POLYELECTROLYTE MODELS AND MOLECULAR DYNAMICS STUDIES OF THE DNA POLYMER AND DNA-NCP COMPLEXES IN SALT SOLUTIONS

AHMAD ANGGRARIA JAYA AGUNG

DISSERTATION SUBMITTED IN FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTERS OF SCIENCE

CHEMISTRY DEPARTMENT FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

2011

Abstract

The effects of salt concentration on the flexibility and charge distribution of a DNA chain are probed using MD simulation. For this purpose, the DNA is modeled as 360 negatively charged monomer spheres with radius 10 Å and charge -12 (all in reduced units) linked linearly by a harmonic bonding potential. Each of these spheres represent 6 base pairs. The harmonic force constant $k_{\rm h}$ is determined by balancing the intramolecular and intermolecular forces between 2 monomers separated by an equilibrium bond length of 20.4 Å. This method resulted in good agreement with the experimental contour length and therefore guarantees the reasonableness of the $k_{\rm h}$ parameter. The bending angle force constant k_{θ} is determined by relating the chain bending modulus with the experimental DNA persistence length. In a cell, the DNA strand wraps around the so called nucleosome core particle (NCP). In this study, the NCP is represented by a large sphere with radius 35 Å and charge +150. The simulations were performed both with and without the NCP, which when present were 12 in number. The NaCl salt is represented as a charged sphere of radius 2 Å of either +1 or -1 charge modeling a single Na⁺ or Cl⁻ ion respectively. The salt concentration was chosen to be in the 0.0-0.25 mM range for a DNA concentration of 0.005 mg/ml and in the 0.0-100 mM range for DNA concentration of 2.0 mg/ml. The upper limit corresponded to the maximum computational resources available here. The excluded volume effect was made possible by the application of a purely repulsive 6-12 Lennard-Jones potential and the interaction between charges was strictly Coulombic, where the Ewald summation was computed by the P3M method. The results show that the NaCl salt concentration within the cell play a significant role in determining the DNA conformation, as well as the strength of the DNA-NCP and DNA-ions interaction. Some theoretical equations for calculating the polyelectrolyte persistence length seem to disagree with the simulation results. A new concept that leads to the "ionic bridging effect" is introduced and shown to be important in determining the DNA topology. By the RDF data, it is shown that the classical PB cylindrical cell model neglects the counterion condensation at monomer neighbors. The above results all imply the importance of molecular simulations in obtaining information which cannot so readily be made available from experiments.

Abstrak

Simulasi dinamika molekular telah digunakan untuk menganalisa kesan kepekatan garam ke atas kelenturan and distribusi cas dalam rantai DNA. Untuk tujuan kajian ini, DNA telah dimodelkan sebagai gabungan 360 sfera monomer yang bercas negatif dengan radius 10 Å dan cas -12 dengan ikatan harmonik potential. Setiap sfera terdiri dari 6 pasangan bes. Pemalar tenaga harmonik, $k_{\rm h}$, telah ditentukan dengan menyeimbangkan tenaga intramolekular dan intermolecular di antara 2 monomer dengan jarak ikatan keseimbangan 20.4 Å. Kaedah ini memberikan bacaan parameter $k_{\rm h}$ yang baik apabila dibandingkan dengan nilai eksperimentasi contour length. Pemalar tenaga pembengkokan sudut k_{θ} ditentukan dengan menghubungkan modulus pembengkokan rantai dengan data percubaan persistence length rantai DNA. Dalam sel, rantai DNA membungkus nucleosome core particle (NCP). Dalam kajian ini, NCP diwakili dengan sebuah sfera besar dengan radius 35 Å dan cas +150. Simulasi dilakukan dengan dan tanpa NCP, yang jika ada berjumlah 12. Garam NaCl diwakili sebagai sebuah sfera bercas dengan radius 2 Å dengan cas salah satu +1 atau -1 yang masing-masing memodelkan sebuah ion Na⁺ and Cl⁻. Kepekatan garam dipilih dalam jarak 0.0–0.25 mM untuk kepekatan DNA 0.005 mg/ml and jarak 0.0-100 mM untuk kepekatan DNA 2.0 mg/ml. Batas atas kepekatan garam sesuai dengan maksimum sumber pengkomputeran yang tersedia disini. Kesan pengecualian ruang dibuat mungkin dengan aplikasi penolakan Lennard-Jones potensi dan interaksi antara cas adalah Coulombic dimana penjumlahan Ewald dihitung dengan kaedah P3M. Keputusan menunjukkan bahawa kepekatan garam NaCl dalam sel bermain peranan penting dalam menentukan penglarasan DNA, maupun kekuatan interaksi DNA-NCP dan DNA-ion. Beberapa teori untuk menghitung persistence length polielektrolit kelihatan tidak bersetuju dengan keputusan simulasi. Sebuah konsep baru yang membawa kepada "kesan jambatan ionis" diperkenalkan dan ditunjukkan menjadi penting dalam menentukan topologi DNA. Dengan data RDF, ditunjukkan bahawa model klasik sel silinder PB mengabaikan kondensasi counterion pada monomer-monomer tetangga. Keputusan-keputusan diatas bererti pentingnya simulasi molekular dalam mendapat maklumat yang tidak mudah didapat dari percubaan.

