylaminopyridinium tribromide gave the bromine substituted carboxylic acid, p-ZC₆H₄CH(Br)CH(Br)COOH as the major product. In the case of bromination of triorganotin cinnamates using *N*-bromosuccinimide and methanol, p-Z-

 $C_6H_4CH(Br)CH(OCH_3)COOH$ was obtained as the major product. The triorganotin diorganodithiocarbamylacetate were found to be inert towards any brominating agents. The bromination products were characterized by spectroscopic techniques such as ¹H, ¹³C NMR and FT-IR spectroscopies. The X-ray structures of four bromination products namely 2,3-dibromo-3-phenylpropionic acid (A6), 2-bromo-3-methoxy-3-(*p*-methoxyphenyl)propionic acid (A7), bis(4,4-dimethyl-aminopyridinium)-2,3-dibromo-3-(*p*-chlorophenyl)propionate (A9) and tricyclohexyltin 2,3-dibromo-3-phenylprionate (P4) were also determined.

In addition, ten selected triorganotin carboxylates, **C4–C10, C14, P4–P6** were investigated for their cytotoxic activities against the human leukemia HL60 cells. In general, the triorganotin carboxylates exhibit comparable cytotoxic activities to that of *cisplatin*.

List of Figures

Figure 1.1	Bis(cyclopentadienyl)tin(II)	1
Figure 1.2	The idealized structures of triorganotin carboxylates, R ₃ Sn(O ₂ CR')	12
Figure 3.1	<i>p</i> -Substituted cinnamic acid	59
Figure 3.2	Substituted 3-phenylpropionic acid	59
Figure 3.3	Bis[4-dimethylaminopyridinium]-2,3-dibromo-3-(p- chlorophenyl)	
	propionate bromide	59
Figure 3.4	Diorganodithiocarbamylacetatic acid	60
Figure 3.5	Triorganotin <i>p</i> -substituted cinnamate	60
Figure 3.6	Triorganotin substituted 3-phenylpropionate	60
Figure 3.7	Tricyclohexyltin diorganodithiocarbamylacetate	61
Figure 3.8	Synthesis of <i>p</i> -substituted cinnamic acids	62
Figure 3.9	Synthesis of tributyltin <i>p</i> -substituted cinnamates	62
Figure 3.10	Bromination of tributyltin <i>p</i> -substituted cinnamates	64
Figure 3.11	Synthesis of bis(4-dimethylaminopyridinium)-2,3-dibromo-3-	
	(p-chlorophenyl)propionate bromide	64
Figure 3.12	Synthesis of tribenzyltin <i>p</i> -substituted cinnamates	65
Figure 3.13	Synthesis of brominated triorganotin <i>p</i> -substituted cinnamates	66
Figure 3.14	Synthesis of diorganodithiocarbamylacetate	67
Figure 3.15	Synthesis of tricyclohexyltin diorganodithiocarbamylacetates	68
Figure 3.16	Bromination of tricyclohexyltin diorganodithiocarbamylacetates	69

iv

Figure 3.17	Synthesis of triorganotin diorganodithiocarbamylacetic acid by	
	using LDA	70
Figure 3.18	Molecular plot of <i>p</i> -nitrocinnamic acid (A4) at 70% probability	104
Figure 3.19a	Close packing of <i>p</i> -nitrocinnamic acid (A4) viewed along <i>a</i> -axis	105
Figure 3.19b	Close packing of p -nitrocinnamic acid (A4) viewed along b -axis	106
Figure 3.19c	Close packing of p -nitrocinnamic acid (A4) viewed along c -axis	107
Figure 3.20	Molecular plot of 2, 3-dibromo-3-phenylpropionic acid (A6) at	
	70% probability	112
Figure 3.21a	Close packing of 2,3-dibromo-3-phenylpropionic acid (A6)	
	viewed along <i>a</i> -axis	113
Figure 3.21b	Close packing of 2,3-dibromo-3-phenylpropionic acid (A6)	
	viewed along <i>b</i> -axis	114
Figure 3.21c	Close packing of 2,3-dibromo-3-phenylpropionic acid (A6)	
	viewed along <i>c</i> -axis	115
Figure 3.22	Molecular plot of 2-bromo-3-methoxy-3-(p-methoxyphenyl)-	
	propionic acid (A8) at 70% probability	119
Figure 3.23a	Close packing of 2-bromo-3-methoxy-3-(p-methoxyphenyl)-	
	propionic acid (A8) viewed along <i>a</i> -axis	120
Figure 3.23b	Close packing of 2-bromo-3-methoxy-3-(p-methoxyphenyl)-	
	propionic acid (A8) viewed along <i>b</i> -axis	121
Figure 3.23c	Close packing of 2-bromo-3-methoxy-3-(p-methoxyphenyl)-	
	propionic acid (A8) viewed along <i>c</i> -axis	122
Figure 3.24	Molecular plot of bis(4-dimethylaminopyridinium)	
	2,3-dibromo- 3-(<i>p</i> -chlorophenyl)propionate bromide (A9)	
	at 70% probability.	127

