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Chapter 1

INTRODUCTION

1.1 DNA

DNA is a double helical structure composed of ribose sugamXttibose), aromatic bases
(adenine, guanine, thymine and cytosine), and phosphatggr The double helix struc-
ture is formed by two individual DNA strands held togetheriyglrogen bonds between
individual bases [1]. DNA exists in several forms, for exdep-, A-, C-, D-, T-, and Z-
form. The B-form is the most common structure found in eu&ticycells. In this thesis,
the term DNA denotes the structure and dimension of the Bxfdrhe general structure
of DNA is illustrated in Figure 1.1(a)(b).

The nucleosome core particle (NCP), with a DNA strand wrdpgr®und it, is approxi-
mately a disk-like cylinder of diameter 110 A and length 57The disk center contains
protein of two H3 and H4 subunits and H2A-H2B dimers [2]. Ttlisk-like cylinder is
also known as an "octameric histone core" because it cangggt proteins in total. The
term "H2A", as well as "H2B, H3, and H4" does not denote a Spguarticle or structure.
Instead, each refers to a variety of closely related strastar genetic roles. For example,
H2A is coded by many genes including H2AFB1, H2AFB1, H2AFB2AFBX, etc.

In a cell, DNA wraps around the NCP by about 1.6-1.8 completest of the NCP cir-
cumference. At the points of contact of the DNA strand and NGRplex (when the
DNA initially winds about the NCP and when it departs from MEP surface) another
single fifth histone called H1 is thought to be present, migdinto the proximate NCP

surface. It is known that the regular DNA-protein combioasi can be found once every
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Figure 1.1: (a) The representation of the DNA dgu

sugar (deoxiribose), bases (adenine, guanine, thyminewndine), and phosphate
groups. (c) Dissociation of a DNA-NCP complex yields a DNAastd and eight his-

tone proteins. [2, 3]



200 base-pairs [3]. The NCP or histone core binds to aboub&Se-pairs of DNA, while
the histone H1 binds to the remaining 50 base-pairs. Figlill{strates the DNA-NCP
wrapping and dissociation structure.

The nucleosomal DNA assemblage has primary roles in it&#yahil serve as a template
for essential enzymatic activities such as replicatioopnebination, repair and transcrip-
tion [4]. In nature, plants are subjected to salt conceiinathanges because they are
largely immobile, but the environment conditions fluctudle high salinity of soils are
attributable to natural processes such as weathering aralirocks and human interven-
tion. Some experimental work has revealed the effect of Maar@ As ions on genotoxic
cell damage. The genotoxic cell effect could be due to DNArstrbreaks, DNA-protein
cross-linking, oxidative DNA-damage, enhanced prolifiera depressed apoptosis and
inhibited DNA repair [5-8]. However the mechanism of ionglamaging the nucleoso-
mal DNA and the mechanism of certain molecules in increaiegsalt tolerance of the

organism are not well understood.

1.2 Molecular Dynamics Simulation

Following Yonezawa [9], there exists limitations in expeental research such as:

a. The experimental inaccessibility of materials or situal setup
b. The non-observability of a physical property
c. The difficulty of controlling and defining the experimdrgavironment

d. The limitation of state-of-art apparatus.
On the other hand, computer simulations can address a# fh@ats and even provide a

much wider scope in the elucidation of fundamental phy$9gs [

In molecular dynamics (MD) the spatial coordinates are iobthby numerically solv-

ing differential equations of motion and, hence, the posgiare functions of time. The
positions reveal the dynamics of individual molecules aa motion picture. In other
simulation methods the molecular positions are not temiyarglated. For instance, in
Monte Carlosimulations the positions are generated stochasticadlly gwat a molecular

configurationr™ depends only on the previous configuration [10].

MD is applied to a system containing several hundred to s¢teousand atoms. This
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Figure 1.2: Periodic Boundary Condition.

system will be much affected by the surface of the MD cell tt@attain the particles.
Bulk properties cannot be obtained by sampling over theengll because of these ef-
fects. To remove the surface effects, periodic boundarylitons (PBC) are used. In
applying the PBC, we define our system contaifihgolecules inside a cubic box with
volumeV as theprimary cell where this primary cell is surrounded by its exact replicas
in all directions. These replicas are callethge cells This cell replication is periodically
extended and forms a macroscopic system which representsutk system of interest
[11]. Fig. 1.2 depicts the application of periodic boundeoyditions. As a mathematical
illustration, take any reference point within the surfa¢ea@ubic box with box length

L, where the initial space coordinate of particie ri(X°, y°, ), wherex?, y°, 2 are the
distances between partidland the origin over the three Cartesian coordinates. S@ppos
a particle moves outside the cubic box (i.e. in thdirection), where the new coordi-
nate of particlé is (ri(X +L), ¥}, Z). If PBC are applied, the new coordinate of particle

i becomesi(x,yt, Z). Any atoms can freely move to other adjacent cells but the sum
total of atoms in each cell will remain constant since anyrateaving a cell wall will
spontaneously enter the same cell through the oppositglzall

In the canonical ensemble the number of partideghe volumey, and the temperature,

T, are fixed. Because the temperature is defined by the ensen#igge of the kinetic
energy, it is possible to fiX by adjusting the particles’ velocity. Several types of ther

mostats, such as due to Berendsen, Langevin and Nose-Humx&been proposed. The



Langevin thermostat (used here) utilizes the Langevin toua

ma= —&v+ f(r)+ f/, (1.1)

wherem s the particle mass is the accelerationt (r) is the conservative force,is the
velocity, ¢ is a frictional constant, anff is a random force. The random force is randomly
determined from a Gaussian distribution.

The interactions between particles are determined by sguatiens called force fields.
Force field methods (also known as molecular mechanicsyégihe electronic motions,
and calculate the energy of the system as a functions of aygtesitions only [13]. Some
examples of force fields are those generated by bond stngtcimgle bending, torsional
twist, out-of-plane bending, cross interactions termgtetestatic interactions, and van der
Walls phenomena. Further details about the force fields usedr study is given in
Chapter 2.

It is often convenient in MD simulation to use reduced urireduced units are obtained
by converting constant values to a preferred scaled con@&an 1.00) for a minimum set
of independent variables. An important reason to use rebucis [see Frenkel and Smit
[12]] that many combination of variables like density, teergture, energy and length all
correspond to the same state in reduced units. Anothermréagbe numerical values
of the quantities that we are computing (e.g. energy andieat®n) are either much
less or much larger than 1. If we operate using such quantiti®eur standard floating
point arithmetic, we face the risk that we might obtain resthat were due to overflows
and underflows. Further descriptions of reduced unit usdtli;wresearch is given in

Appendix A.



Chapter 2

RESEARCH METHODOLOGY

This chapter give details of the simulation methodologgldb discloses how a DNANCP

salt solution system is modeled in a manner suitable for Mpl@mentation.

2.1 The DNA, NCP and NaCl Salt Models

The DNA double helix is modeled as 360 negatively chargedamnaar spheres with ra-
dius 10 A and charge -12 (all in reduced units) linked lingdy a harmonic bonding
potential. Each of these spheres represent 6 base pairscelhy the DNA strand wraps
around the so called nucleosome core particle (NCP). Irsthidy, the NCP is represented
by a large sphere with radius 35 A and charge +150. The sifookare performed both
with and without the NCP particles, which when present areXfuimber. A number of
counterions are added to neutralize the charge of the sy3teeNaCl salt is represented
as a radius 2 A charged sphere of either +1 or -1 charge madsitigle N& or CI~ ions
respectively. These size reflect the actual size of the ocispeparticles as determined
by structured analysis [2]. For DNA concentration 0.005 migthe salt concentration
was chosen to be in the 0.0-0.25 mM range while for DNA conmegion 2.0 mg/ml
the salt concentration is within the 0.0-100 mM range. Theeungimit corresponds to
the maximum computational resources available here. TeaBj length of 7.13 A at
temperature 300 K corresponds to water solvent dielecliite Langevin thermostat is
applied to regulate the equilibrium temperature in the NVisemble. Periodic boundary

conditions are applied to avoid surface effects.



2.2 Research Equipment

The computers used to perform the simulations includedatewing:

1. High performance computing (HPC) cluster system at Plelatologi Maklumat
(PTM), University of Malaya. This HPC system consist of 1 teasiode with 4
processors and 4 compute nodes with 8 processors each. Tterrirdel Xeon
X5272 3.40GHz processors and total memory of 16.5 GB. Allgota nodes has
Intel Xeon E5440 2.83GHz processors with total memory 1@5@r node.

2. Single multiprocessing (SMP) machine at Pusat Tekndaklumat (PTM), Uni-
versity of Malaya. This SMP consist of Intel Dual-Core ltami 9130M processors.

The total memory of this SMP machine is 128 GB.

3. IBM-Cluster at MIMOS Berhad. This cluster 1 master nodthwli processors and
8 compute nodes with 4 processors each. The master node lah<be AMD
Opteron 2218 processors with total memory of 4 GB. All conepuddes have Dual-

Core AMD Opteron 2220 processors with total memory 16.5 GBpeée.

2.3 Research Method

ESPResSH, Extensible Simulation Package for Research on Soft Mati¢he package
used for molecular dynamics simulation. ESPResSo runsnoix platforms which re-
quire additional software which include TELFFTWAand MPI library (i.e.: OpenMP|
LAM/MPI®, MPICH®). In order to run a simulation, we need to submit a TCL script
to an ESPResSo executable file. Two TCL scripts were usedifagimulation. The first
form is used fofequilibriunt run. The first form declares the particles properties, syste
parameters, force fields and the energy measurement corsmafdrun the TCL script
until the system reaches equilibrium before using the s;#d&@L script for production

runs which contain commands for the sampling of energy,terehid distance, radius of

Lhttp://espressowiki.mpip-mainz.mpg.de/wiki/indexpfitiain_Page
2http:/lwww.tcl.tk/software/tcltk/

Shttp:/www.fftw.org/
4http://www.open-mpi.org/software/ompi/vi.4/
Shttp://www.lam-mpi.org/7.1/download.php
Shttp://www.mcs.anl.gov/research/projects/mpich2/



gyration, radial distribution function, contour lengtlreaage bond angle and particle co-
ordinates for snapshots. Examples of both TCL scripts amengin Appendix B.

For further and more detailed analysis utilizing hypemetthain approximation, Percus-
Yevick approximation, persistence length algorithmsgdinregression and standard de-
viation formulas and expression for harmonic bond constatgrmination, coordination
number, determination using Debye-Huckel approximateio, we write our own C++

or TCL codes to numerically derive the above properties 220—

2.4 Particles Properties

The table below lists the physical variables used in sinmafThese values are chosen to

mimic the particles properties obtained from experimehte fadii of DNA and NCP are

Parameter DNA monomer| NCP Na Cl
Radius (A) 10.0 35.0 20 | 20
Soft core radius (A) 2.0 2.0 20 | 20
Hard core radius (A 8.0 33.0 0.0 | 0.0
Charge € -12 +150 +1 -1
Mass (<102° kg) 612.62 18026.68| 3.819| 5.889
Mass (reduced unit) 160.41 4270.26| 1.0 | 1.54

Table 2.1: The properties of DNA, NCP, Nand CI in simulation

taken from the experimental data which are presented inrttieduction Chapter. The
radii of Na" and CI~ are chosen from the data given by Simonin et al. [18] and [t8].
their work, they fitted the experimental mean activity ca#int of some simple salt so-
lutions with theoretical calculation. They applied meahesjcal approximation (MSA)
as the theoretical framework with only one adjustable patamthe effective ionic di-
ameter. Simonin et al. [18] obtained the effective diamédethe cation Na in NaCl
solution as POA. Fawcett and Tikanen [19] obtained8 A for the diameter for Clion
as the best fit to the experimental mean activity coefficiémMaCl solution. The radius
of a particlei defines the closest distance for any other particle’s sarfantact to the

surface of particle. We apply the Lennard-Jones force field to control and fix theest
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ionic distances possible.

Regarding the values of hard core and soft core radius, threpugoose of selecting these
values is not related to the electronic configuration, edectlensity or van der Waals and
London interactions between ion-ion or ion-solvent pairkis is because the Lennard-
Jones force-field used in this simulation is for the pureputsive part and the attractive
part (due to London forces) is omitted by truncation of thenard-Jones potential (Fig.
2.3). Thus the value of the soft core radii of all ions are ema® provide a smooth repul-
sive displacement when two particles meet in contact. Fragn Z3 we notice that the

steep Lennard-Jones energy increase (implying a largésreptiorce) about the closest
ionic contact (s + 0) prevents two particles from getting closer than the sumheirt

radii.

2.5 System Parameters

The system parameters applied for this research are gitbe ifable 2.2. The simulation

Parameter value
Temperature (K) 300
Temperature (reduced unit) 1
Bjerrum length (A) 7.13
DNA bond length (A) 20.4
Thermostat Langevin
Ensemble NVT

Table 2.2: The general parameter of the simulation system

uses reduced units. The detail derivation of the reduced used in this research is given
in Appendix A. The NVT ensemble implies that the simulati@ne conducted in fixed
number of particles, volume and temperature. DNA bond le2§t4 A corresponds to

the DNA axial distance comprising six base pairs (i.e. %4).



2.6 Force Fields

2.6.1 Intramolecular Force Fields
Harmonic Stretching Bond

The monomer-monomer bonding interaction is governed byh#teonic oscillator po-

tential:

Un(r) = ka(r — )2, 2.1)

wherek;, is the harmonic bond constant ands the equilibrium harmonic distance. Fig-

ure 2.1 depicts the harmonic stretching phenomenon. Terdetek,, we equilibrate the

[ r |
[ r, |

Figure 2.1: An illustration of a monomer-monomer displaeeats (grey circle) from its equilib-
rium position (white circles).

force between two bonded monomers. The detail calculafién andr, will be given at

the end of this Chapter.

Bending Angle

The bending angle potential of three consecutive mononseiisfined by the following

equation:

Ug(6) = ke(6 —60)?, 2.2)

wherekg is the bending constanfy is the equilibrium bending angle, which equals to
zero for our DNA polymer model [see Fig. 2.2]. To obtain the we relate it with
the experimental DNA persistence length. The details of Dd¢isistence length are

described in Chapter 3.
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Figure 2.2: An illustration of a bending angle atomic disglament (grey circle) from its equilib-
rium bending angl® = 6y = 0 (white circles).

