ABSTRACT

Since soil-borne bacteria represent the world's greatest source of biological diversity, the diversity of culturable bacteria associated with soil from three different regions of the Anchorage Island on the Antarctic Peninsula was investigated. Soil samples analysed included Sandy coarse soil (AI₁), Black & fine soil (AI₂) and High nutrient (AI₃).

A total of 196 bacteria were isolated under aerobic conditions at 4°C using Nutrient agar as medium. The isolates were grouped using morphology and amplified rRNA gene restriction analysis fingerprinting and identified by partial sequencing of 16S rRNA gene. Out of 14 different RFLP patterns and different morphologies that were sequenced, bacterial isolates fell in four phylogenetic groups: Actinobacteria, Bacteroidetes, subclasses α , β , and γ -Proteobacteria and Deinococcus.

Actinobacteria phylum contained *Arthrobacter, Rhodococcus* and *Agreia* was dominated in all samples (57%) especially in AI₂ with more than 90%. *Flavobacterium, Sejongia* and *Chryseobacterium* from Bacteroidetes were dominant after Actinobacteria with 20.3%. Proteobacteria phylum contains *Sphingomonas, Polaromonas, Naxibacter, Janthinobacterium, Peseudomonas and Psychrobacter* with 15.1% was third phylum that isolated among all samples. While α -Proteobacteria were isolated from AI₂ and AI₃ samples, whereas β Proteobacteria and γ - Proteobacteria were found in AI₁ and AI₃ samples. Deinococcus phylum with 7.6% was isolated in AI₃ sample.

Totally based on phylogenetic trees, at least 24 different genera were identified. Dependent upon sequence analysis (<96% sequence similarity), the Anchorage Island isolates belonged to at least 13 different bacterial families. These results indicated a high culturable diversity within the bacterial community of the Anchorage Island soil samples.

ACKNOWLEDGEMENT

First of all, I would like to thank sincerely my supervisor, Prof. Dr. Irene Tan Kit Ping, who helped me, guided me and gave me valuable comments, without which this thesis would not have been possible. I wish to thank her for giving me the opportunity to do this project and use the facilities in her research laboratory.

I would also like to express my gratitude to my seniors, Ms. Goh Yuh Shan and Mr. Chong Chun Wie, especially Ms. Goh Yuh Shan who had been teaching, guiding, and helping me. They have both contributed considerable amounts of their time and knowledge to questions I had concerning this research.

I am very grateful to my best friends, Ms. Elaheh Movahed and Ms. Sara Yazdani Nia, whose thoughtfulness, assistance and advice helped me to pass the frustrated moments as well as they were always smiling, helpful and resourceful, which created a great working atmosphere in the institute. I am very appreciative of everything they have done for me.

At this point, sincere gratification must be honored to my husband, Mr. Mohamad Oloumi who gave me encouragement, enthusiasm and endless moral support. I am very grateful for his understanding and support.

TABLE OF CONTENTS

CONTENT

PAGE

Abstract	iii
Acknowledgement	iv
Table of contents	V
Abbreviations	viii
List of figures	Х
List of tables	xii

CHAPTER 1.0: INTRODUCTION		1
1.1	Why study Antarctica?	1
1.2	Antarctic microorganisms	1

1.3	Methods for microbial community analysis	2
1.4	Objectives of this study	4

CHAPTER 2.0: LITERATURE REVIEW

2.1	The importance of biodiversity	5
2.2	Antarctica	6
2.3	Anchorage Island	8
2.4	Antarctic soil	10
2.5	Microorganism in Antarctica	10
2.6	Antarctic bacteria	13
2.6.1	Antarctic lake	14
2.6.2	Sea ice	14
2.6.3	Terrestrial bacteria	15
2.7	Methods for microbial community analysis	16
2.8	Culture dependent methods	16

5

2.8.1	Advantages of culture-dependent technique	17
2.8.2	Disadvantages of culture-dependent technique	19
2.8.3	Possible reasons for "Non-culturability"	21
2.9	Culture-independent (molecular based method)	22
2.9.1	The use of 16S rRNA gene fragment in bacterial diversity studies	23
2.9.2	Polymerase chain reaction (PCR) and RFLP	24
2.9.3	Advantages of molecular methods	26
2.9.4	Disadvantages of molecular methods	27