v

Figure 3.25a	Close packing of bis(4-dimethylaminopyridinium)	
	2,3-dibromo-3-(<i>p</i> -chlorophenyl)propionate bromide (A9)	
	viewed along <i>a</i> -axis	128
Figure 3.25b	Close packing of bis(4-dimethylaminopyridinium)	
	2,3-dibromo-3-(<i>p</i> -chlorophenyl)propionate bromide (A9)	
	viewed along <i>b</i> -axis	129
Figure 3.25c	Close packing of bis(4-dimethylaminopyridinium)	
	2,3-dibromo-3-(<i>p</i> -chlorophenyl)propionate bromide (A9)	
	viewed along <i>c</i> -axis	130
Figure 3.26a	Molecular plot of tricyclohexyltin cinnamate (C6)	134
Figure 3.26b	Ellipsoids drawn of tricyclohexyltin cinnamate (C6) at 70%	
	probability	135
Figure 3 279	Close packing of tricyclohexyltin cinnamate (C6) viewed	
Figure 5.27a	along <i>a</i> -axis.	136
Figure 3 27h	Close packing of tricyclohexyltin cinnamate (C6) viewed	150
Figure 5.270	along <i>b</i> -axis	137
Figure 3 27c	Close packing of tricyclohexyltin cinnamate (C6) viewed	157
Figure 5.27C	along <i>c</i> -axis	138
Figure 3.28	Molecular plot of tributyltin <i>p</i> -chlorocinnamate (C5)	142
C	Close packing of tributyltin <i>p</i> -chlorocinnamate (C5) viewed	1 12
1 igui 0 0127 u	along <i>a</i> -axis	143
Figure 3.29b	Close packing of tributyltin <i>p</i> -chlorocinnamate (C5) viewed	110
1 igur 0 0127 %	along b-axis.	144
Figure 3.29c	Close packing of tributyltin <i>p</i> -chlorocinnamate (C5) viewed	
1 igui e e => e	along <i>c</i> -axis	145
Figure 3.30	Molecular plot of tribenzyltin <i>p</i> -nitrocinnamate (C14) at 70%	113
- 19ur - 2000	probability.	150
	produomity.	150