2.6.2 Intermolecular Force Fields

Lennard-Jones Interaction

To model the short range interaction, we use the Lennards)id) potential. LJ poten-

tial equation is [14]:

12 6
Ups(r) :48LJ{<r _or ﬂ) — (r _Or ﬂ) +Cshift}, (2.3)

12 12 6 6
FLa(r) :48LJ< o ° )

(r—ron) 8 (r—rog)?

(2.4)

whereg ; = ks T = 4.14195x 10 21] is the Lennard-Jones energy umitis the inter-
particle distanceg is the sum of the soft core radiusy is the sum of the hard core
radius andqhii is a constant such thik ; = 0 at distance.. re.: iS a distance parameter
defined where at a distance larger that thgthe LJ interaction vanishes atfi; = 0.
The sixth power(~%) term of the LJ potential (Eq. 2.3) represents the attraatan der
Walls interaction due to electron correlations [11]. Thelfih power term (~12) mod-
els qualitatively the strongly repulsive interaction ldhea the Pauli exclusion principle.
There are no strong argument concerning the exponent oéthert 12 in Eq. 2.3. The
r—12 factor is computationally convenient because its valubésstjuare of the ® term.

In this research,; = 26 g, implying that the purely repulsive Lennard-Jones pognti

is used.

Coulombic Interaction

The Coulombic potential represents a long range intenacE&PResSo uses the particle-

particle-particle mesh (P3M) method to calculate the Canllliw interaction [15-17]. The

11
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Figure 2.3: The energy profile of Lennard-Jones (LJ) paakriiEg. 2.3). The solid line is the

original LJ model. The dashed line represents the shiftedtmmcated LJ potential

atrqy = 1.12250. The vertical dotted line represents the sum of hard cori ohd
interacting particles.

Coulombic-P3M potential is given by [14]:

Uc_ng(r) = lBkBT qquZ, (25)

whereq; is the charge of particlg r is the inter-particle distancd, is the temperature

andkg is the Boltzmann constant. The Bjerrum lendgh,is defined by:

lg = e?/ATEks T, (2.6)

whereg; is the elementary proton charges02x 10-1°C ands is the dielectric constant
of the medium.

2.7 Particle Amounts in the Simulation

The system set chosen is a fixed number of DNA monomers and H@ieles in a cubic
box of known volume implying a fixed DNA monomer and NCP corcaion. We then

add salt ions into this system. Below are the number of DNAPN&unterion and salt

12



particles that must be present to correspond to the statembotration in our simulation
cubic box. The set described here is given for purposesusttitition only. Only a subset

of these system size were simulated because our progranitlatlge and computers could

not cope with larger particle numbers.

2.7.1 DNA-Salt System

DNA polymer =1

DNA monomer amount / polymer = 360

NCPs amount=0

Na' counterion amount=4320

DNA Concentration Box Length| Salt Concentration Na™ + CI~ | Total Particle
(mg/ml) (R) (mM) from Salt Number
0.005 7612.0052 0.001 530 5210
0.005 7612.0052 0.01 5310 9990
0.005 7612.0052 0.1 53102 57782
0.005 7612.0052 0.25 132758 137438
2.0 1033.1287 0.01 12 4692
2.0 1033.1287 1.0 1326 6006
2.0 1033.1287 10.0 13276 17956
2.0 1033.1287 50.0 66382 71062

2.0 1033.1287 100.0 132766 137446

Table 2.3: Particle amounts in the DNA-Salt system (witHdQP in simulation).

2.7.2 DNA-NCP-Salt System

The following data incorporates NCP patrticles into the datian. The numbers corre-

spond to the number of particle in the simulation cell (box).

DNA polymer =1

DNA monomer amount / polymer = 360

NCPs amount=12

13



Na' counterion amount=2520

DNA Concentration Box Length| Salt Concentration Na* + Cl~ | Total Particle
(mg/ml) (R) (mM) from Salt Number
0.005 7612.0052 0.001 530 3422
0.005 7612.0052 0.01 5310 8202
0.005 7612.0052 0.1 53102 55994
0.005 7612.0052 0.25 132758 135650
2.0 1033.1287 0.01 12 2904
2.0 1033.1287 1.0 1326 4218
2.0 1033.1287 10.0 13276 16168
2.0 1033.1287 50.0 66382 69274

2.0 1033.1287 100.0 132766 135658

Table 2.4: Particle amounts in the DNACP—Salt system.

2.8 Determining the Harmonic Bonding Constantk, and
the Equilibrium Harmonic Distance r,

We determine the parametly andry, in Eq. 2.1 for what follows. The defined bond
length,b, between two monomersis 20.4 A. At equilibrium, we assuragttie total force
between two bonded monomers is zero when the monomer-marhstence equals the

bond lengthb.
IE’total<b7 Q) = Iﬁwarmonic(b7 Q) + lE»bending(b7 Q) + l_:)L\](ba Q) + IE’Coulomb(ba Q) = 07 (2-7)

whereQ are any variables involved in the respective force calcutat We regard the
charge repulsions between non-adjacent monomers giveaday effects compared to
the adjacent monomers repulsion. In addition, the repailivces between a monomer
and other monomers from opposite directions will decrebsenett force. Computing

the additive forces from non-adjacent monomers can be goatpt since we need to
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account the position changes due to bending. Then we ctédﬁu@(b,fz) as the force
between two adjacent monomers only. Because this forceiovityves two contiguous
monomersﬁ)ending: 0. We calculate ;(b, Q) and Fcouomn(b, Q) with the parameters

stated earlier for our simulations.

q 12012 60°
FLi(b) = 4e; ((b— B (b= r0ﬁ>7) ) (2.8)

whereg ; =4.142x 1021, 6 =4x 1019 m,b=204x 10 19m, andrys = 16 x 1010

m. Thus:

ﬁ 51 (12(4%x 1071012 g(4x 10710)6
=4x4.142x10°% -

FLa(b) =4 4.142x 10 ( (44x10° 193 ~ (44x 10 19)13

2 1
_ —21 0
= 16.568x 10 <(1.1)13 - (1.1)7) x 10 x 1.5
=1.64x 1011 =0.164x 1071°N
Foouonib) = lakeT T, (2.9)

with [ = 7.13x 107 1%m, ks = 1.38x 10723, o = g, = —12, andb = 20.4 A = 20.4 x

10 10m.

7.13x 10 10%1.38x 1023 x 300x —12x —12
(20.4 x 10-10)2

IE’Coulomb( b) -

—1.021x 10 19N .

InsertingF_;(b) andFeoyiomp(b) in EQ. 2.7 Eoending= 0). We obtain:

IE)total(b> = IE)harmonic(b) + ﬁ_J(b) + IE)Coulomb(b) =0 (2-10)
IEr’1armoni<(b> - _kh(b_ rh) - _lfLJ(b) - IE»Coulomb(b>
kn(b—rp) = (0.164+1.021) x 10~ 19

kn(204x 107 1°—r,) =1.185%x 10710 . (2.11)
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The unit ofr, in Eq. 2.11 is the meter. For simplification, we omit the fact6—° to

obtain thery in Angstroms. Thus:

1.185
rh=204— =" . (2.12)
kn
We use reduce units for the harmonic constant We had calculated the relationship
betweenk, and its reduced unik, for our simulation, wherés, = k, x 122794. See

Appendix A for the details of thk, — k;, calculation. Then

1.185
Mh=204— "> 2.13
" K /122794 (2.13)
= 20.4—145511/K; . (2.14)

The reason for replacinig, with k- in Eq. 2.13 is because we wish to obtain the relation-
ship betweemny, andk;, directly using the parametdg, which is parameter used in our
simulation. The value ok; in Eq. 2.14 will be converted to its unreduced form in the
Boltzmann integration that follows.

The Boltzmann probability factor is

P e v/t 215
ry= :
0= FTnkrar (2.15)
assuming the degeneracy is the same over all pogssifileen
—U(r)/keT
r= /rP(r) dr= Jre dr : (2.16)
fe—U(r)/kBT dr

wherer is the average equilibrium distance between bonded morsoneequals the
DNA bond length 20.4 A. The integration of Eq. 2.16 is perfedrfrom zero to in-
finity. The potential energy (r) contains the Lennard Jones, Coulombic and harmonic

stretching potential energies.

f(;o r ef(ULJ(r)+UcOu|omb(r)JrUharmonic(r))/kBT dr

r= fgoe_(ULJ(r)+UC°”'°mb(r)+Uharmonidr))/kBTdr .

(2.17)
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Figure 2.4:k. andr (written g in the graph) relationship obtained from the integratiorEqf
2.17.
The integration of the Eq. 2.17 involved a complicated ganfumation, where numeri-
cal integration was used. By choosing a valuégfwe obtainr,, from Eq. 2.14 and,
(kn =kn"/122794). Then we calculate thé ;, Ucouiomb@ndUnarmonic@S functions of and
use them as inputs for the integration of Eq. 2.17. In thisexiral integration we apply
the composite Simpson [23] rule withranging from 0- 15.000 A and the grid width,
Ar, 0.02 A. In our observation, increasing the range of reducing the grid widthAr,
does not change threresulted significantly.
Table 2.5 and Fig. 2.4 give the relationship betwé&gnr,, andr as the result of the
integration of Eq. 2.17. We intend to obtain appropriateapeaters for the equilibrium
monomer-monomer distance 20.4 A. Table 2.5 shows that dirg2500 all yield the
average monomer distance 20.4 A. Thus in our simulation ve@s# the minimunk’
= 2500 and the correspondimg= 20.341796 A (from Eq. 2.14). The minimum value
Is chosen so as to avoid computational singularities andlowess that would result from
higher values. Energy non-conservation would also regutesve are numerically inte-
grating the dynamical equations. To confirm the correctoésise choserk,* andry, in
Fig. 2.5 we give the average contour length (Fig. 2.5.a) amtibength (Fig. 2.5.b) of

polyelectrolyte chain from some simulations. The contewmgth of a polymer chain is
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k; M r

0.5 -270.622| 20.834
1.0 -125.111| 20.867
5.0 -8.702 | 21.010
10.0 5.849 | 21.034
50.0 17.49 | 20.781

100.0 18.945 | 20.652
250.0 19.818 | 20.522
500.0 20.109 | 20.459
750.0 20.206 | 20.4352
1000.0 20.254 | 20.423
2500.0 20.342 | 20.405
5000.0 20.371 | 20.401
7500.0 20.381 | 20.40
10000.0 | 20.385 | 20.40
25000.0 | 20.394 | 20.40
50000.0 | 20.397 | 20.40
75000.0 | 20.398 | 20.40
100000.0; 20.399 | 20.40

Table 2.5: k., rp andr relationship obtained from integration of Eq. 2.17.

the length at when the chain is set linearly without imposirggrain force on the system.
Thus contour length is the sum of all monomer-monomer bosthdces or the length
of a straight DNA. We compare the contour length from simateg with the theoretical
contour length 35% 20.4 = 73236 A. From Fig. 2.5, the average contour length and the
bond length data from our simulations are in good agreentetiie theoretical values.
The error estimations of the average values from simulatase below 0.1 % from the
theoretical expectation. Thus the chosen valuegfandry, are reasonable with respect
to experiment. In the simulation box, the extra salt scréenelectrostatic interaction

leading to a slight departures to the predicted contourtleng
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error bars, from simulations using the harmonic constaf02# reduced unit) and
equilibrium bond length set at 20.3418 A. Simulation resuate compared to the
theoretical values.
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Chapter 3

DNA FLEXIBILITY AND
PERSISTENCE LENGTH

3.1 Definition and Calculation of Persistence Length.,

Persistence length is the variable to describe the stéfoés polymer chain. The per-
sistence length is the average projection of the end-totengent vectors of polymer
chain at a distancgfrom the initial vector for a chain of an arbitrarily lengtsofmetimes
defined in the limit of infinite chain length). Evans and Werstiwm [24] defined the
persistence length as the length over which two parts oftihexdeep their orientational
correlation and Cifra [25] referred the persistence leragthhe distance over which the

direction of the chain persists.

3.1.1 Calculating Persistence Length with Cosine Correlan Func-
tion

The persistence lengtlp can be determined from the following equation:

(cosh(s)) = es/Le, (3.1)



wheres is the segment length of the chain as depicted if Fig. 3.1. SHgment points
can be taken at any point along the chain. The afgkethe result of the orientational

difference between two end points of any segments with kesgto find the persistence

n

Sl

Figure 3.1: A continuum chain showing some
points that determine chain segFigure 3.2: A discrete chain. The andde, 6,
ments. The arrows indicate the ori- and 63 are formed by two ends of
entation at each point segment. segments with lengths 2b and .

length of a discrete polymer model with bond lengtleq. 3.1 can be modified as follows:
(cos8(i,i +k)) = e k/le, (3.2)

where® is formed by the orientation difference it and the(i + k)" monomer. Fig. 3.2
explains how Eq. 3.2 is used for a polymer wittotal monomers. The segment length

is equal takb. Fork =1, 2 and 3 with respect to monomer 1, the segment length increase
asb, 2b and 3. Each segment leng8will generate a certaifi. To get the average c6s
from Eq. 3.2, the co8for a particular segment leng#is used for all possible segments

for the entire polymer. To give a practical example, Eq. &2 loe written as:

. _ | Gi-Gigk | (Ui -Uigk| _ sip
|cosB(i,i + k)| = |cosB(s)| = U0l ) e (3.3)
or
1
In|{cosB(s))| = ——s. (3.4)
Le
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The reason for putting the absolute marks in Eq. 3.3 becaedangent of two end points
of segment is modeled by a positive exponential form (Eq). 34 obtain the persistence
length, the coB(s) is averaged from theSimonomer to thén— £ + l)th monomer. This
average is plotted versss From Eq. 3.4, the slope of the|ftos(s))| vs. sis equal to

—1/Lp.