Acknowledgement

I deeply thank God, Alloh SWT, for directing me to come here.

I would like to thank my supervisor, Prof. Dr. Christopher Gunaseelan Jesudason for the opportunity to be his student. His teaching, supervising and training has absolutely developed my knowledge further. I also thank for the many meaningful discussions we have had over the many months.

I thank all ESPResSo contributors and volunteers over the world who directly or indirectly have supported open source and almost always free software that has made this study possible.

I thank my family and friends for their constant support. I save the rest of my gratitude for the beloved one who has always accompanied me over many difficult moments.

Contents

1	INT	RODUCTION	1	
	1.1	DNA	1	
	1.2	Molecular Dynamics Simulation	3	
2	RES	EARCH METHODOLOGY	6	
	2.1	The DNA, NCP and NaCl Salt Models	6	
	2.2	Research Equipment	7	
	2.3	Research Method	7	
	2.4	Particles Properties	8	
	2.5	System Parameters	9	
	2.6	Force Fields	0	
		2.6.1 Intramolecular Force Fields	0	
		2.6.2 Intermolecular Force Fields	1	
	2.7	Particle Amounts in the Simulation	12	
		2.7.1 DNA-Salt System	13	
		2.7.2 DNA–NCP–Salt System	13	
	2.8	2.8 Determining the Harmonic Bonding Constant k_h and the Equilibrium Har-		
		monic Distance r_h	4	
3	DNA	FLEXIBILITY AND PERSISTENCE LENGTH 2	20	
	3.1	Definition and Calculation of Persistence Length L_P	20	
		3.1.1 Calculating Persistence Length with Cosine Correlation Function 2	20	
	3.2	The Relationship between Persistence Length, Bending Modulus (B) and		
		Angle Force Constant (k_{θ})	22	