vi

Figure 3.31a	Close packing of tribenzyltin <i>p</i> -nitrocinnamate (C14) viewed	
	along <i>a</i> -axis	151
Figure 3.31b	Close packing of tribenzyltin <i>p</i> -nitrocinnamate (C14) viewed	
	along <i>b</i> -axis	152
Figure 3.31c	Close packing of tribenzyltin <i>p</i> -nitrocinnamate (C14) viewed	
	along <i>c</i> -axis	153
Figure 3.32	Molecular plot of tricyclohexyltin 2,3-dibromo-3-phenyl-	
	propionate (P4) at 70% probability	157
Figure 3.33a	Close packing of tricyclohexyltin 2,3-dibromo-3-phenyl-	
	propionate (P4) viewed along <i>a</i> -axis	158
Figure 3.33b	Close packing of tricyclohexyltin 2,3-dibromo-3-phenyl-	
	propionate (P4) viewed along <i>b</i> -axis	159
Figure 3.33c	Close packing of tricyclohexyltin 2,3-dibromo-3-phenyl-	
	propionate (P4) viewed along <i>c</i> -axis	160
Figure 3.34	Molecular plot of tricyclohexyltin dimethyldithiocarbamyl-	
	acetate (D1) at 70% probability	164
Figure 3.35a	Close packing of tricyclohexyltin dimethyldithiocarbamyl-	
	acetate (D1) viewed along <i>a</i> -axis	165
Figure 3.35b	Close packing of tricyclohexyltin dimethyldithiocarbamyl-	
	acetate (D1) viewed along <i>b</i> -axis	166
Figure 3.35c	Close packing of tricyclohexyltin dimethyldithiocarbamyl-	
	acetate (D1) viewed along <i>c</i> -axis	167
Figure 3.36	The cytotoxicity of selected triorganotin carboxylates against	
	human leukemia HL 60 cells.	

171

List of Tables

Table 1.1	Melting point or boiling point of triorganotin hydroxides and oxides	6
Table 1.2	The effect of R groups on $\delta(^{119}Sn)$ of organotin chlorides R_nSnCl_{4-n}	20
Table 1.3	Spin-spin Coupling constant between ¹¹⁹ Sn and various nuclei in	
	alkyltin compounds $R_n Sn X_{4-n}$ in non-coordinating solvents	21
Table 3.1	Melting point and elemental analysis	72
Table 3.2	Selected infrared spectroscopic data for carboxylic acids	79
Table 3.3	Selected infrared spectroscopic data for triorganotin <i>p</i> -substituted	
	Cinnamates	81
Table 3.4	Selected infrared spectroscopic data for triorganotin substituted	
	3-phenylpropionates	82
Table 3.5	Selected infrared spectroscopic data for tricyclohexltin diorgano-	
	dithiocarbamylacetates	83
Table 3.6	¹ H NMR data for carboxylic acids	86
Table 3.7	¹ H NMR data for triorganotin <i>p</i> -substituted cinnamates	88
Table 3.8	¹ H NMR data for triorganoltin substituted 3-phenylpropionates	90
Table 3.9	¹ H NMR data for tricyclohexyltin diorganodithiocarbamylacetates	91
Table 3.10	¹³ C NMR chemical shift data for carboxylic acids	92
Table 3.11	¹³ C NMR data for triorganotin <i>p</i> -substituted cinnamates	94
Table 3.12	¹³ C NMR data for triorganoltin substituted 3-phenylpropionates	97
Table 3.13	¹³ C NMR data for tricyclohexyltin diorganodithiocarbamylacetates	99
Table 3.14	Crystal data and structure refinement for <i>p</i> -nitrocinnamic acid (A4)	102
Table 3.15	Crystal data and structure refinement for 2,3-dibromo-3-phenyl-	
	propionic acid (A6)	110
Table 3.16	Crystal data and structure refinement for 2-bromo-3-methoxy-	
	3-(<i>p</i> -methoxyphenyl)propionic acid (A8)	117

Table 3.17	Crystal data and structure refinement for bis(4-dimethylamino-	
	pyridinium) 2,3-dibromo-3-(p-chlorophenyl)propionate	
	bromide (A9)	125
Table 3.18	Crystal data and structure refinement for tricyclohexyltin	
	cinnamate (C6)	132
Table 3.19	Crystal data and structure refinement for tributyltin	
	<i>p</i> -chlorocinnamate (C5)	140
Table 3.20	Crystal data and structure refinement for tribenzyltin	
	<i>p</i> -nitrocinnamate (C14)	148
Table 3.21	Crystal data and structure refinement for tricyclohexyltin	
	2,3-dibromo-3-phenylpropionate (P4)	155
Table 3.22	Crystal data and structure refinement for tricyclohexyltin	
	dimethyldithiocarbamylacetate (D1)	162
Table 3.23	The cytotoxicity of selected triorganotin carboxylates against	
	human leaukemia HL 60 cells	170