3.2 The Relationship between Persistence Length, Bend-

ing Modulus (B) and Angle Force Constant kp)

3.2.1 Neutral Polymer Persistence Length

This subsection will gives the relationship between p&sase lengthL, and bending
stiffnessB as described by [26]. Recall for a single chain with totablér., any segment
of lengthswill have the two end points, and the tangent vectors will emak anglé; we
shall ensemble avera@eby considering all possible length segmentThen fors < Lp,

0 would be exceedingly small, Then the following:
(cosB(s)) ~ 1—s/Lp, (3.5)
and for@ — 0, coB(s) ~ 1— 0?(s) /2, which from Eq. 3.5 leads to
(02(s)) ~ 2s/Lp . (3.6)

Since Eq. 3.6 is obtained from the assumption th& close to zero, this relationship
holds for only stiff chain such as DNA. The total elastic biegdenergy of a segment

with lengthsis:

AE = %ssz, (3.7)
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wherep is the curvature which is the inverse of the radius of cumeat® is the bending
modulus/stiffness of the polymer. The energy written in &q.is a local variable, where
AE /s = 1/2Bp? is the energy per unit length of a segment with lengtind radius of

curvature ¥p. Sincep = 0/s, then

2
AE::%SB(S) ::gése? (3.8)

The angled is formed by the intersection of the tangents of the ends efctirve with

lengths. Then put the elastic bending energy in the Boltzmann iatigmm to obtain the
average curve. In order to achieve the standard resultp@rgsnd Kholkhlov [26] used
the standard Boltzmann averaging, but introduced a fa¢tdmehich does not appear in
the denominator partition function because "2 indepengkmes” (page 8, [26]). Their

derivation reads:

fT[ _kA*EeZde fT[ _Bf/zseZde KS
2)/ye *eT 2J/ye KeT 2skeT
<92(S>> = 0 _ AE - 0 BSZ/ZS - B (39)
Joe *Td® e ket do
fors< B/kgT. Eq. 3.6 and 3.9 results in the following:
2s 2sksT
2 = — =
@e)=r ="5
B
Lp= T (standard result) (3.10)

The Eq. 3.10 is the well-known equation in the worm-like ch@VLC) theory relating
the persistence length and bending stiffness [27]. OHhe B relationship given by Eq.
3.10 suggests that the valuelgfis only a function o for fixed temperature.

To test the reliability of Eq. 3.10, we have done a simulat@ra single neutral polymer
having bending stiffnesB (Section 3.6). There is no salt and the polymer chain is un-
charged. The parametBris included into the paramet&g in the bending energy force

fields (see Chapter 2, Eq. 2.2) in the following manner.
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E_Sg2_ —@ez, (3.11)

ko= — . (3.12)

Becausdg is a parameter for the monomer-monomer bond, the bendirppaltenergy
from Eq. 3.11 is a local variable. Then the segment lesgbproximately equals the
monomer-monomer distanbgs ~ b) if 6 close to zero. Assumis very small for stiff

chain, then by utilizing Eqg. 3.10 we obtain

B

_B_L
o= p = ko (3.13)

If we expect a DNA chain has a certain persistence lengt)y (ve employ Eq. 3.13 to

obtain thekg parameter for simulation.

3.2.2 Polyelectrolyte Chain Persistence Length

Thelp — B relationship derived for a neutral polymer cannot in geneeaused for poly-

electrolyte chains without modification. The uniform chax@ong the polyelectrolyte
chain induce repulsive forces among the charged point mer®which results in a larger
persistence length. In this section we review some polyelistte persistence length the-

ories before presenting our own ideas.

3.2.2.1 0Odijk-Skolnick-Fixman (OSF) Theory

The idea behind OSF theory is to determine the electrogpatisistence length by cal-
culating the energy difference between circular and redtknformation. This is ac-
complished by adding this difference to the bending eneogyribution (Odijk [28] and

Skolnick and Fixman [29] in [30]). Eq. 3.14 represents tleegbstatic energy difference

of two configurations.

AUelectrostatl((e < € kr(n) eben ~ |Bq 2
kT Z( bn ) ~ B (344
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wherelg is the Bjerrum lengthg is the monomers valence,is the inverse of the Debye
screening length andn) is the straight distance between 2 monomers center segarate
by n bonds in the circular conformatiom() ~ bn(1 — n?8?/24) for 8 < 1). We can

derive the total energy chan@Jyong as

AUbond — AUbending(e) AUelectrostati((e>
ke T ke T ke T
. 892 |Bq262 1 <B qu2 ) 92

_ B8 leg®” 1 v 3.16
26 Tak®  2\" T a2 ) b (3.16)

(3.15)

In OSF theory, it is assumed that the persistence lehgtan be identified witlkg (i.e.

Lp = 'k‘:—.?). By comparing Eg. 3.13 and 3.14 we deduce tat (B—i— ifzq;> %. Hence

from 3.13 we derive

B+B lsq?

1

| 2
wherelLogr = %2%2 X T

The termL? is defined as the persistence length of the uncharged polnakiose is the
electrostatic persistence length. Clearly, OSF theorglipte a linear contribution to the

persistence length for charge interactions.

3.2.2.2 Daobrynin Theory

Experimental determination of persistence length showsbaratic dependencetgat
relatively low salt concentration (whan is large) and a linear dependence at high salt
concentration (wherp is is small). On the other hand, Eq. 3.17 shows that it is ieagr
ment with experiment only for low salt concentrations. Faghler salt concentration,
Dobrynin [30] has attempted to modify the original OSF thyeby including torsional
terms in the chain deformation energy. In the original OS#otls, the chain deformation
energy is a function of the bending an@levith no torsion angle contribution. The deriva-
tion of [30] results in thec—! dependence of the electrostatic persistence lengih],

where

Lp— L(F),—|— L = B+ Bwi.c . (B+ OsquZ

et = = ) /ksT (3.18)
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3.2.2.3 Manning Theory

Manning [31] proposed a method to calculate DNA persistdangth by relating the
DNA persistence length.£) and the persistence length of null isomer DN&Y), a hy-

pothetical structure where DNA phosphate groups are natedn The result of this
theory is in contradiction to the additive relationship (E17) of the OSF theory. The

relationship betweebp andLp* from Manning’s theory is given by:

Kbe Kb

™ 2/3 2/3oy —
Lp = (_> R4/3(LP )2/32 2|B ! (ZZE_]-)m

5 —1-In(1—e*?)| (3.19)
whereb is the charge spacing of DN the radius of DNA (assumed cylindeg),the
charge densityg(= l,/b), zthe counterion charge andid Debye screening length which
characterizes the electrostatic strength of the saltisoluGenerally the parameters stated
above is adapted to the typical structure of B-DNA [31] irt-seter solutionlf = 1.7 A;
R=20A;1g=713A; & =7.13/1.7=4.2; Z = +1 for Na"). Manning [31] proposed

the value ofLy* is equal to 74 A based on the experimental persistence |etagshat 0.1

M NaCl (550 A).

3.3 A New Derivation of Polyelectrolyte Persistence Length

For the following we propose a different scheme for polyetdgte persistence length
calculation. Before we proceed to our derivation, we firstdss the previous three theo-
ries.

Eq. 3.9 is the "foundation” for equations relating the pstesice lengtih, to the bending
modulusB (Eq. 3.10). AnyL, derivation starting with an inappropriate application of E
3.9 results in unrealistic values for the persistence kengtthe following, we emphasize

three rules that should be obeyed when using Eq. 3.9.

(A) Since the energy differendsE in the Boltzmann probability denotes the total energy

difference, the electrostatic energy changes must bededléor a charged polymer.

(B) The averagéf?(s)) is a quantity for a continuous segment, not a discretely dnd

monomer or a single point charge within a segment. This caseba from Eq. 3.7
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which utilizes the curvature implying a continuous line.

(C) Eqg. 3.9 cannot become Eg. 3.10 if the critesia B/kgT is not obeyed. Fig. 3.3
shows the value ofp calculated by Eq. 3.10 and 3.9 at different ratiosBfkgT)

overs. The figure shows deviation of the equallty = B/ksT (Eq. 3.10) when

B/ksT <s.
300
Lp Integration Result
250 r Lp = BlkgT (Original)
200 +
£ 150+

100 r

50

0 0.5 1 15 2
(BIkgT)/s

Figure 3.3: Lp obtained by Eq. 3.10 (dashed line) and 3.9 (solid line) & dht ratios of B/kgT)
overs, sis fixed at 7x 20.4 = 1428A

In the following, some remarks on how previous theoriesiapdq. 3.9 and their confor-

mity to the three rules above are given. Then the differetwesr derivation are pointed.

OSF theory:

1. Thereis only a single energy summation in Eq. 3.14, bec@$F theory calculates the
delta conformational energy per monomer bond. We are apps@fe at this expression
since they neglected the importance of averaging in ternh@fsegment conformation.
This apprehension arises because the foundational mogeirsistence length (Eq. 3.1
and 3.9) requires the ensemble averaging over differemieeglengths. Since the OSF
theory only calculates the energy per monomer bdxte, (), it implies that the energy

changes per segmemfsegmen) (Where the segment hast- 1 monomers)

AEsegment= AEpond X (n + 1) . (3.20)

27



This expression is incorrect because it does double cayofithe electrostatic energy
calculation (cf. Eq. 3.21). Thus we infer that the OSF enexgyression does not repre-
sent a characteristic segment which breaks rule (B).

2. The summation limit in Eq. 3.14 farinfinity. Since the segment leng#h= nb, thens
has limit infinity. This summation automatically breakse'¢C) wheres < B/kgT.
Dobrynin theory : Its basis is the OSF theory, thus it retains the charatiesisf the
OSF theory. They add additional feature which is the toioerm. We comment that
they use the torsional angfgto model the torsional degeneracy at a certain bending angle
0. It is probably another alternative if we constructed a aegacy based on the continu-
ous segment conformation (which is not developed here).

Manning theory : Manning used a different approach compared to the previeosin
Manning, he retained Eq. 3.1 and 3.9 for a neutral polymeenTite associated the elec-
trostatic extension force between charged monomers by tisenforce defined from the
counterion condensation theory. He defined the "null isém&the neutralized polyelec-
trolyte, where the extension force is balanced by a compeefsrce. He used elasticity
theories to model the compression force.

In our derivation : We start from Eqg. 3.21 and 3.24 to satisfy rule (A) and useXE2R
to conform to rule (B). Our derivation complies at every stégrule (C).

By including the Coulomb energy in the total chain energy, cae rewrite the chain
deformation energy for a single polyelectrolyte chain, vehihe salt effect in the poly-
electrolyte system is included in tlkevalue, wherek = 1/rp andrp is the Debye length

[32].

2 n n+1| T . K
AE:ﬂJrZ > ke TG OXpKTiy) (3.21)
23 54, rij

By assuming the polyelectrolyte segment bends in circidafarmation (Fig. 3.4), we

obtain

gl () ol (] o
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n = the number of bonds
b = the bond length

Figure 3.4: lllustration of a polyelectrolyte segment withgths which bends in a circular form.
Ther;; distance can be determined by the Cosines law.

Definerj; = nbG, with

G(n,e,i,j):%\/2<1—cos{<g)(j—i)D , (3.23)

where both and | denote two individual point charges (monomers) within tbyelec-

trolyte with chargeg; andq; respectively separated by a distamge-rj|. TheB ands

are the chain bending modulus and the segment length resgecihen is the number

of bonds within the segment lengsh For the calculation above, the short range repul-
sive term (such as modeled by the Lennard Jones potented) met be included in the
chain deformation energy. This is because the distanceceetpwairs are larger than the
repulsive short range interaction distance. Further, téability for end to end chain

interactions are infinitely small. We rewrite the Boltzmantegration of Eq. 3.9 by
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including the coulomb energy term in the Grosberg averagiathod [26].

nt1  'BkBTGAjexp(—knbG)

2f2n _BEZ/Tzs_ZP:12j2i+1 . 020
2 2J0 e s B
<e > - n <n+1 'BkBTGGjexp—knbG) (324)

5 _B82/2s 2i=12j=it1 G

fOTfe kg T kg T de

2lIgkg T g q; exp(—knbG
e e
62y _ 2 J&e T 6%de 305
< >_ <B+ZP:12T%1+12|BkBqu]-e2xp(7Kan)>62 : ( ' )
Go
OZT[e— =gt de

Although not developed here, it seems very likely that oth@m-equivalent averaging
methods are possible other than the Grosberg form. We debr isvestigations here

and use the Grosberg form as the first approximation. D&jigpgas:

N Nl 2lgks T G Qjexp(—KNbG)

Bn W — B+
y i; 2 GO2

j=1+1

(3.26)

Thus analogous to the integration of Eq. 3.9 and the deonaif Eq. 3.10, we can write

o _ Bewd? 5
2[g e =T 0dO  2sleT

<62> - B WQZ B
fdzﬂe—Tns?B—Tde new

)

With the substitution of Eq. 3.68%(s)) ~ 2s/Lp, we derive

Lp= o (3.27)

We propose that the persistence lenigths the sum of the non-electrostatic persistence
lengthL® and the additional electrostatic persistence lehgthBy combining Eq. 3.26

and 3.27, we obtain

Lp = 10+L¢, (3.28)
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with

B
Ba & ™M 2IgksT ggjexp(—knbG) 1
Lel = L = ' X . 3.30
Tt 42, o T (5:30

Returning to the functior(n, 6,1, j), for any polyelectrolyte with uniform monomer

charge, we can rewrite Eq. 3.30:

n Vi e KnbG(n.6.i)

el _ 2 _
=2 ) "G(n.6,n8?

(3.31)

withvi=n—i+1.

We have eliminated the independent variapfeom G. We have also add a new variable
vi = V;(i,n) which denotes the Coulomb interaction factor between twiotmharges with
distanceb within a chain segment of lengtib. Then the functiors(n, 6,i) is simplified

as follows:

coan-3 -] 3]

To simplify theG(n, 6,i) we use the assumption thais small @ < 1) so that @i /n) < 1.

This assumption is reasonable for a stiff polymer whsiiesmall, and this approximation

also accords with the expression in Eq. 3.24 where for |@rglee probability is negligi-

6i

ble compared to small. Thus withx = (&), cosc~ 1— %, we have
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Eq. 3.31 become:

Lel 2IBq2 n VieKbniﬁ
Poe? i; i/n

2pgPn & (N—i+1)
= i; L (3.32)

Le =

It can be shown ([33], symbolic algebra toolbox) that

n —I—|—1 _Ai _A 1 _A e Aln+2)
Yy ——eN=e <e_A_l—(n+1)eAln(1—e ))+ "

| (N4+2)(—n—1+eA)er
< n(eA-1)

—(n+2)(n+1)e#sa (e 1, n)) ,

(3.33)

with Sa(e™®,1,n) =% , % [34] andA = kb.