CHAPTER 3.0: MATERIALS AND METHODS

3.1	Sample collection	30
3.2	Culture medium	31
3.3	Medium preparation	31
3.4	Dilution method	32
3.5	Plating sample	32
3.6	Plate counting and colony forming unit determination	33
3.7	First purification	33
3.8	Second purification	34
3.9	Naming of isolate samples	34
3.10	Polymerase Chain Reaction (PCR)	34
3.11	Template preparation	35
3.11.1	Colony PCR	35
3.11.2	DNAzol Reagent	36
3.11.3	Genomic DNA extraction kit	36
3.12	Detection of PCR product	36
3.12.1	Gel preparation	37
3.12.2	Gel staining	37
3.13	Restriction Fragment Length Polymorphism (RFLP)	37
3.14	Grouping	38
3.15	Gram stain	38
3.15.1	Smear preparation	39
3.15.2	Staining procedures	39

30

3.16	DNA preparation for sequencing	39
3.17	Sequencing	40
3.18	Storage of representative isolates	41

CHAPTER 4.0: RESULTS

Colony Forming Units 4.1 42 4.2 purification 44 4.3 PCR amplification and biases 44 **RFLP** fingerprinting 4.4 46 4.5 Gram stain 48 Phylogenetic analysis of 16S rRNA gene sequences of isolates 4.6 50

CHAPTER 5.0: DISCUSSION

61

70

42

5.1	Methods used for assessment of bacterial diversity	61
5.2	Type of culture medium	62
5.3	PCR and RFLP	63
5.4	Phylogenetic analysis of 16s rRNA gene sequencing of isolates	66

CHAPTER 6.0: CONCLUSIONS

CHAPTER 7.0: REFERENCES 71

ABBREVIATIONS

%	: percent
>	: more than
<	: less than
°C	: degree Celsius
μl	: microlitre
AI	: Anchorage Island
BLAST	: basic local aligned search tool
BSA	: bovine serum albumin
bp	: base pairs
CFU	: Colony Forming Unit
DNA	: deoxyribonucleic acid
dNTP	: deoxyribonucleoside triphosphate
dH ₂ O	: distilled water
EtBr	: ethidium bromide
g	: gram
G/C	: guanine/cytosine
L	: liter
М	: molar
m	: meter
MEGA	: molecular evolutionar genetics analysis
min	: minute
mM	: millimolar
ml	: milliliter
mg	: milligram
nm	: nanometer
pМ	: picomolar
MgCl ₂	: Magnesium chloride
NEB	: New England Biolab
OD	: optimal density
PCR	: polymerase chain reaction
rDNA	: ribosomal deoxyribonucleic acid
RNA	: ribonucleic acid
rRNA	: ribosomal ribonucleic acid

rpm	: revolutions per minute
RFLP	: Restriction Fragment Length Polymorphism
S	: south
sdH ₂ O	: sterile distilled water
SSU	: small subunit
TAE	: tris acetate ethylenediaminetetraacetate acid
Taq	: Thermus aquaticus
UV	: ultraviolet
uni-for	: universal forward
uni-rev	: universal reverse
V	: volt
W	: west
W/V	: weight per volume