List of Abbreviations

Me	-CH ₃
Bu	-CH ₂ CH ₂ CH ₂ CH ₃
Bz	$-CH_2C_6H_5$
Cyh	-C ₆ H ₁₁
DMF	dimethylformamide
DMSO	dimethylsulphoxide
Et	-CH ₂ CH ₃
EtOH	ethanol
Ph	-C ₆ H ₅
THF	tetrahydrofuran

CONTENTS

Acl	Acknowledgement		i
Abs	stract		ii
List	t of figu	ires	iv
List	t of tabl	es	viii
List	t of abb	reviations	X
Cha	apter 1	: Organotin Chemistry	
1.1	Gene	eral Introduction	1
1.2	Synt	thetic Methods	
	1.2.1	Synthesis of tetraorganotins	3
	1.2.2	Synthesis of tri Di and monoorganotins	4
1.3	Intro	duction of Organotin Carboxylate	
	1.3.1	Synthesis of organotin carboxylates	10
	1.3.2	Coordination of organotin carboxylates	11
	1.3.3	Triorganotin <i>p</i> -substituted cinnamates	13
	1.3.4	Triorganotin diorganodithiocarbamyl acetates	14
	1.3.5	Bromination reactions of triorganotin carboxylates	14
1.4	Struc	etural techniques	
	1.4.1	Infrared Spectroscopy	17
	1.4.2	Nuclear Magnetic Resonance Spectroscopy	19
	1.4.3	X-ray Crystallography	22

1.5	Application of organotin compounds	24
1.6	Objective	25
Refe	erences	26

Chapter 2: Experimental Section

2.1	Gene	pral	32
2.2	Syntl	hesis of triorganotin	
	2.2.1	Conversion of tricyclohexyltin chloride to tricyclohexyltin	
		hydroxide	34
	2.2.2	Preparation of tribenzyltin chloride	34
	2.2.3	Conversion of tribenzyltin chloride to tribenzyltin hydroxide	35
	2.2.4	Preparation of tris(p-chlorobenzyltin) chloride	35
	2.2.5	Conversion of tris(<i>p</i> -chlorobenzyltin) chloride to	
		tris(p-chlorobenzyltin) hydroxide	35
	2.2.6	Preparation of cyclopentyltriphenyltin	36
	2.2.7	Preparation of cyclopentyldiphenyltin hydroxide	37
2.3	Prepar	ation of carboxylic acid	
	2.3.1	Preparation of <i>p</i> -nitrocinnamic acid	38
	2.3.2	Preparation of 2,3-dibromo-3-phenylpropionic acid	38
	2.3.3	Preparation of 2,3-dibromo(p-methyl-3-phenyl)propionic acid	39
	2.3.4	Preparation of 2-bromo-3-methoxy(p-methoxy-3-phenyl)propionic	
		acid	39
	2.3.5	Preparation of N-piperidinyldithiocarbamylacetic acid	39

2.4	Prepar	ation of triorganotin <i>p</i> -substituted cinnamates	
	2.4.1	Preparation of tributyltin <i>p</i> -substituted cinnamate	41
	2.4.2	Preparation of tricyclohexyltin <i>p</i> -substituted cinnamate	41
	2.4.3	Preparation of tribenzyltin <i>p</i> -substituted cinnamate	42
	2.4.4	Attempted preparation of tris(p-chlorobenzyltin) cinnamate	42
	2.4.5	Attempted reaction of mixed organotin hydroxide and cinnamic	
		acid	42
2.5	Prepa	aration of triorganotin substituted propionate	
	2.5.1	Preparation of tributyltin 2,3-dibromo-3-phenylpropionate	43
	2.5.2	Preparation of tricyclohexyltin 2,3-dibromo-3-phenylpropionate	43
	2.5.3	Preparation of tribenzyltin 2,3-dibromo-3-phenylpropionate	44
2.6	Prepa	aration of triorganotin diorganodithiocarbamylacetate	
	2.6.1	Preparation of tricyclohexyltin N-piperidinyldithiocarbamylacetate	45
	2.6.2	Attempted lithiation of N-morpholinyldithiocarbamylacetic acid	
		followed by addition of triphenyltin chloride	45
2.7	Brom	nination of triorganotin carboxylate with brominating agents	
	2.7.1	Bromination reaction of tributyltin cinnamate with bromine at	
		room temperature	47
	2.7.2	Bromination reaction of tributyltin cinnamate with 4-dimethyl-	
		aminopyridinium tribromide at room temperature	47
	2.7.3	Bromination reaction of tributyltin cinnamate with pyridinium	
		tribromide at room temperature	48
	2.7.4	Bromination reaction of tributyltin cinnamate with dibromotriphenyl-	
		phosphine at room temperature	48
	2.7.5	Bromination reaction of tributyltin cinnamate with 4-dimethyl-	