From the result (Eq.3.33), the integration of Eq. 3.32 waatilllyield kb factor in expo-
nential form and the parametetsandb will not be separated from their multiplication
Kb form. The variabla (Eg. 3.32) vanishes and a new variaklés introduced in the
Sa(e™®, 1,n) formula (Eq. 3.33). However, the varialten the S\ (e7#,1,n) has fixed
values (from Go «) and independents from any other variables. Thus we assusiée
simplest and most reliable way to simplify the scale of etestatic persistence lengtl§

by the following equation:
Lg ~ 2aa’n ({fa(n))p e <C2Mo)g . (3.34)

Notice that we keep theb multiplication in the exponential factor. In the followirvge
concentrate in obtaining thig(n) and f2(n) by curve fitting procedures. We note that Eq.
3.34 is only an approximation to Eq. 3.32. In this approxioratf; and fo are fitting
parameters to yield the best approximation to Eq. 3.34. \Wenas-linear least squares to
derive the results. The data for fitting are obtained by nicakintegration of Eq. 3.24.
First we perform the numerical integration to test the iefathip betwee.? andLp as
expressed in Eq. 3.28. Fig 3.5 depicts the numerical integraata, which proves the

linear dependence &f} to L. The electrostatic persistence lenghis calculated over
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different Debye length.

Fig 3.6 (a) and (b) are the numerical integration data shgwhe linear dependence of

1400 —
1200 K=9.625A——|
K=304.4 A |

1000 e ]

) 800l 0 |

ﬁ --------

[
_I »

600
400
200

0

0 100 200 300 400 500 600 700
0
L (A)

Figure 3.5: The.p andL3 relationship (in two different Debye lengkT?) obtained from numer-
ical integration of Eq. 3.24. This figure confirms the— L relationship in Eq. 3.28
(Lp = L8+ LE). Eachk value correspond to a definitgg. For allk values, a linear
dependency is observed but only two values are depicted.

the electrostatic persistence lengti§) to Ig and the quadratic dependencel&fon g.
This data are shown to confirm the dependencé®¥{o Is andqin Eq.3.32 at any fixed

Debye length.

1200 T T T T T T b
Kk 1=30.44 A ——
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q
(b)
Figure 3.6: TheLg linear relationship to the Bjerrum lengtp (Fig. a) and quadratic relation-
ship to the monomer charge (Fig. b) obtained from numerical integration of Eq.
3.24 (for different Debye lengths™1). These figures confirm tH$' —lg and L,%' —q
relationship in Eqg. 3.34
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3.3.1 Details of the Fitting Procedures

The curve fitting for obtainindy (n) andf,(n) are performed by using theAB FIT software
with Levenberg-Marquardalgorithm (LMA)[35, 36]. The LMA has become a standard
method for fitting nonlinear least-squares functions[3], 3

We simplify the expression in Eq. 3.34 for the fitting procexluBecause) andlg are
independent of thd1(n) and f2(n) function, we may choose arbitrarity andlg. We

choose g=1 antg = 1/2n. Thus Eq. 3.34 becomes
Le\q =1l = 1/2n,K,b,n) ~ ((fy(n))p € <O 2(Mo)g . (3.35)

First we perform numerical integration of Eq. 3.24 to obtdf) as a function ok with
range within ¥5 < k < 1/2450, which corresponds to salt concentration range 400 mM
- 0.0015 mM. Then we use Eq. 3.6 to obtaimand Eq. 3.28 to gdtg (L = Lp —LY).

L3 = B/kgT is a chosen parameter in numerical integration of Eq. 3.2#re/we notice

as longlL3 < b, the finalLg obtained does not change. In our observation, extending the
K range did not give any significant change to the final resutie K range was divided
into 490 intervals which corresponds to the maximum numbgomnts that can be fitted

for the software used. This integration is repeated foredsfitn (1 < n < 25). At this

point, we graph g vs. kb at differentn and fit these graphs to the function
Le = A exp(kbB)). (3.36)

We then obtain the parametefs and B; for eachn. The sets ofA; andB; are used to
obtain f1(n) and f2(n) (Eqg. 3.35).

Finally, each integration with the fixewlis repeated for different bond lengths The
bond lengttb values include 1.7, 3.4, 5.1, 10.2, 15.3, and 20.4 A. Withitkegration at
differentb, we can determinéfz(n)), by analyzing thefz(n) — b relationship. Figure 3.7

gives a sample of the numerical integration (Eq. 3.24) atdditesult (Eq. 3.36).

http://www.angelfire.com/rnb/labfit/
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Figure 3.7: Numerical integration of Eq. 3.35 and its fittBi§6, with parameters n=20, b= 20.4
A: Kk is varied between 1/5 and 1/2450 A

3.3.2 Obtaining f1(n)

In order to test the dependency, we first determinefitig) function. This function is
not the same asfy(n,b)), but related to it. We wish to derivg (n) as a functiomot
dependent om; f1(n) is defined in 3.34. In order to confirm non-dependency orbthe
factor, we plotA; (3.36) whereA; is obtained from the fitting of Eq. 3.24 to the function
L&' in Eq. 3.36. (In other words, for eachand fixedb, we can determinkg from which

A; can be obtained from curve-fitting). Then we repeat thistipigtfor different bond
lengthsb. Eqg. 3.36 is a parametric form for Eq. 3.35. It would be comeenif A; were
not strongly dependent dn In the parametric formi = f1(n).

Fig. 3.8 shows thdi(n) — n relationship at different bond lengtis From the figure,
we conclude that the most reliable form féi(n) is f1(n) = An+ B with the A andB
parameters obtained by curve fitting. Table 3.1 gives thadittesult off;(n) = An+ B.
From Fig. 3.8 and Table 3.1, we observe that the change immedestA and B over
differentb is not significant. The standard deviation for the param&tisr3.46 % from
its mean and the standard deviation of the paraniie3.49%. We attributed the slight

change to the approximation used in the fitting algorithmd@termine the final function
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Figure 3.8:f1(n) (from Eq. 3.35) versus at different bond lengtb. These curves will be used to
determine the best form df (n).

b (A) | fi(n) = An+ B (dimensionless
1.7 0.0069n + 0.024

3.4 0.0069n + 0.024

51 0.0070n+ 0.024

10.2 0.0072n + 0.023

15.3 0.0074n + 0.023

20.4 0.0075n+ 0.022

Table 3.1: Numerical result of fitting the functioia(n) = An+ B in Fig. 3.8. The mean of pa-
rameterA is 0.00714, with standard deviation 0.000248. The mean @frpeterB is
0.0234 with standard deviation 0.000819

f1(n) = An+ B, we take theA andB parameters from their averages resulting in:

f1(n) = 0.007In+0.0234. (3.37)

3.3.3 Obtaining f2(n)

The general idea to obtaifa(n) is the same as witlfy (n). Instead of usind\, parameter
in the parametric function Eq. 3.36, tBeparameter is considered equivalent to then)

factor in Eq. 3.35, i.e.B; = fa(n). We first determindg; from fitting Eq. 3.24 to Eq.
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3.36 at some fixedh. We then plot this set dB; vs. n. We repeat the above procedure
by varying the bond length parameter Based on the derivation of Eq. 3.34 which
is a fitting model, we expect thB, — n (fo(n) — n) relationship to be also independent

of b. Figure 3.9 shows the relationship betweeg(n) andn for differentb’s. It is found

5 T T T T

4 L

fo(n)

O & 1 1 1 1
0 5 10 15 20 25

Figure 3.9:f2(n) (from Eq. 3.35) versus at different bond lengthb. These curves will be used
to determine the best form dg(n).

through many fittings thafz (n) is (i) a linear function ofi and (i) that the gradient of this
function exhibitsb dependency. On the other hand from the origifaresult (Eq. 3.32
and 3.33), thd parameter always appears in thie multiplication term only and not in
the f2(n) term. Thus we attribute the effect of bond length paranteter a dimensionless
modifying functionf, to account for the observations. As such each graph may beglo
as a straight line from the origif®, 0) where we infer that thé,(n) function is separable

and can be written in the form:
fo(n,b) = f5(b)n. (3.38)

In the following, we proceed to obtaifj (b). The slope of each line in figure 3.9 (numer-
ically given in table 3.2) represents the dimensionlggb). It is shown that the value of
b will slightly affect the gradient, in the exponential scalint(n, b), where the standard
deviation of the gradient; (b) is 6.93 % of its mean.

We emphasize that the parametgfb) pertains only to scaling in A unit. To guarantee
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b (A) | f2(n) = f;(b)n (dimensionless
1.7 0.161n

3.4 0.167n

51 0.171n

10.2 0.181n

15.3 0.187n

204 0.193n

Table 3.2: Numerical result of fitting the functida(n,b) = f, nin Fig. 3.9. The mean of th(a;
parameter is 0.177, with standard deviation 0.0123.

that f, (b) is dimensionless for all length units, we can rewifif¢b) as

f2(b) = f; (b/lo)

wherelg =1 A.
We plot the graphf, (b) vs b in figure 3.10 to obtain the scaling df (b) over different
b, which ranges from ¥ A —20.4 A. The dots in Fig. 3.10 represent the slope of the

0.2

f*z(b) °

- 019} f 5(b) fitting
S
-)<q_N
= 018}
o)
[q\]
— 017}

0.16 | | |
0 S) 10 15 20

b (A)
Figure 3.10: Thef, (b) andb relationship (dots) and the fitting function (curve)

lines in Fig. 3.9 (and numerically in Table 3.2). The conduos curve in Fig. 3.10 is
the best fit according to the L-M algorithm. Concerning theeditcurve of Fig. 3.10,
we choose an arbitrary function with the minimum number oapeeters; an appropriate

form was found to bd, (b/lp) = Aln(b/lp+ B), A= 0.0521 andB = 21.17 to yield the
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final expression as

f5(b,lo=1A) = 0.0521 Inb/lp+21.17) . (3.39)

3.3.4 Final Result of the Fitting Procedure

Returning to the initial expression of the electrostaticsigtence length, g, in Eq. 3.34,
Lg! ~ 2lgq?n ((fa(n))p € <O 2(WIe)g

and thef;(n) and f,(n) functions from Eq. 3.37, 3.38 and 3.39 iritf, we arrive at the

final expression:

Lgl ~ 2|Bq2n (0007]n+ 00234) e—(Kbn) 0.052 In(b/lp+21.17) 7

7) —0.052«bn
)

= 2l50Pn (0.0071n 4 0.0234) n(b/lo+211

= 2lgg?n (0.0071n+0.0234) (b/lg+21.17)~0052¢bn (3.40)
SinceLp = L2+ L, then

Lp = L3+ 2l5gn (0.0071n+0.0234) (b/lg+21.17)0-052bn (3.41)

where thdg = 1 A is the parameter to mal¥ 1o dimensionless.

3.4 Discussion on The New Derived Persistence Length

We compare thép result obtained from numerical integration (Eq. 3.24) attoh§ (Eq.
3.41) in Fig. 3.11. From Fig. 3.11, the fitting function is inayl agreement with the
numerical integration data. We attribute the slight diparecy in the fitted-data to the
fitting approximations that we made and which was describetktail above.

The bending moduluB = EI is a function of Young’s moduluE and the area moment
of inertial, thereforeB is not a function of the segment lengtk- nb. SinceLp = B/kgT

holds for smalls (s < B/ksT (Eq. 3.5 and 3.9)), thus the varialilg is independent of
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Figure 3.11: Persistence lengthp) versus Debye screening lengtg = 1/k from numerical
integration (Eq. 3.24), compared to the fitting equation. (E41). For these curves,
L3=500A,lg =7.13A,q=-12,b=204 A, andlp =1 A.

the segment lengthfor smalls. The new persistence length equation (3.41) contains the
parameter bond numbar(n = s/b). Thus at smalh, Lp should not be a function of.
Equation 3.6,(6%) ~ 2nb/Lp can be used to determing function not dependent om

We can calculatéd?) from
(62(n)) ~ 2nb/Lp(n) ,

whereLp is obtained from Eq. 3.41. Th@?(n)) data are plotted over. The gradient
(m) of the (8%) — n plots equals B/Lp. Thus

Lp = 2b/m. (3.42)

Our theory was based on tee- nblength being "small”, in accordance with the assump-
tion used in framing the conventional polymer equations @bsection 3.2.1, Eq. 3.5
and 3.9). It is observed that at smab (smalls), we indeed derive a linear curve (Fig.
3.12) and hence it is safe to conclude that we have providedvauation that includes an
electrostatic contribution directly to tH82) calculation in Eq. 3.9 that other theories did

not include or neglect. We caution that this theoreticahfiation is based on the Gros-
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Figure 3.12: (82) — n relationship based on the Eq. 3{87) ~ 2nb/Lp(n)). TheLp(n) is calcu-
lated by Eqg. 3.41. Thg andb parameters for Eg. 3.41 are given above each figure.
L3 =500A, 15 = 7.13A, andly = 1A for all curves.

berg partition function and integration [26]. Another exgsion (see Scipioni et al. [39]
who provides a different interpretation for the virtual semts) insignificantly modifies
our numerical results above where the same conclusion vadutéins as for the Grosberg
scheme which we shall use in what follows. We intend to pumueown alternative
formulation not based on Grosberg’s methodology in theréutu

In the experimental work of Scipioni et al. [39], the measlgaexperimental segment
length is half of ouss (Fig. 3.4). Definessc and6y. as the virtual segment length and angle

they defined, where

1 1
Ssc=5S and esczée, (3.43)

and wheres and® are quantities in our work. Eq. 3.24 becomes

n+l IBkBTqiqj exp(—knbG(6))

1
o1 7@5(\/“2_53(;7 EZin:lzj:iJrl T sG0) 5
<92 _ 2f0 € B B escde (3 44)
s lsn snil Igkg T g0 exp(—knbG(6)) :
omn _BG%C/ZSSC_ 22i=12j=i+1 sG(6)
o € '@ kg T de

Notice the ensemble averaging is done for (6&) although the integration is done over
8. The calculation of the electrostatic energy term is theesanth Eq. 3.24 since there is
an additional segmerst; appended at the tail of the central segm=pt The 1/2 factor

preceding the electrostatic energy term appears becauselwealculate the energy of
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segments (a half of segmens). Then substituting théd2,) from Eq. 3.44 to 3.6 we

obtain

2
Lp— =3¢ (3.45)

(030
The numerical result using the above procedure due to Sgigimot significantly differ-

ent from our result.