LIST OF FIGURES

FIGURES	PAGE
Fig.2.1: Map indicating the location of Anchorage Island (adapted from Bokhorst <i>et al.</i> , 2008).	29
Figure 4.1: Uncountable plate (more than 300 colonies) in 10-1 and 10-2 dilutions of Anchorage Island 1 (AI1) sample.	43
Figure 4.2: Plates of Anchorage Island 2 (AI ₂) samples from 10^{-1} to 10^{-4} dilution.	43
Figure 4.3: Typical appearance of pure colony (A) <i>Pseudomonas fragi</i> , and (B) <i>Sejongia antarctica</i> .	44
Figure 4.4: Agarose gel electrophoresis (1%) of the genomic DNA isolated by simple colony PCR. M shows marker and N is negative control which is without template. 1,2,are DNA extracted from colonies by colony PCR.	45
Figure 4.5: Agarose gel electrophoresis (1%) of the genomic DNA isolated by the modified DNAzol and genomic DNA purification kit methods. M shows marker and N is negative control which is without template. 1,2,3are DNA extracted from colonies by using DNAzol reaction and DNA extraction kit.	45
Figure 4.6: Agarose gel electrophoresis of restriction fragments of 16S rDNA amplification product of isolate associated with Antarctic soil with restriction enzymes <i>Hha</i> I and <i>Hae</i> III. M used as marker ladder. 1,2,3,are amplified 16srRNA gene digested by two RE enzymes.	47
Figure 4.7: Agarose gel electrophoresis of restriction fragments of 16S rDNA amplification product of isolate associated with Antarctic soil with restriction enzyme <i>Hae</i> III. M used as marker ladder. 1,2,3,are amplified 16srRNA gene digested by one RE enzyme.	47
Figure 4.8: (A) Photographs showing Gram negative cocci from samples observed under oil emulsion (x 1000 magnification) and (B) indicates Gram	48

positive rod from samples observed under oil emulsion (x 1000 magnification).

Figure 4.9: Relative abundance of the principal phylum groups found in three 51 distinct soil sample sites in the Anchorage Island, Antarctica (A). Relative percentage abundances of the principal phylum groups found in all soil sample sites in the Anchorage Island, Antarctica (B).

Figure 4.10: Relative abundance of the various genus found in three distinct 55 soil sample sites in the Anchorage Island, Antarctica (A). Relative percentage abundances of the various genus found in all soil sample sites in the Anchorage Island, Antarctica (B).

Figure 4.11: Phylogenetic relationship of the Antarctic isolates based on 16S rRNA gene homology. The tree was constructed using the neighbor- joining method with Clustal Wand pair wise deletion model analyses implemented in the program MEGA version 4.0.2. The resultant tree topologies were evaluated by bootstrap analysis based on 5,000 replicates. Numbers at nodes represent percentage levels of bootstrap support (%). Gen Bank accession numbers of 16S rRNA sequences are given in parentheses. *P.abyssi* (Z70246) was used as out group.

Figure 4.12: Neighbor-joining phylogenetic tree of partial 16S rDNA 58 sequences of representative isolates affiliated with AI₁ isolates and their closest Phylogenetic relatives. Bootstrap values (n = 5000 replications) were indicated at nodes. *Pyrococcus abyssi* (Z70246) was used as out group.

Figure 4.13: Neighbor-joining phylogenetic tree of partial 16S rDNA 59 sequences of representative isolates affiliated with AI₂ isolates and their closest Phylogenetic relatives. Bootstrap values (n = 5000 replications) were indicated at nodes. *Pyrococcus abyssi* (Z70246) was used as out group.

Figure 4.14: Neighbor-joining phylogenetic tree of partial 16S rDNA 60 sequences of representative isolates affiliated with AI₃ isolates and their closest Phylogenetic relatives. Bootstrap values (n = 5000 replications) were indicated at nodes. *Pyrococcus abyssi* (Z70246) was used as out group.

LIST OF TABLES

TABLES	PAGE
Table 3.1: Description of location and characteristics of soil sample from three different sites on Anchorage Island	30
Table 3.2:The reaction mixture for PCR	35
Table3.3:The reaction mixture for RFLP	38
Table 4.1: Values of CFU/g fresh soil and number of colonies recovered on nutrient agar medium for the four dilutions of three Anchorage Island site samples.	43
Table4.2: Restriction fragment length polymorphism (RFLP) fingerprinting patterns and representative strain of each site.	49
Table 3: Pastriction fragment length polymorphism (PELD) fingerprinting	52

Table4.3: Restriction fragment length polymorphism (RFLP) fingerprinting52patterns and sequence relationships of 16S rRNA gene in all soil sample sites51in the Anchorage Island, Antarctica.52