	aminopyridinium tribromide at refluxing temperature	49
2.7.6	Bromination reaction of tributyltin <i>p</i> -methylcinnamate with	
	4-dimethylaminopyridinium tribromide at refluxing	
	temperature	49
2.7.7	Bromination reaction of tributyltin <i>p</i> -methoxycinnamte with 4-	
	dimethylaminopyridinium tribromide at refluxing temperature	49
2.7.8	Bromination reaction of tricyclohexyltin cinnamate with	
	bromine at room temperature	50
2.7.9	Bromination reaction of tricyclohexyltin cinnamate with 4-	
	dimethylaminopyridinium tribromide at room temperature	50
2.7.10	Bromination reaction of tricyclohexyltin cinnamate with	
	pyridinium tribromide at room temperature	51
2.7.11	Bromination reaction of tricyclohexyltin cinnamate with	
	dibromotriphenylphosphine at room temperature	52
2.7.12	Bromination reaction of tricyclohexyltin cinnamate with	
	brominating agents at refluxing temperature	52
2.7.13	Bromination reaction of tribenzyltin cinnamate with bromine at	
	room temperature	52
2.7.14	Bromination reaction of tribenzyltin cinnamate with	
	4-dimethylainopyridinium tribromide at room temperature	53
2.7.15	Bromination reaction of tribenzyltin cinnamate with 4-	
	dimethylaminopyridinium tribromide at refluxing temperature	54
2.7.16	Bromination reaction of tricyclohexltin dimethyldithio-	
	carbamylacetate with 4-dimethylaminopyridinium	
	tribromide at room temperature	54

2.8	Procedure for determining in vitro cytotoxic activity (MTT assay)	56
Refe	rences	58

Chapter 3: Result and Discussion

3.1	Gene	General				
3.2	Synt	Synthesis				
	3.2.1	Synthesis and reaction of substituted cinnamic acid	62			
	3.2.2	Synthesis of diorganodithiocarbamylacetic acids and their				
		reactions with triorganotin chloride.	67			
3.3	Infra	red spectral data	77			
3.4	¹ H a	nd ¹³ C NMR spectral data	84			
3.5	X-ra	X-ray structural studies				
	3.5.1	X-ray crystal structure of p -nitrocinnamic acid (A4)	100			
	3.5.2	X-ray crystal structure of 2,3-dibromo-3-phenylpropionic				
		acid (A6)	108			
	3.5.3	X-ray structure of 2-bromo-3-methoxy-3-(p-methoxyphenyl)-				
		priopionic acid (A8)	116			
	3.5.4	X-ray crystal structure of bis(4-dimethylaminopyridinium)				
		2,3-dibromo-3-(<i>p</i> -chlorophenyl)propionate bromide (A9)	123			
	3.5.5	X-ray structure of tricyclohexyltin cinnamate (C6)	131			
	3.5.6	X-ray structure of tributyltin <i>p</i> -chlorocinnamate (C5)	139			
	3.5.7	X-ray structure of tribenzyltin <i>p</i> -nitrocinnamate (C14)	146			

	3.5.8 X-ray structure of tricyclohexyltin 2,3-dibromo-3-phenyl-		
		propionate (P4)	154
	3.5.9	X-ray crystal structure of tricyclohexyltin dimethyldithio-	
		carbamylacetate (D1)	161
3.6	Cyto	toxicity activity	168
References			
4.0	Cond	elusion	173

Appendix

List of publication