3.5 Representing the Real DNA with Our Model. How
Accurate is It?

Experimental DNA contains negative charges at its surfaeetd the phosphate groups.
The axial distance between two nearest distance phosptaipsgyon opposite sides is
1.7 A. The nearest axial distance between two same-sidespphte groups is 3.4 A(see
Fig. 1.1).

We choose the diameter of our monomer models as 20A whicheisame as the di-

ameter of the experimental DNA cross section. Consequeatth monomer contains a
total charge of -12, and the monomer-monomer distance egudl x 1.7 A =204 A.

Fig. 3.13 depicts some polyelectrolyte models with différ@onomer chargg and bond

204 A

@ ( (x2) () ] b=2044
(O 00000000 0 0 O @ G b=344
© OOOOOOOOOOOOOOOOOOOOOOE) b=174A

20.4 A

Figure 3.13: Some polyelectrolytes modelling a DNA chaitne Hond length/charge ratio (1.7
Alcharge) is the same as the experimental DNA data.

lengthb. All models (a,b and c) have the same bond length/charge ratie models (b)
and (c) are closer to the experimental DNA distance and eha@gnitudes while model

(@) is what we use. If (b) and (c) are our benchmarks, we carpaoenour (a) with (b)
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and (c) for meaningful variables such as the persistengghemhich is reported in Table
3.3, using equation (3.41).

Table 3.3 shows that models with higher monomer charge,itéedpe same bond

ro/ b=17A;g=-1 b=34A; q=-2 b=204A;, q=-12
CsatmMM | Lp(A) [ s(RA) | 12 | Le(A) |s(A)| r?2 | Le(R) [s(A)| r?
9.63/100.0| 554.10| 61.2 | 0.999| 559.24| 61.2 | 0.999| 601.91 | 61.2| 1.0
30.44/10.0, 603.95| 61.2 | 0.995| 617.34| 61.2 | 0.995| 778.752| 61.2 | 0.996
96.25/1.0 | 628.03| 61.2 | 0.992| 646.05| 61.2 | 0.991| 888.91 | 61.2 | 0.989
304.4/0.1 | 636.78| 61.2 | 0.990| 656.55| 61.2 | 0.989| 933.51 | 61.2 | 0.986

Table 3.3: Persistence length determined by Eq. 3.41 ardiff salt concentrations for three
models in Fig. 3.13 wherkd =500 A, Ig = 7.13 A, andlg = 1 A for models (a), (b)
and (c). The(8?(n)) —n lines are plotted fronm = b to n = s (see Sec. 3.4)? is the
correlation coefficient for the plots.

length/charge ratio, have larger persistence lengthss Tiomn a theoretical standpoint,
our polyelectrolyte model is not accurate enough to repitetbee real DNA in terms of
chain flexibility. However our model is retained for convemce. In the following the
justify the convenience of our DNA model.

The closest axial distance between two negatively chargedghate groups in experi-
mental DNA chain is 1.7 A. The DNA chain has diameter 20 A (Figl). In many
simulations, a single particle or ion is usually modeled Ispherical volume. If we want
to create a spherical monomer which cover the whole DNA diam#& means we must
create a monomer with radius 10 A. This 10 A radius monomerNARpproximately
consists 12 phosphate groups (since DNA chain has 12 phiespioaips per 20.4 A chain
segment length). In the following, other models of the DNAichare offered, where the
pros and cons between possibility and convenience are.given

The particle radius in our simulation is defined by their sttange interaction parame-
ters (i.e. hard-soft sphere radii in the LJ interaction). A%sume we can model the DNA
monomer with a discrete chargel with an adjacent charge distance of 1.7 A (Fig. 3.13).
Then the sum of hard and soft core radii of the DNA monomer tlaat interact with
mobile ions equals 10 A so we can model the experimental DN#nctliameter. Up to

now we do not encounter problems. Problems occur when wk #fiaut the short-range
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interaction between the DNA monomers. If we assign 10 A astine of DNA hard-soft
radii for DNA-DNA LJ interactions, the monomer bonds willtamatically break due to
force overflow since the monomer bond distance is 1.7 A. @dser; if we set the sum of
hard-soft sphere monomer radii to 0.85 A for DNA-DNA LJ irstetions to comply with
the monomer bond length, it means that we allow non-adjacenbmers to get closer to
each other until the closest distance is 1.7 A. This clos&ui® is not possible since we
have a 20 A DNA chain diameter.

The solution is to create a DNA chain model with monomer chag for each 1.7 A
axial distance by applying a non-spherical LJ potential (Gay-Berne potential for disk
shape) to regulate the short range interaction among the mbitomers. We have tested
this type of potential in the ESPResSo MD simulation packalgieh cannot run this po-
tential for a very long chained polymer, unfortunately. Eweith a short chain (i.e. 5
monomers) the simulation required a very small time-step @1 x 1012 in reduced
units) which is simply not reliable for equilibration. A Igrchain model in simulation is
preferred to obtain good averaged properties and minirhzadon-isotropic effects at the

two ends of chain, and this is the reason why our model in quewe.

3.6 Simulation Results

In the following the DNA persistence length data from MD slation are given. In Fig.
3.14, the data from simulations of neutral polymer are givEmese data are used to ex-
amine the theoretical prediction of the neutral polymes@eence length. The theoretical
persistence length is given by the WLC theory of Eq. 340+ B/kgT, whereLp is the
persistence length arBl/'kg T is chosen to define the bending angle constant parameter
(kg) in our model [see Eqg. 3.13 and Eqg. A.17 in the Appendix A]. \Mewate a single
neutral polymer with the same dimension as our DNA model. @fopm simulations in

two kinds of time-step (k 102 and 1x 10° in reduced unit) to confirm that the systems
are in equilibrium. In the simulations, the polymer did ngperience any type of non-
bonding intermolecular interactions (e.g. Lennard-JareSoulombic). The harmonic

bonding potential preserved the equilibrium bond distaarw the bending angle poten-
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tial governs the polymer flexibility. The bending moduBsange is [50-1500] AsT.
The straight lines in Figures 3.14 (a,b) are the expectesigience length from the WLC

theory. The simulatiohp are calculated by using Egs. 3.3 and 3.4 which represent the

time—step 1e—-03 (reduced unit)

time—step 1e-05 (reduced unit)

T T T T T T T T T T T T T T
1400 HNeutral polymer (Simulation) =--s--+ B 1400 [Neutral polymer (Simulation) =--%--= B
. Neutral polymer (Theoretical) . Neutral polymer (Theoretical)
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= x ¥ | < . X ?
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Figure 3.14: Persistence lengthp] of the neutral polymer possessing the same dimension with
the polyelectrolyte DNA models, with 2 standard deviatioroebars, at different
bending modulus (B) parameters. The straight lines areftberétical prediction.
The simulations are performed with time-steg 102 (Fig. (a)) and 1x 10> (Fig.

(b))

natural definition of persistence length. For all persis¢elength calculations which re-
quire a plot between any functidi{s) ands, wheresis the segment length, we choose the
maximum segment length= 61.2 A. The reason is because from observation, the corre-
lation coefficientr? (0 < r? < 1) from any gradient determination (Eq. 3.4 for the DNA
monomer coordinate in the simulation, verification of Eq$ &d 3.42 for theoretical
calculation) will be less than 0.98 fer> 61.2 A. Another reason is that the theoretical
equations for persistence length are derived from the gssons < Lp (Eqg. 3.5 and 3.9),
and the bond length 20.4 A in our models already contributesatively large distance
to the segment length

From the data in Fig. 3.14, the simulatibp agree with the theoreticdlp when the
bending modulu® is within the range [50-550] B T. ForB > 600 AksT, the simula-
tion persistence length deviates from the theoreticaliptietis. The deviation becomes
larger as the bending modulus increases. As far as we knewngximumB value for
which the theoreticdlp is reliable has never been discussed. In what follows, weigeo

suggestions with regard to this departure. We conjectwatttie theoretical WLC equa-
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tion fails at largeB because in its derivation (Eq. 3.9) the energy contribstioom each
segmensto the Boltzmann factor are considered independent. Ir @tbeds, we divide
a very long chain into many small segments and assume thiaablegy of each segment
does influence the topology of neighboring segments. Weedlwat despite polymer stiff-

ness, dynamics caused by a segment will affect neighbadsig#o additional bending.

That added bending occurs is clearly observed for stiff ghathains.
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Figure 3.15: Persistence lenglhy] of our DNA polyelectrolyte simulations, with 2 standard de
viation error bars, at salt concentration 0@25 mM. The simulation results are
compared to thép prediction from OSF, Dobrynin and Manning theories (a, b, c)
Comparison with our derivation is given in (d). The unchar@NA bending modu-
lus Bg = 500 AkgT throughout. The horizontal dashed line is the persistegwgth
of the neutral uncharged DNA$ = 500 A) [see Eq. 3.28].

We present the persistence length of the DNA polyelecteslgt different salt concentra-
tions in Figures 3.15. The highest salt concentration 0.R6curresponds to the maxi-

mum capability of our computer resources and the MD packagd..Before we continue
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discussing about persistence length, we want to illustregeémportance of choosing the
DNA concentration. The DNA concentrations in our simulatias 0.005 mg/ml which
defines the cubic simulation box length 7612.005 A. TablepBesents the end-to-end
distance R.) and radii of gyrationR,) of the DNA in different salt concentration& is

the straight distance between two ends ch&is defined as the mean square distance
away from the center of gravity {;), where center of gravity is the average location of

the weight of the polymelR, can be determined by the following equation

=z

(rk—reg)?, (3.46)
1

RE =

2|~

k

wherek is the monomer index ard is the number of monomers. ThRgis a measure of
the size of the chain. Table 3.4 shows that the valu€® ahdR, in equilibrium are much
smaller than the cubic box length. Thus we infer that it i®tafneglect the DNA-DNA

interactions between the cell neighbors when determiriedXNA topology. From sim-

Salt Concentration (MM) Re (A) | 8r.(A) | Ry (A) | 3ry(A)
0.001 5731.06| 8.81 | 1604.60[ 1.78

0.025 5393.09| 26.38 | 1487.54| 6.46

0.1 5100.30| 21.81 | 1383.59| 4.72

0.15 4825.28| 20.39 | 1322.53| 1.22

0.25 4465.05| 12.38 | 1284.93| 1.58

Table 3.4: End-to-end distanc®d and radii of gyration Ry) of DNA models at different salt
concentrations. Thé, anddg, are the standard deviations Rf andR, respectively.

ulation data in Fig. 3.15, the DNA persistence length desgreas the salt concentration
increases. At low salt concentration, the Debye screeringth ¢, = k1) is very large
(i.e. rp ~ 30440 A at 0.001 mM 1:1 salt). It causes the Coulombic repulsiteraction
between monomers to be almost unscreened. This strong nesfmoonomer repulsion
maximizes the persistence length. From Fig. 3.15, at velgtiow salt concentrations
0.0-0.05 mM, the averads> from simulations does not alter. At this concentration eng
the Lp is about 1100 A. As the salt concentration increases, the/®kmgth becomes

smaller, resulting in a weaker DNA-DNA repulsive potentedding to smaller persis-
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tence lengths. From Fig. 3.15, the DNA persistence lengtieigdly decreases at salt
concentration 0.05 mM and above.

Fig. 3.16 shows some DNA snapshots at different salt coratems. At salt concentra-
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Figure 3.16: Snapshots of DNA chains in different salt cotregions. Salt concentrations are
written at the bottom of the pictures.

AN

S

N e -

t\‘\._, /\\__/ N~
T T

tions below 0.01 mM, the DNA structures do not change siggnifiy. At salt concentra-
tion above 0.01 mM, the DNA chains form a more curved strictlihe curved structures
are formed because the salt ions screen the repulsive Cbidgotential between DNA
monomers. It is also clear that the weakening of the monanwremer repulsions by
screening ions reduces the dimension of the overall DNA wigdndicated by the data
of end-to-end distance and radii of gyration (Table 3.4).

Figure 3.17 shows the DNA conformations at different timiiivals (in reduced unit).
The initial configuration of the DNA chain was created rantiomside the cubic simula-
tion box. As the time elapsed, the chain equilibrates itda@omation within the system.
After some time the system energy and the chain conformatiabilized. These are

sufficient indications of an equilibrium chain conformatio
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Figure 3.17: Snapshots of DNA conformation at differentdiimtervals (reduced unit). DNA
concentration 0.005 mg/ml and salt concentration 0.1 mM.

3.7 Experimentvs. Theory

In the following the comparison between experimental ardtétical persistence length
is discussed. Theoretically, our model in simulation is acturate enough to represent
the experimental DNA flexibility, so we compare our thearetipredictions with real
DNA data from experiments. We notice that the experimerdéd dre based on different
physical variables that arise from measurements thatdedight scattering, sedimenta-
tion velocity, electro-optics, ligase-catalized cyctina, gel electrophoresis, circulariza-
tion kinetics, electric dichroism and scanning force mscapy (SFM) visualization [40].
These variables are then interpreted according to an apatetheory that yields the per-
sistence length. Indeed, there is inconsistency in thdtseshe above techniques have
limitations, because the persistence length is not a malaksuproperty, thus we have to
convert the measurable property (e.g. diffusion coefficiamerage radius of gyration,
end-to-end distance, force of extension) to persistenugthethrough model-dependent
theories. Thus it is impossible to discuss the experimgraadistence length in detail
without considering each experimental method used. Amasisele is the flexibility of
the DNA is dependent on its base pair sequence [39].