		3.2.1	Neutral Polymer Persistence Length	22
		3.2.2	Polyelectrolyte Chain Persistence Length	24
	3.3	A New	Derivation of Polyelectrolyte Persistence Length	26
		3.3.1	Details of the Fitting Procedures	34
		3.3.2	Obtaining $f_1(n)$	35
		3.3.3	Obtaining $f_2(n)$	36
		3.3.4	Final Result of the Fitting Procedure	39
	3.4	Discuss	ion on The New Derived Persistence Length	39
	3.5	Represe	enting the Real DNA with Our Model. How Accurate is It?	42
	3.6	Simulat	ion Results	44
	3.7	Experin	nent vs. Theory	49
	3.8	Simulat	ion vs. Theory	50
	3.9	$L_{\rm P}^{ m polyelectr}$	$L_{\rm P}^{\rm neutral \ polymer}$. Is It Possible?	51
	3.10	Ionic B	ridging: a New Postulate?	53
4	ION			50
4				59
	4.1	Theoret		59
	4.2	Clarifyi	ng the Ambiguity of the Screening Parameter κ	61
	4.3	Coordin	lation number in various salt concentration	66
	4.4	D		
		Determi	ining the Electrostatic Free Energy of DNA–NCP interactions	6/
		Determit	The Poisson-Boltzmann Cylindrical Cell Model (PBCCM)	67
		Determi 4.4.1 4.4.2	The Poisson-Boltzmann Cylindrical Cell Model (PBCCM) Modification of the Cylindrical to the Spherical Cell	67 68 73
	4.5	Determi 4.4.1 4.4.2 Snapsho	The Poisson-Boltzmann Cylindrical Cell Model (PBCCM) Modification of the Cylindrical to the Spherical Cell	67 68 73 78
5	4.5 Cone	Determi 4.4.1 4.4.2 Snapsho clusion	Ining the Electrostatic Free Energy of DNA–NCP interactions The Poisson-Boltzmann Cylindrical Cell Model (PBCCM) Modification of the Cylindrical to the Spherical Cell	67 68 73 78 82
5	4.5 Cone	Determi 4.4.1 4.4.2 Snapsho clusion	The Poisson-Boltzmann Cylindrical Cell Model (PBCCM) Modification of the Cylindrical to the Spherical Cell	67 68 73 78 82 82
5 A	4.5 Cond Redu	Determi 4.4.1 4.4.2 Snapsho clusion	Ining the Electrostatic Free Energy of DNA–NCP interactions The Poisson-Boltzmann Cylindrical Cell Model (PBCCM)	67 68 73 78 82 84
5 A	4.5 Cone Redu A.1	Determine 4.4.1 4.4.2 Snapsho clusion uced unit Length	thing the Electrostatic Free Energy of DNA–NCP interactions The Poisson-Boltzmann Cylindrical Cell Model (PBCCM)	67 68 73 78 82 84 84
5 A	4.5 Cone Redu A.1 A.2	Determi 4.4.1 4.4.2 Snapsho clusion Length Temper	Ining the Electrostatic Free Energy of DNA–NCP interactions The Poisson-Boltzmann Cylindrical Cell Model (PBCCM)	67 68 73 78 82 84 84 84
5 A	4.5 Cond Redu A.1 A.2 A.3	Determi 4.4.1 4.4.2 Snapsho clusion Length Temper Energy	thing the Electrostatic Free Energy of DNANCP Interactions The Poisson-Boltzmann Cylindrical Cell Model (PBCCM)	67 68 73 78 82 84 84 84 84
5 A	4.5 Cond A.1 A.2 A.3 A.4	Determi 4.4.1 4.4.2 Snapsho clusion Length Temper Energy Mass .	Ining the Electrostatic Free Energy of DNA–NCP Interactions . The Poisson-Boltzmann Cylindrical Cell Model (PBCCM) . Modification of the Cylindrical to the Spherical Cell . ots . ts . (L) . ature . . .	 67 68 73 78 82 84 84 84 85 85

	A.6	Time	86
	A.7	Harmonic Bond Constant	87
	A.8	Bending Angle Constant	88
	A.9	Acceleration	88
	A.10	Force	89
B	Tool	Command Language (TCL) Scripts	90
	B .1	Equilibrium Run	90
	B.2	Production Run	102

List of Figures

1.1	(a) The representation of the DNA double helix [1]. (b) The chemical	
	structure of sugar (deoxiribose), bases (adenine, guanine, thymine and	
	cytosine), and phosphate groups. (c) Dissociation of a DNA-NCP com-	
	plex yields a DNA strand and eight histone proteins. [2, 3]	2
1.2	Periodic Boundary Condition.	4
2.1	An illustration of a monomer-monomer displacements (grey circle) from	
	its equilibrium position (white circles)	10
2.2	An illustration of a bending angle atomic displacement (grey circle) from	
	its equilibrium bending angle $\theta = \theta_0 = 0$ (white circles)	11
2.3	The energy profile of Lennard-Jones (LJ) potential (Eq. 2.3). The solid	
	line is the original LJ model. The dashed line represents the shifted and	
	truncated LJ potential at $r_{\rm cut} = 1.1225 \sigma$. The vertical dotted line repre-	
	sents the sum of hard core radii of interacting particles	12
2.4	$k_{\rm h}^*$ and \bar{r} (written $r_{\rm bar}$ in the graph) relationship obtained from the integra-	
	tion of Eq. 2.17	17
2.5	Average contour length (a) and bond length (b), both with two standard	
	deviation error bars, from simulations using the harmonic constant 2500	
	(in reduced unit) and equilibrium bond length set at 20.3418 Å. Simula-	
	tion results are compared to the theoretical values	19
3.1	A continuum chain showing some points that determine chain segments.	
	The arrows indicate the orientation at each point segment	21