In Fig. 3.18, the DNA persistence length from theoreticdtwaiation is compared to
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Figure 3.18: Experimental data and theoretical calculatiof the DNA persistence length at dif-
ferent salt concentrations. The experimental data are & Baumann et al. [42]
(rectangle); Nordmeier [41] (diamond); Rizzo and Schefin{d43] (closed circle) ;
Smith et al. [40] (cross).

some experimental data. It seems in general that the trefritie alata for the different

determinations are not consistent. It suggests the needhafraugh understanding of

the experimental procedure before comparing experimehttagory. Due to the lack of

our DNA experimental experience at the moment, we choosedasfon simulation and

theories because both rely on universal mechanical laws.

3.8 Simulation vs. Theory

In Fig. 3.15, we compare the experimental persistence letagthe theoretical predic-
tion from the OSF (a), Dobrynin (b), Manning (c) theories dram our derivation (d).

Specific to the Manning equation (Eq. 3.19), the monomergehgy) variable is not
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explicitly present. From his derivation [31], he use the @nsionless DNA line charge
density parametef = lg /b = 4.2 to model the DNA charge properties where the DNA
has a negative chargel for each 17 A distance. To apply Manning’s calculation for our
DNA model, we use a related line charge density paraméter% instead oft’ = IFB
whereb/|g| denotes the segment length per unit charge. Thug thel.2 which is the
same ag’ = 4.2 used by the Manning model.

The equations of those theories are based on mechanics thkestff rod model is used.
Thus the usage of these theories are not limited to DNA orgy DNA double helix with
phosphate groups chargel and charge spacing7LA). These theories should be appli-
cable for any stiff polymer, including our DNA simulation wehels (DNA with monomer
charge—12 and bond length 28 A). From Fig. 3.15, itis clear that there is no theoretical
Lp calculation that can match the simulation results. The @®Byrynin and Mannind p

go to infinity at very low salt concentrations. Our model mesethelp as constant at low
salt concentration, but as the salt concentration inceedbe simulatiorLp diminishes
much faster than outp theoretical model which is still qualitatively accurateowkver,
the basic ideas of our derivation can be used to develop a sh#iness concept, since it
prevents the persistence length from going to infinity ayVew salt concentration. We
attribute the premature decrease of the simulation pergistlength to the "ionic bridg-

ing" phenomenon which will be introduced in the Section 3.10

39 Lgolyelectrolyte < Lr;eutral ponmer. IS It POSSIbIe’)

In figure 3.19, the DNA persistence length derived by the @&Hrynin and Manning
theories and ours are presented. The parameters giverr éne feal DNA (charge=-1,
bond lengthb=1.7 A). TheL? in each model are defined to obtain the DNA=550 A,
as the consensus persistence length of experimental DNALIMINaCl concentration.
The LY is 500, 540, 74 and 500 A for the OSF, Dobrynin, Manning andtbaory re-
spectively. From the simulation data in Fig. 3.15, at saticemtration 0.25 mM, the
simulationLp (polyelectrolyte) decrease below thg (neutral polymer). The condition
Lgolyelectrolyte < Lrl;eutral polymer ;

is impossible for the OSF and Dobrynin theories and also

our theoretical model because these theoretical calongfollow the basic assumption
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Figure 3.19: Theoretical persistence lendth)(calculated by the OSF, Dobrynin and Manning
theory, and our derivation.

Le=L2+L¢ (Eq. 3.28) with positiveL8. Thel® is the additional persistence length due
to the monomer-monomer repulsion. Tlheequation given by Manning [31] (Eg. 3.19)
is the only calculation which does not follows the expresgig=L3+L¢. The theoreti-
cal Lp given by Manning offers the possibility of a charged polyrteehave persistence
length lower than its uncharged polymer. But a quite distghact from the calcula-
tion derived by Manning is that the persistence length vahreeven be negative at high
salt concentration (Fig. 3.19) despite Manning’s [[318613] statemerithe persistence
length of DNA is many times larger than the persistence lengits uncharged isomer"
This implies that the DNA persistence length cannot be sn#ibn the uncharged DNA.
Due to this contradiction, we may doubt the applicabilitytlodése theories to predith

over the entire range of salt concentrations. In the nexisewe introduce the "ionic

yelectrolyte neutral polymer

bridging" phenomenon, which may lead to the inequal < Lp at
salt concentrations 0.25 mM (Fig. 3.15). Thus we conclu@g piolyelectrolytes with
smaller persistence length than its uncharged polymeossibleif the "ionic bridging"

phenomena exists.
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3.10 lonic Bridging: a New Postulate?

We suggest that the premature persistence length decrease simulations is due to
the unbalanced counterion condensation around the DNAcrfWe use Fig. 3.20 to
illustrate this concept.

Figure 3.20.(a) is the hypothetical condition, where wesetthe counterion distributions
in the regionsx andp to be the same. This is the condition expected by many cklssic
theories in charged systems, where charge distributiomnara central macroion is in-
dependent of the orientation of the macroion. The bendirgheat? (6° + 6°) in Fig.
3.20.(a) gives an example of the polyelectrolyte equilibribending angle in the hypo-
thetical state. We suggest that when the bending monomenstate to the3 region,
the DNA negative charge density in tigeregion (narrow angle) is larger than in the
region. Due to the larger negative charge density; Mms would tend to be attracted
in the B region. The accumulation of Naions in this region increase the bending an-
gle of the DNA segment because of the larger magnitude of BNA" attraction [Fig.
3.20.(b)]. The additional bending angle (e.g. of magnit8den Fig. (b) which comes
from 20° — 12°), will again increase the negative charge density ifthegion side. This
positive feedback mechanism leads to a further DN¥&" attraction in theB region by
attraction of more adjacent DNA monomers which is propatjateng the chain in thg
region (Fig.(b),regiof8). The DNA—-Na" attraction eventually produces a smaller pre-
ferred electrostatic energy. We call the change of the thgiatal (Fig. 3.20.(a)) to the
real state (Fig. 3.20.(b)) as the "ionic bridging"” or "coenmn bridging" effect, because
a large amount of Naions inside the narrow angle of regi@racts as "bridge" between
DNA monomers (from the figure point of view). Normally, thejacentm, mp, and
mg (see Fig. 3.20) are mutually repulsive. The "bridging" iediso refer to the posi-
tioning charged salt ions that ameliorates the repulsinddacies, allowing for an added
curvature withinf region. This ionic bridging effect is balanced by the polyrhend-
ing potential, DNA monomer-monomer repulsion and the systatropy. Figure 3.21
presents two snapshots from our simulations to substarttiatoccurrence of the ionic
bridging effect. The red spheres are the DNA monomers andrtiadl purple spheres

are the Na ions. It is clear that when Naions accumulate at one side of DNA surface,
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Figure 3.20: Figure (a) is the hypothetical condition. F{B) is the real condition. The verti-
cal dashed line is an imaginary boundary dividing the polyervironment at the
equilibrium bending plane.

the DNA bending segments orientate to the side of lacumulation. We denote;A

and A in each figure as the regions where ionic bridging occurs. dvsider the ionic

bridging in the A and A regions as the local in nature because the additional bgndin
occurs amongst the closest monomer neighbors. We dendfeibyboth figures as the
global ionic bridging region because in this region the"Nans can "bridge" the DNA
monomers along larger distances (e.g. amongst the oplydaiteng monomers indicated

by the double arrow line in (a)).

In the following we attempt to include the ionic bridginget in the expression of the

persistence length calculation. For clarity we collect eawlrite some equations

G

n ont1 'BKBTGAjexp(—KnbG)
892/25_ Zi—12j=it1 gs_ﬁ

2 2f02ne_ ka7 ksT 92de
<e > N n <nt1 'BkBTGQj exp(—KknbG) 3.24
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(b)

Figure 3.21: Snapshots from the DNA chain simulations it sahcentration 0.25 mM (a), and
0.30 mM (b). AreaA gives the global ionic bridging, and region And A denote
the local ionic bridging. We run the simulation at 0.30 mM (g¥htook one month)
only to focus on the ionic bridging without sampling becattss would too much

time.
N N1 2lgks T gigj exp(—KNbG)
Bew= B+ Zl . 3.26
i= j_Zi—l Ge?
B+ Beg
Lp= kBTe =L34Lg 3.28

If we just rely on the above equations to determingwherels < L2, we will end up with
negativeL. The negative 8 is impossible because the second term of Eq. 3.26 which
supplies the value fdrg' is always positive fog; = g;.

Recall that the goal is not to have negatiy but to include the ionic bridging effect to
produce "small'Lp. In the following, there are two possible ways for the ionicging

inclusion to provide smalldrp

1. The exponential term in Eq. 3.26 comes from the Debye-Eluyotential theory,
where the monomer charge repulsion reduces due to the stgeaiions. The
Debye-Huckel potential (exponential term) appears frond@®which have high
symmetry (planar, spherical or cylindrical), implying &wotropic screening about

the symmetrical axis. Since the ionic bridging produces-isotropic ionic distri-
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butions between both sides of Fig. 3.20.b, the exponertial in Eq. 3.26 needs
to be modified completely (i.e. by using the Poisson-Boltamaquation). The
exponential term cannot be retained to produce shpddecause it always supplies
a positive value to the second term of Eq. 3.26. The only ptssvay to have
smallerLp in this way is when the screening ions lead to changes in gnpdken-
tial sign of the monomer charge such that the monomer-monoepeilsive force
becomes attractive. Then the second term in Eq. 3.26 becoegasive.

2. For the second possibility, consider the chain confoionah Fig. 3.20.a at a cer-
tain state where the availability of the mobile ions do n&etfthat particular state.
If ionic bridging exists, it implies the ions can change theaia state of Fig. 3.20.a
into another "preferred" state such as shown in Fig. 3.2@eince the chain state of
Fig. 3.20.b has a larger degeneracy than the state in Fi§.a3.Zhen there should

be another factor in Eq. 3.24 to denote the degeneracy doeimbridging, i.e.

N+l Igkg T g exp(—KknbG)

21 o 862/257 XP:1212|+1 -
g2 _ 2Jo G(B)e T T 62d6
o= B0Z/2s 113 ip  BkeTad) exp-KnbG ,
- _Ai=l2j=i417 G
JEG(e)e kT - "

whereG(0) is the degeneracy factor. Thus if ionic bridging existsoitid produce

a smallerLp since theG(0) is relatively large for large®.

To examine the existence of the ionic bridging effect, weldate a short DNA chain in 20
mM salt concentration. The number of monomer equals 21 menmanshort DNA chain
is chosen to provide a much smaller space thus we can focusserang the particles
displacement. We fix the position of the center monomer (fiferdonomer) to minimize
the chain translational movement so that we can focus ontthim dending conforma-
tion. Figure 3.22 gives the snapshot of the short DNA chamia@mnation at different time
intervals. The snapshots were taken randomly from thegbaitrajectory. We used a
small time-step (2 x 10~° in reduced unit) to minimize the amplitude of the displace-
ment of mobile ions. Even with such small time step, we olesénat the fluctuation of
the ions in space is still quite large (i.e. the variance efitin concentration at a specified
site is very high during the sampling over time). This is alga@ve statement and a

whole new quantitative theory must be constructed to veh&/ simulation data. From
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Figure 3.22: A short DNA chain conformation in different grimtervals. The number of monomer
equals 21. NaCl salt concentration is 20 mM. This simulati@s run to examine
the availability of ionic bridging effect in different timietervals. The Na and CI-
particles are modeled by the purple and brown spheres rasggc
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Fig. 3.22, the accumulation of the Naarticles (purple spheres) at the narrow angle is
more pronounced at the beginning of simulation (time irdbrv0— 1000). It is shown
that when the chain is in bent conformation, many Nians positioned themselves within
the narrow angle. This Niapositioning supports the proposal of ionic bridging effekt
larger time interval £ 3922— 6064) where the system has reached equilibrium, there is
only one bending site in the chain line. More linked mononvegse present in straight
conformation due to the strong monomer-monomer repulsiehlarge chain stiffness.
In larger time intervals, the indication of the ionic bridgieffect is not clearly visible.
We attribute the low indication at large time interval to themimum bent conformation
and the large fluctuation of mobile ions in space. We suggestthe fluctuation of ions

in the narrow chain angle occurs because of the balance wf ividging and Na ions
repulsion. To precisely determine the existence of ionidding, one possible method is
measuring the local density around a charged polymer. Thasorement is not included
in this work because separate research with specially megigimulation and algorithms
are needed to pursue this topic.

As far as is known, this "ionic bridging" phenomenon is nesecounted for in calculat-
ing the DNA persistence length. We conclude that studiek@hutual effects of chain
orientations and ionic distributions are essential foedatning the topological properties

of polyelectrolytes.
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Chapter 4

IONIC DISTRIBUTION IN A DNA
SYSTEM

4.1 Theoretical Review of lonic Distribution

The radial distribution function (symbolizeydr)) describes how the density of surround-
ing matter varies with the distance function. It also desadke probability of finding a
particle at a distancefrom a central particle. Consider a spherical shell witreinadius
r and outer radius + or. If we specifyr as the distance from any point within the shell

with thicknessr, we can expresg(r) as:

Nreal

g(r) =

Nbulk

wherene is the total number of particle betweemandr + or, andny is the number of
particles if the density of the system is homogeneous evesysy

At infinitely low density, where the effect of the third pa&i® to a pair interaction can be
neglected, the radial distribution function (RDF) betweentral particleM and diffused
particle type can be determined by a Boltzmann-like distribution [44]:

g(r) = C'C_'IV' — em(%ﬁm) (4.1)



wherecjy is the concentration of the iamat a distanc&,, (from the surface of particle
M to the center of particl@), ¢; is bulk the concentration of ion z is the valence of
ion i, andy(Rim) is the potential "felt" by particlé at positionR from the surface of
particleM. In this thesis, the central partic will be used to denote a macroion or
DNA monomer, while the term particiewill point to any of the ionic species Na Cl~

or Nucleosome Core Particle (NCP). The Debye-Huckel appration (DHA) can be
used to calculate the value ¢f Ry ), where it is an approximate solution of the Poisson-

Boltzmann equation [45].

Debye-Huckel Approximation

Debye-Huckel approximation (DHA) is derived from the PoissBoltzmann equation

with the assumption the system is low in potential\ﬁ?w < 1. In aunivalent elec-

trolyte system, DHA obtains at potentii R ) < 25.7 mV. The potential at a distance

Rwm from a central iorM (DNA monomer) surface is obtained from DHA [46] as:

rM .
W(Rm) = U—'MmeXF’(—KRlM>a (4.2)
where
Owm v
bv = 1+ Kry (4.3)
10002N
= (T‘I’A Zz‘-zci> ; (4.4)

WYwm is the surface potential of the DNA monomer with radiysk is the inverse Debye
length,¢ is the dielectric of the mediunkg is the Boltzmann constarg|s the elementary
proton charge 1.60210 1° C, T is temperature ani, is the Avogadro number.

The distancér, and surface charge density is defined by:

RiM = v —I'm (4.5)
Zve

GM - W’ (46)
M
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wherer,, is the distance of the center of the iicinom the center of DNA monomer arxj
is the DNA monomer charge. Some extensions of DHA has begopedl, for example
the Far-Field Approximation (FFA). According to Sader [4fhe FFA has a wider range

of applicability than DHA.

4.2 Clarifying the Ambiguity of the Screening Parameter
K

In some references, we find that the ionic strength parameteq. 4.4) for calculating
any electrostatic properties varies in term of ions invdlirethe screening effect. . The
parametek itself characterizes the magnitude of ionic screening endyistem because
its value is the inverse of the Debye screening length. Mdaset al. [46] mentioned
that we only need to use tlzeandc; from salt particles, while Schmitz [48] mentioned
there are conditions where we should include the countemmaimacroion as well. Thus
the specification regarding which ions should be includegdkiermining thex parameter
is still unclear.

In this section, we examine this ambiguity. We will be ableotdain an unambiguous
K in analysis which will be used to compute potentials thraugtthis chapter. We sim-
ulate free macroions having the same dimension and prepaa the DNA monomer.
We will call these macroions as particle-like DNA monomekt[iNA). These monomer
macroions, with the concentration equal to the number ofonars in the DNA chain,
which itself has a definite concentration in our simulatiare freely dispersed in salt
solution. Then the radial distribution function of PLDNAtained from simulation will
be compared to the RDF calculated theoretically by PB theahdthere are three types
of k used in RDF calculation from the model that utilizes the DHWconjunction with
Eq. 4.1, and this concept will be referred to as PB hereafi¢re first uses only salt
ions with chargez, and counteriort; (Ksa) as the only independent particle variables
(Ksat = Ksan(Gi, z,Q)) whereQ are the other thermodynamical variables. The second is a
function of salt and counterion charge and concentra#@xk {ounterioy @nd the third is a

function of DNA, salt and counterion charge and concertdra,.ion). The RDF calcu-
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lation results that most agree with the simulation resultsbg taken as the calculation

having the propex.

In Fig. 4.1 and 4.2, the simulation RDF of two different PLDNANncentrations are

0.005 mg/ml Particle-like DNA; 0.25mM NacCl

) Simulation Na-DNA ——
1 Ksalt (PB)
Ksalt-counterion

. _KaII—ion
Simulation CI-DNA
Ksalt (PB)
(PB) e

Ksalt-counterion
Kall-ion

50 100
Particle Like DNA-ion distance (r;,) (A)
(a)

Figure 4.1: PLDNA-Na" and PLDNA-CI~ RDF obtained from simulation and PB model cal-
culation. The PB model is calculated for three kinds of i@tdoeening parameteks

PLDNA concentration 0.005 mg/ml and salt concentratiorb G

2.0 mg/ml Particle-like DNA; 0.25mM NacCl

Simulation Na—-DNA ——
Ksalt (PB)
£ Ksalt-counterion
K Kall-ion
Simulation CI-DNA
Ksalt (PB)
Ksalt-counterion e
Kall-ion

50 100

Particle Like DNA-ion distance (r;,,) (A)
(b)

Figure 4.2: PLDNA-Na" and PLDNA-CI~ RDF obtained from simulation and PB model cal-
culation. The PB model is calculated for three kinds of i@dpeening parameteks
PLDNA concentration 2.0 mg/ml and salt concentration 0.28.Mhe only system

difference from Fig. 4.1 is the PLDNA concentration

compared with the RDF results from PB calculations [46]. ADRA concentration
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0.005 mg/ml, all three calculations with differexitmatch the simulation result and are
indistinguishable. At particle-like DNA concentratiorD2ng/ml, the RDF calculations
are distinguishable but there is no match with the simutetgsults. Recall that the DHA
IS an approximation for low potentials, not for low macroiconcentration. Thus the
simulation-PB disagreement at DNA concentration 2.0 mgéngpt due to the DHA. It
implies that the simulation-calculation RDF disagreenoacurs because the Boltzmann-
like expression (Eq.4.1) is inapplicable at DNA concemra2.0 mg/ml (or higher). The
assumption in Boltzmann-like equation (Eq.4.1) is thatititeraction and distance be-
tween two particles is random and independent of the intierawith other particles. At
higher DNA concentration, the PLDNANa" attraction will be reduced due to strong
attractive interaction between the Nan and other close PLDNA ion. At very low DNA
concentrations, the Boltzmann-like equation is appliedi#cause the distance between
PLDNA in the system are far apart. Thus the effect of the tRiA particle in the
DNA—Na' interaction is negligible.

To overcome the RDF disagreement at high concentration &, apply the Ornstein-
Zernike (O2Z) relationship instead of the Boltzmann-likgpession, where the effect of
the third particle is accounted for in any pair interactiéior details of the OZ method,
refer to the following references for example [48-51]. Thé ®@lationship is expressed

by the calculation that can also be iteratively utilized:
s
hij(r)=cij(r)+ > pk/cik(r —r")h(r")dr’ 4.7)
K=1
with

hij (r) = gij(r)—1 (4.8)
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whereh;; (r) is defined as théotal correlation functioncij(r) is thedirect correlation
functionandpy is the density of particle typke. We can obtain anothés; — ¢;j relation-
ship by using the Hypernetted-Chain Approximation (HNCJ) &ercus-Yevick Approx-
imation (PYA). The HNC and PYA expressions are:

ciNC(r) = —BVij (r) + hij (r) — Infhij (r) + 1] (4.9)

cij A (r) = (1—expBvij(r)]) (hij(r) +1). (4.10)

In order to use the OZ equation, the initial valuehyf(r) is guessed. Then the;(r)
counterpart is calculated by either PYA or HNC. The initiglr) andc;j(r) values are
used as the input for the OZ equation to produce a hg) in Eq. 4.7. This pro-
cess is iterated until the value bfj(r) andci;(r) converge. For our system consisting
of three different kind of particles, we need to calculateencorrelations, DNA-DNA,
DNA—Nat, Nat —DNA, DNA—CI—, CI-—DNA, Nat—Na", Na"—CI~, CI-—Na and
ClI——CI~. The integration in the OZ equation is in 3-dimensional spaonsequently
this calculation is highly time consuming. To reduce the tme, we have to parallelize
the C++ code that was specifically written for this purposes. ai illustration, for one
run using 8 processors, we need 3-5 days for the iteratioarteerge, with speeds about
6-7 times faster compared to serial run [52-56]. Applying @Z computation is not
straightforward. We need to make a reasonable guess sudtutivag the interaction the
fluctuation in the intermediate steps do not become too lsoges to cause divergences.
Fig. 4.3 shows the results for HNC and PYA. These graphs shaithe RDF calculation
USINgKsait-counterion@l € iN close to the simulation. The above calculation istkahito the
effect of the third particle. More accurate calculations ba performed if we apply the
OZ equation at higher orders, i.e. count the effect of tHedS, - - -, n particles simulta-
neously. Since the closest RDF is found when wekis€counterion W€ Will use thisk for
the rest of our calculations. From our observation in penfag the OZ equation, some
tempting questions appear. Such as (i) is the equation foulesingk is system specific?
and (ii) are the screening effects encountered by eactclgatype in a system different?.
In Fig. 4.3 we can notice an anomaly at one of the graph fromPth& calculation,

specifically at the screening parametezqualsksy;. For that anomalous graph, we infer
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Figure 4.3: PLDNA-Na" RDF obtained from simulation, HNC and PYA. The HNC and PYA
calculation are done for three kinds of ionic screening imatark.

that the iteration of the PYA calculation did not convergetie numerical iteration, we
observe that all HNC and PYA calculations will experiencéasrcillating phase" before
finally converging to a certain smooth graph without sigaificchanges in further iter-
ations. We have attempted methods to break the anomaly igréph in Fig. 4.3 (i.e.

by using different grid widths or different initial conditn), but the result still persists. It

could reflect the limits of applicability on the PYA applieat because the other graphs

depict the expected forms.
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4.3 Coordination number in various salt concentration

The first variable we wish to measure is the coordination remobions about any DNA
monomer. We concentrate on the Nans here, since Clis repulsive and there are
only 12 NCP particles. As the DNA monomer has a nett chard®, Na" ions will
accumulate at the DNA surface. The expression to calcuiatérst coordination number

[57]is:

Is
Mona = 4T, /0 Gonana(F)r2 I . (4.11)

wheregouna(r) is the RDF of DNA-Na* pair interaction,p?, is the Na bulk density
andrs is the position of the first valley @oyana(r)-

Table 41 and 42 gives the coordination number of Naons at DNA concentration

Salt Concentration (mM) ni2, Salt Concentration (mM) ng2,
0.0 13.87 0.0 15.67
0.001 14.00 0.01 15.82
0.0025 14.22 0.1 15.57
0.005 13.67 1.0 15.86
0.0075 13.62 2.5 16.34
0.01 13.49 7.5 16.69
0.025 12.75 10.0 16.96
0.075 12.96 25.0 18.25
0.1 13.41 50.0 19.11
0.15 12.58 75.0 20.33
0.25 14.45 100.0 21.66

Table 4.1: Coordination number of Naions Table 4.2: Coordination number of Naions

about DNA. DNA concentration 0.005 about DNA. DNA concentration 2.0
mg/ml. First valley distance of mg/ml.  First valley distance of
DNA—Na RDF=26.6420 A DNA—Na RDF=26.4739 A

0.005 mg/ml and 2.0 mg/ml respectively. At DNA concentratio005 mg/ml, where the
salt concentration varies betweer@®@25 mM, we do not observe a trend in coordination
number. We surmise that at DNA concentration 0.005 mg/nel Jélck of a trend is be-

cause the salt concentration range is too narrow.
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At DNA concentration 2.0 mg/ml, the coordination numberakatively constant at low
salt concentration. At a certain threshotdlOmM NacCl at this study), the coordination
number increases as the salt amount increases. This stdatsapports the previous ar-
gument when the DNA concentration was 0.005 mg/ml, wheredtoedination number
does not change at low salt concentration. We attributenttrease of coordination num-
ber at high salt concentration to the higher possibility df-Na* contact, leading to a

greater propensity for DNANat binding.

4.4 Determining the Electrostatic Free Energy of DNA-NCP
interactions

Currently models are required to estimate the DN@n interactions. We review here
the rather primitive first attempts where an extended cyioad shell (representing the
environmental charge) interacts with an extended rod ésaprting the negatively charged

DNA polymer chain) inside the cylindrical shell.

Figure 4.4: The cylinder model of the charged system. Theriglinder is an infinite charged
rod with charge spacinf. R. is the cylinder radius defined by the charged rod con-
centration.Vsjice is a cylinder volume that is perpendicular to the rod wittghéb and
radiusRe.
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4.4.1 The Poisson-Boltzmann Cylindrical Cell Model (PBCCM

Changes to the electrostatic energy and entropy occurs tieeDNA polyelectrolyte
is introduced into the salt system. The original expressiaiie additional electrostatic

energyEe per unit charged group is (i.e see [58-60]) :

Re
Ea/keT = 5 &5 [ 2m 3 (zapa(r)) 0(r)d, (4.12)

where thep, = el /KT is the reduced electrostatic surface potengia) = e(Rim ) /KT

is the reduced electrostatic potential wite Ry +ry, & =g /b is the line charge density
of the polyelectrolyte, ang@qy(r) is the charge density af-species at a distaneefrom
the DNA polyelectrolyte surface which is given @g(r) = Gonaa(r) - P2. TheGonaa(r) is
the RDF of speciea relative to the DNA ions and] is the bulk charge density of species
a. According to Korolev et al. [58]R. is the radius of the cylindrical cell defined by the
DNA concentration (Fig. 4.4)%o, = &/4mMgNAR2.

We note that the right the right hand side of Eq. 4.12 has déearlengthr! which is
dimensionally inconsistent. Nevertheless, equation 4&®still be used if interpreted
according to that which follows. We require the value of thec®ostatic energy per unit
bond length. In order to obtain the reduced endtgyks T, we have to exclude the term

lengtht in the calculation. A clearer expression for Eq. 4.12 is:

. 1 1 rRe
{Eai/ks T} /(unitlength = {E(p,v,Jré/r Zme(ZGpa(r))(p(r)dr /b, (4.13)

where we calculate the value inside the square bracket of4EL as the electrostatic
energy between, andR..
The electrostatic entropy contribution due to the mixing eedistribution of ions around

a polyelectrolyte is dimensionally inconsistent given 58,[60]:

Sel/kB:—/RC

'm

21y pa(r)In {p;g)] dr, (4.14)

where the explanation about the usage and unit of electiostaropy is analogous to the

previous electrostatic energy equation. Korolev et al.] [&& calculated the electrostatic
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contribution in the formation of DNANCP complex. At their work, they used PBCCM
calculation to determine the density profile (RDF) of the Did# pair interaction.

Since RDF from simulatiopq(r) is known, we check whether the equations given by
Stigter Dirk [60] and Korolev et al. [58] is applicable to osystem. We perform two
simulations, the first involves the DNA polymer and the secowvolves particle-like
DNA monomers (PLDNA), both of which exist within an ionic neil. Except for the
shape of the DNA macroion, both types of simulations are gotetl under the same
physical and ionic conditions.