3.2	A discrete chain. The angle θ_1,θ_2 and θ_3 are formed by two ends of	
	segments with lengths b , $2b$ and $3b$	21
3.3	$L_{\rm P}$ obtained by Eq. 3.10 (dashed line) and 3.9 (solid line) at different	
	ratios of (B/k_BT) over s; s is fixed at $7 \times 20.4 = 142.8$ Å	27
3.4	Illustration of a polyelectrolyte segment with length s which bends in a	
	circular form. The r_{ij} distance can be determined by the Cosines law	29
3.5	The L_P and L_P^0 relationship (in two different Debye length κ^{-1}) obtained	
	from numerical integration of Eq. 3.24. This figure confirms the $L_{\rm P} - L_{\rm P}^0$	
	relationship in Eq. 3.28 ($L_{\rm P} = L_{\rm P}^0 + L_{\rm P}^{\rm el}$). Each κ value correspond to a	
	definite $L_{\rm P}^{\rm el}$. For all κ values, a linear dependency is observed but only	
	two values are depicted	33
3.6	The $L_{\rm P}^{\rm el}$ linear relationship to the Bjerrum length $l_{\rm B}$ (Fig. a) and quadratic	
	relationship to the monomer charge q (Fig. b) obtained from numerical	
	integration of Eq. 3.24 (for different Debye lengths κ^{-1}). These figures	
	confirm the $L_{\rm P}^{\rm el} - l_{\rm B}$ and $L_{\rm P}^{\rm el} - q$ relationship in Eq. 3.34	33
3.7	Numerical integration of Eq. 3.35 and its fitting 3.36, with parameters	
	n=20, b= 20.4 Å; κ is varied between 1/5 and 1/2450 Å ⁻¹	35
3.8	$f_1(n)$ (from Eq. 3.35) versus <i>n</i> at different bond length <i>b</i> . These curves	
	will be used to determine the best form of $f_1(n)$	36
3.9	$f_2(n)$ (from Eq. 3.35) versus <i>n</i> at different bond lengths <i>b</i> . These curves	
	will be used to determine the best form of $f_2(n)$	37
3.10	The $f_2^*(b)$ and b relationship (dots) and the fitting function (curve)	38
3.11	Persistence length ($L_{\rm P}$) versus Debye screening length $r_{\rm D}=1/\kappa$ from	
	numerical integration (Eq. 3.24), compared to the fitting equation (Eq.	
	3.41). For these curves, $L_{\rm P}^0 = 500$ Å, $l_{\rm B} = 7.13$ Å, $q = -12$, $b = 20.4$ Å,	
	and $l_0 = 1$ Å.	40
3.12	$\langle \theta^2 \rangle - n$ relationship based on the Eq. 3.6 ($\langle \theta^2 \rangle \approx 2nb/L_P(n)$). The $L_P(n)$	
	is calculated by Eq. 3.41. The q and b parameters for Eq. 3.41 are given	
	above each figure. $L_{\rm P}^0 = 500$ Å, $l_{\rm B} = 7.13$ Å, and $l_0 = 1$ Å for all curves.	41

3.13	Some polyelectrolytes modelling a DNA chain. The bond length/charge	
	ratio (1.7 Å/charge) is the same as the experimental DNA data	42
3.14	Persistence length (L_P) of the neutral polymer possessing the same dimen-	
	sion with the polyelectrolyte DNA models, with 2 standard deviation error	
	bars, at different bending modulus (B) parameters. The straight lines are	
	the theoretical prediction. The simulations are performed with time-step	
	1×10^{-3} (Fig. (a)) and 1×10^{-5} (Fig. (b))	45
3.15	Persistence length (L_P) of our DNA polyelectrolyte simulations, with 2	
	standard deviation error bars, at salt concentration 0.0-0.25 mM. The	
	simulation results are compared to the L_P prediction from OSF, Dobrynin	
	and Manning theories (a, b, c). Comparison with our derivation is given	
	in (d). The uncharged DNA bending modulus $B_0 = 500 \text{ Å} k_{\text{B}} T$ through-	
	out. The horizontal dashed line is the persistence length of the neutral	
	uncharged DNA ($L_{\rm P}^0 = 500 \text{ Å}$) [see Eq. 3.28]	46
3.16	Snapshots of DNA chains in different salt concentrations. Salt concentra-	
	tions are written at the bottom of the pictures	48
3.17	Snapshots of DNA conformation at different time intervals (reduced unit).	
	DNA concentration 0.005 mg/ml and salt concentration 0.1 mM	49
3.18	Experimental data and theoretical calculations of the DNA persistence	
	length at different salt concentrations. The experimental data are taken	
	from Baumann et al. [42] (rectangle); Nordmeier [41] (diamond); Rizzo	
	and Schellman [43] (closed circle); Smith et al. [40] (cross)	50
3.19	Theoretical persistence length (L_P) calculated by the OSF, Dobrynin and	
	Manning theory, and our derivation.	52
3.20	Figure (a) is the hypothetical condition. Fig. (b) is the real condition.	
	The vertical dashed line is an imaginary boundary dividing the polymer	
	environment at the equilibrium bending plane	54

3.21	Snapshots from the DNA chain simulations in salt concentration 0.25 mM	
	(a), and 0.30 mM (b). Area ${f A}$ gives the global ionic bridging, and region	
	A_1 and A_2 denote the local ionic bridging. We run the simulation at 0.30	
	mM (which took one month) only to focus on the ionic bridging without	
	sampling because this would too much time	55
3.22	A short DNA chain conformation in different time intervals. The number	
	of monomer equals 21. NaCl salt concentration is 20 mM. This simulation	
	was run to examine the availability of ionic bridging effect in different	
	time intervals. The Na^+ and Cl^- particles are modeled by the purple and	
	brown spheres respectively.	57
4.1	PLDNA-Na ⁺ and PLDNA-Cl ⁻ RDF obtained from simulation and PB	
	model calculation. The PB model is calculated for three kinds of ionic	
	screening parameters κ . PLDNA concentration 0.005 mg/ml and salt con-	
	centration 0.25 mM	62
4.2	PLDNA $-Na^+$ and PLDNA $-Cl^-$ RDF obtained from simulation and PB	
	model calculation. The PB model is calculated for three kinds of ionic	
	screening parameters κ . PLDNA concentration 2.0 mg/ml and salt con-	
	centration 0.25 mM. The only system difference from Fig. 4.1 is the	
	PLDNA concentration	62
4.3	PLDNA-Na ⁺ RDF obtained from simulation, HNC and PYA. The HNC	
	and PYA calculation are done for three kinds of ionic screening parameter	
	к	65
4.4	The cylinder model of the charged system. The inner cylinder is an infi-	
	nite charged rod with charge spacing b. R_c is the cylinder radius defined	
	by the charged rod concentration. V_{slice} is a cylinder volume that is per-	
	pendicular to the rod with height b and radius R_c	67
4.5	DNA $-Na^+$ and PLDNA $-Na^+$ RDF simulation compared to PB calcula-	
	tion. Simulation are done without (a) and with NCP (b) $\ldots \ldots \ldots$	69
4.6	Electrostatic profile of DNA–NCP interaction. The unit of E_{el} , TS_{el} and	
	$F_{\rm el}$ is in $k_{\rm B}T$	76

4.7	7 Coordination number of Na ⁺ ions about DNA in simulation with NCP		
	and without NCP available in the system. The error estimation for each		
	points is ± 0.5	76	

4.8	Original figure from [62]. DNA-NCP configuration obtained by mini-	
	mizing the free energy (Eq. 4.30) for a fixed NCP charge $Z = 40$ at in-	
	creasing salt concentrations. Bars in the lower right are the respective	
	screening lengths. (a) No added salt ($\kappa = 0$). (b) Salt concentration 0.6	
	mM ($\kappa = 0.08nm^{-1}$) and 1.6 mM ($\kappa = 0.13nm^{-1}$). (e) Salt concentration	
	16.6 mM ($\kappa = 0.418 nm^{-1}$). (f) Salt concentration 10.6 M ($\kappa = 10.6 nm^{-1}$)	77
4.9	Snapshots of DNA-NCP particles at different salt concentrations. DNA	
	concentration 0.005 mg/ml	79
4.10	Snapshots of DNA-NCP particles at different salt concentrations. DNA	
	concentration 2.0 mg/ml.	80
4.11	DNA-NCP conformations in different time intervals. DNA concentration	
	0.005 mg/ml, salt concentration 0.075 mM	81

List of Tables

2.1	The properties of DNA, NCP, Na^+ and Cl^- in simulation	8
2.2	The general parameter of the simulation system	9
2.3	Particle amounts in the DNA-Salt system (without NCP in simulation)	13
2.4	Particle amounts in the DNA–NCP–Salt system.	14
2.5	$k_{\rm h}^*$, $r_{\rm h}$ and \bar{r} relationship obtained from integration of Eq. 2.17	18
3.1	Numerical result of fitting the function $f_1(n) = An + B$ in Fig. 3.8. The	
	mean of parameter A is 0.00714 , with standard deviation 0.000248 . The	
	mean of parameter <i>B</i> is 0.0234 with standard deviation 0.000819	36
3.2	Numerical result of fitting the function $f_2(n,b) = f_2^* n$ in Fig. 3.9. The	
	mean of the f_b^* parameter is 0.177, with standard deviation 0.0123	38
3.3	Persistence length determined by Eq. 3.41 at different salt concentrations	
	for three models in Fig. 3.13 where $L_P^0 = 500$ Å, $l_B = 7.13$ Å, and $l_0 = 1$ Å	
	for models (a), (b) and (c). The $\langle \theta^2(n) \rangle - n$ lines are plotted from $n = b$	
	to $n = s$ (see Sec. 3.4); r^2 is the correlation coefficient for the plots	43
3.4	End-to-end distance (R_e) and radii of gyration (R_g) of DNA models at	
	different salt concentrations. The δ_{R_e} and δ_{R_g} are the standard deviations	
	of $R_{\rm e}$ and $R_{\rm g}$ respectively.	47
4.1	Coordination number of Na ⁺ ions about DNA. DNA concentration 0.005	
	mg/ml. First valley distance of DNA-Na RDF= 26.6420 Å	66
4.2	Coordination number of Na ⁺ ions about DNA. DNA concentration 2.0	
	mg/ml. First valley distance of DNA-Na RDF= 26.4739 Å	66

4.3	Electrostatic profile (Spherical Cell) of DNA-NCP interaction and DNA-	
	$-Na^+$ coordination number. DNA concentration 0.005 mg/ml $\ldots \ldots$	74

List of Symbols and Abbreviations

DNA	=	Deoxyribonucleic acid
DHA	=	Debye-Huckel Approximation
FFA	=	Far-Field Approximation
NCP	=	Nucleosome Core Particle
OSF	=	Odijk-Skolnick-Fixman
PBC	=	Periodic Boundary Condition
PB	=	Poisson-Boltzmann
PBCCM	=	Poisson-Boltzmann Cylindrical Cell Model
PLDNA	=	Particle-like DNA monomer
RDF	=	radial distribution function
WLC	=	worm-like chain
a	=	acceleration
b	=	monomer bond length
В	=	bending modulus
Ci	=	concentration of ion <i>i</i>
$c_{\rm shift}$	=	constant defining $U_{LJ}(r_{cut}) = 0$
δx	=	standard deviation of the variable x
$\epsilon_{\rm LJ}$	=	Lennard-Jones energy unit
<i>e</i> ₀ , <i>e</i>	=	elementary proton charge
ε	=	dielectric constant of the medium
$E_{\rm el}$	=	electrostatic energy
f'	=	random force
f(r)	=	conservative force
g(r)	=	radial distribution function
κ	=	ionic screening parameter (inverse of Debye length)
$k_{ m B}$	=	Boltzmann constant
<i>k</i> _h	=	harmonic bond constant
k_{Θ}	=	bending constant
l_0	=	additional parameter for our persistence length theory ($l_0 = 1 \text{ Å}$)
l_{B}	=	Bjerrum length
L	=	chain length
L_{P}	=	persistence length
L _{OSF}	=	electrostatic persistence length from OSF theory
$L_{ m P}^0$	=	neutral/uncharged polymer persistence length

$L_{ m P}^{ m el}$	=	electrostatic persistence length
m	=	mass
n	=	total number of bonds
n_M^{lpha}	=	coordination number of α type ions about M macroion
Ν	=	total number of monomers
N _A	=	Avogadro number
$\phi_{\mathbf{M}}$	=	reduced surface potential
Ψ_M	=	surface potential
$\psi(r)$	=	potential at position r from a macroion surface
q_i	=	charge of particle <i>i</i>
r	=	distance
\bar{r}	=	average equilibrium bond distance from Boltzmann integration
$r_{\rm off}$	=	sum of the hard core radii
r _{cg}	=	center of gravity
r _D	=	Debye (screening) length
r _h	=	harmonic equilibrium bond distance
$R_{\rm c}$	=	cylinder radius
R _e	=	end-to-end distance
R _g	=	radii of gyration
R _n	=	radius of the normalized RDF
ρ	=	density, charge density
S	=	segment length
$S_{\rm el}$	=	electrostatic entropy
σ	=	sum of the soft core radii
σ_M	=	surface charge density
θ	=	bending angle
θ_0	=	equilibrium bending angle
Т	=	Temperature
$U_{\text{C-P3M}}(r)$	=	Coulombic potential energy calculated by P3M method
$U_{\rm h}(r)$	=	harmonic stretching potential energy
$U_{\rm LJ}(r)$	=	Lennard-Jones potential energy
$U_{ heta}$	=	bending angle potential energy
ξ	=	frictional constant, line charge density
z_i, Z_i	=	valence