In Fig. 4.5, the DNA-Na" and DNA—-CI~ RDF from the pair PB-model, simulation of
DNA and simulation of PLDNA are compared. Fig. 4.5 shows thatPB model RDF

2.0 mg/ml DNA; 10 mM NacCl 2.0 mg/ml DNA; 10.0 mM NaCl ; 12 NCPs
T T T T T T
PB DNA-Na® PB DNA-Na"
Sim. PLDNA-Na* E Sim. PLDNA-Na* E
Sim. DNA-Na* =+ Sim. DNA-Na"* == ]
PB DNA-CI™ - PB DNA-CI™ =
Sim.PLDNA-CI™ Sim.PLDNA-CI™
Sim. DNA-CI” - === | ] Sim. DNA-CI” -~~~ | 3
S
1 1 1 1 1 1
100 200 300 400 100 200 300 400
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Figure 4.5: DNA-Na" and PLDNA-Na" RDF simulation compared to PB calculation. Simu-
lation are done without (a) and with NCP (b)

is only comparable to the RDF of the Particle-Like DNA (PLDN&mulation. The PB

model cannot explain the fluctuation of the DNAla* RDF which occurs in the poly-
electrolyte DNA simulation. The fluctuation of DNANa™ RDF is uniform within the

range 17.5-20 A. We infer that these uniform fluctuationsuociue to the Na accumu-

lation at DNA monomer neighbors because the DNPNA monomer distance is 20.4 A.
Fluctuation distances which are smaller than the DNA bondtle are attributed to the
effect of DNA bending.

Stigter Dirk [60] and Korolev et al. [58] obtained the poteis (@, @(r)) for Eq. 4.12

with the PBCCM and they used the Boltzmann-like integral, £4, to derive the particle

density profile. Since the RDF obtained from Eq. 4.1 does cmtant for the availability
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of the third particle, we believe that those authors acyuatily calculated the potential
and particle density that obtains for regions that are petipelar to the axis of the DNA
rod, such as the region with\fie (see figure 4.4), with no lateral interactions other than
the perpendicular plane. Hence they did not account for titenpial and density at the
upper and lower position of the monomer. Thus, unless oerpnétation of the papers
of [60] and [58] is wrong, they principally divided an infieitrod cylindrical rod into

a stack of many small cylinders with the height of the cylirsdequal to the monomer
bond length. By calculating the electrostatic energy artdogel in a small cylinder in-
dividually and neglecting the electrostatic contributadrihe neighboring cylinders, they
obtained the electrostatic contribution per monomer ah&og per bond length). Hence
equation 4.12 and 4.14 do not account the electrostaticibations of cylinder neigh-
bors, whereas the RDF profile of our simulation is the redudilanteractions, including
of course the lateral ones. This statement is supporteddoR D result from simulation
involving PLDNA where the derived PB RDF used by [60] agreethe RDF of PLDNA,
where the DNA-DNA distance effect on the DNANa" interaction is negligible

This conclusion casts doubts as to, whether our RDF sinomaé&sult can be accounted
for by the Egs. 4.12 and 4.14. One method that can be used rtelater our polymer
RDF with that of equation (4.12 and 4.14) is to take the RDIa éf@m our polymer DNA
simulation until the first valley, which is the first layer oNA —Na* interaction. There-
after, we use the RDF data of either PB or PLDNA simulatioredbother distances. This
method avoids counting Naion aggregation at DNA monomer neighbors, but there is a
discontinuity in the DNA-Na" RDF profile because of matching the two different RDF
data. This RDF discontinuity resembles the counterion easdtion theory suggested
by Manning [63] (quoted from [60]). In counterion condemsattheory the RDF dis-
continuity occurs due to the difference in calculating tioéeptial inside and outside the
‘condensation’ volume.

The other method that might be employed to rationalized ttpe@mentally derived
RDF’s is to modify the Eqs. 4.12 and 4.14, where instead afutating the electro-
static contribution per unit charge, both equations areifisatto calculate the change of

the electrostatic contribution to the thermodynamics (PHA strand). In our modifica-
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tion we allow each DNA monomer to interact with the Nimns that are associated with
neighboring monomers units. These "neighbors" extenddavtiole DNA chain.

In the following, we discuss modification of Eq. 4.12 and 4.The first term in Eq.
4.12 is the surface potential of the monomer. Because thyeleakrolyte model contains
same monomer charge and dimension, the total surface @btsnihe summation oN
monomers. The parametér=lg/b in Eq. 4.12 has to be changed to becdgNb to
denote the unit over the polyelectrolyte length. The sed¢end is the electrostatic energy
due to the interaction with-type ions.

Summing up the electrostatic energy of each monomype particles, we have:

{Eq/ks T}/ (unitlength = N2:IL IlIBb +Zl / 2TI]’Z ZaP20h (r)) @(r)dr, (4.15)

wherepq (r) = pddi, (r). Theg, (r) is the RDF of thex type particle to the monomer with
indexi. The radial distribution function obtained from simulatics the average RDF

of the RDF due to each of the monomers. Thy§) = % Expanding Eq. 4.13

yields:
Eo/keT N 1 N 1 Re |
ngm%ﬂ;é[[hﬂ 21 210703 (1) @(r)dr .
+/rRC2WZZP(2)9iz(f><P(r)dr+---]
2Nb 3 [/ 2W21pl<zlgl )‘P(r r 4.17
Re N (4.17)
+/rM 21225 (Ziglz(r)> (P(r)dr_|_...]
2Nb ‘[/ 21w 2PN g1 (r)(r)dr (4.18)
+/RC2W22pgNgz(r>(p(r)dr+_‘_]
2Nb 2/ 21w (qupaga ) dr . (4.19)
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In order to get the reduced electrostatic eneiy/KkT) per unit polyelectrolyte length,
we need to include the tHéb contour length factor in the denominator.
Thus we arrive at the final expression for the modified elstatec energy in a cylindrical

cell:

{Ee/keT} _P N’b [Re

(unitlength — | 2 2 )y 2w (ZZapgga(r)) (p(r)dr} /Nb. (4.20)

To modify the electrostatic entropy, we begin summing upelleetrostatic entropy for all
monomers along the chain:

N Re ‘ ‘
% =3 [— / ) 2mzng;<r>lng;<r>} dr (4.21)

Re N
-, 2wy <_;g;<r>lng;<r>) dr. .22)

wherepq(r) = g4(r) pS. The summation in Eq. 4.22 contains a natural logarithmgtvhi
is difficult to solve. Thus we make an assumption that the RORdvidual monomers is
the same over the chain. This approximation is reasonabke ¥ery long chain because
we can neglect the end effects. In our model which simulatesyalong chain containing

360 monomers with contour length 7344 A, this approximaisarasonable. Thus:

Re
% N _/rM 210N 5 (PaGa(r)INGa(r))dr . (4.23)

As with the electrostatic energy, we need to include theauariengthNbin the denomi-

nator to get the entropy terrt & /ks T) per chain length:

el — |- [ “2mNy (o0 (ning.(r)dr | /Nb. (4.24)

In Eqg. 4.20 and 4.24, only the formula inside the square latgokill be used in calcula-
tions since we are interested in total energies.

The(r) electrostatic potential is obtained by solving the for PBagtpn for a cylindrical
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cell [60]:

= k?sinh(zg) , (4.25)

d*(zg)  1d(zg)
dr2 " r dr
where@= el /ksT is the reduced electrostatic potential.

This differential equation and others [Korolev et al. [5Bly. (10)] must be solved it-
eratively. In order to calculate the entropy, energy ane &aergies for our modified
equations, we need to numerically comp@eand@(r). This is a separated and dilated
study in differential equations which will not be presenteste. On the other hand, in
order to illustrate computational ease of our equationsskadl use the Debye-Huckel
potential which is known in closed form as a function dis&from the central ion. Thus
instead of using a cylindrical cell, we consider the sptamell as more appropriate for
our present work. Another reason is that the computationf R simulations is based
on the density within a spherical volume, which makes they@aBuckel and any spheri-
cally symmetrical potential convenient. In the future, anparisonal study of cylindrical
and spherical cell would be conducted, where Eq. 4.25 woelgidived to allow for the

intended calculations.

4.4.2 Modification of the Cylindrical to the Spherical Cell

In order to change the electrostatic contribution equagil@ment from the cylindrical

cell to spherical cell, we need to change the integratiomfawver the volume of the

annulus, 2rdrL, to that over the shell volume#?dr. Consequently, we will change the
electrostatic energy and energy unit from the reduced graard entropy per unit length
(in a cylindrical cell) to become reduced energy and entri@pya spherical cell). This

Is because in the spherical cell model we measure the t@&etrestatic changes in the
spherical cell volume.

The formula of the electrostatic energy and entropy of pelsteolyte-ion a system in
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spherical cell are:

N N /R 2 0
Ee/keT = v + —/ 4 () 2apgGa(r) | @(r)dr (4.26)
2 2 Jry .
Rn
Su/ks = _/ 41N’y p3ga(r) INga(r)dr . (4.27)
'™Mm o
Then we will get the Helmholtz electrostatic free energy With the expression:
Fa=Ea—TS&. (4.28)

In our work, we change the limits for integration of electati& energy and entropy.
Instead of modelling the limit due to the distance radiBg of a cylinder or a sphere,
where the volume of the cylinder or sphere is defined by the d¥Acentration, we
limit the integration limitR, as the distance obtained after we normalize the RDF. The

normalization follows the expression:
AL
N :/ ATr g, (r)pdr , (4.29)
0

whereng is the total number of particles.

Csat (MM) | Ee/ (ks T) | TSy/(keT) | Fei/(keT) | DNA—Na" Coord. Numberr}2,
0.0 -72265.7 | -15036.7 | -57228.9 9.37
0.001 -69534.7 | -14980.1 | -54554.6 9.62
0.0025 | -72861.1| -15468 -57393.1 9.87
0.005 -69718.7 | -15495.5 | -54223.1 9.89
0.01 -68420.5| -16271.3 | -52149.1 9.96
0.025 -56314.2| -14695.9 | -41618.4 10.75
0.05 -38843.0| -12918.2 | -25924.8 11.86
0.075 -33044.9| -12357.2 | -20687.7 12.35
0.15 -7301.54| -9519.26 | 2217.71 15.24
0.25 -5690.49| -9348.75 | 3658.26 1541

Table 4.3: Electrostatic profile (Spherical Cell) of DNAICP interaction and DNANa" coor-

dination number. DNA concentration 0.005 mg/mi




Csat (MM) | Eei/(keT) | TSu/(keT) | Fe/(keT) | DNA—Na* Coord. Numberigs;,
0.0 -23608.1| -2559.41 | -21048.7 8.86
0.01 | -27293.0| -2335.91 | -24957.1 9.04
0.1 -25589.8 | -1677.85 | -23912 8.89
1.0 -20212.3| -669.775 | -19542.5 10.27
2.5 -13256.8| 15.1975 | -13272 11.85
7.5 -5963.7 | 967.279 | -6930.98 14.28
10.0 | -6927.31| 358.699 | -7286.01 13.58
25.0 | -2020.57| 1292.37 | -3312.94 16.72
50.0 | -1280.49| 1341.04 | -2621.53 18.15
75.0 | -870.718| 1570.49 | -2441.2 20.58
100.0 | -757.847| 1728.26 | -2486.11 21.60

Table 4.4: Electrostatic profile (Spherical Cell) of DNAICP interaction and DNANa" coor-
dination number. DNA concentration 2.0 mg/ml

Table 4.3 and 4.4 give the numerical result of the electtiestaergy, entropy and free en-
ergy of DNA—NCP interaction at DNA concentration 0.005 mg/ml and 2.0migThose
tables also includes the DNA coordination number of Nian to DNA. We graph these
tables in Fig 4.6(a,b). The results for both DNA concentragishow that the electrostatic
energy of DNA-NCP interaction increases with the addition of salt. It cades that
the coulomb attractive potential between DNA and NCP wesleanthe salt amount in-
creases. We attribute the weakening of the DNWCP attraction to the stronger screening
effect from salt ions. Table 4.3 and 4.4 show that as the saduat increases, the DNA
coordination number to Naalso increases. Thus besides the screening effect from dif-
fused ions, the addition of Nainto the solution will compete with the NCP binding to
the DNA negatively charged surface. This™NaNCP competition also plays a role in

weakening the DNA-NCP interaction.

From the entropy point of view, addition of salt will slightincrease the electrostatic
entropy of DNA-NCP interaction. The entropy escalation implies that thé°NdGsition
will be more spread out in the system rather than being bottiteaDNA surface. The

entropy increase indicates a smaller measure of BNEP wrapping
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Figure 4.6: Electrostatic profile of DNANCP interaction. The unit dEg, TS andFg is inkgT

In this study the DNA-NCP electrostatic free energy reflects the DNRCP interactions
at equilibrium. The availability of other salt particlesthre solution is responsible for the
interaction parameters (condition) for the DNA and NCP ipks. Lower free energies
indicate the preferred state of DNANCP interaction. From the graphs in Fig. 4.6, the
electrostatic energy contribution is more significant @eintropy contribution of the free
energy. Thus electrostatic energy between DNA and NCP hagaimportant role than
entropy in determining the nature of DNANCP interaction.

The comparison of Naion coordination number to the DNA in simulations with and

0.005 mg/ml DNA 2.0 mg/ml DNA
T T T T T T
16 - NoNCP ¥ 122 NoNCP ¥ 1
With NCP || l,/l With NCP ||
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Figure 4.7: Coordination number of Naons about DNA in simulation with NCP and without
NCP available in the system. The error estimation for eadhtpcs + 0.5
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without NCP is depicted in Fig. 4.7. From simulations, itasihd that the NCP tends to
bind to the DNA polyelectrolyte at low salt concentratioriglfe 4.7 substantiates this
observation in that at low salt concentrations, a smalleswarhof Na" is bound at the
DNA surface. The large positive charge of NCP will repel thee from the DNA surface.
Recall that at low concentration the Debye screening lerggtlery large leading to al-
most pure Coulombic repulsion between NCP and Nat higher salt concentrations, the
stronger screening effect weakens the DNWCP interaction and at a certain concentra-
tion, Na~ wins the competition in cationDNA binding. Thus at high salt concentrations,
the NCP concentration will not affect DNANa" interaction.

For a comparison to another study pertaining the DNA-NCHaromation, we present

sice

:

side

0 nm-1 0.08 nm-"1

top
bottom

side

ﬁ side

0.13 nm-1 0.14 nm-1 0.418 nm-1 10.6 nm-1

g bottom

C) romemewe

Figure 4.8: Original figure from [62]. DNA-NCP configuratiaitained by minimizing the free
energy (Eq. 4.30) for a fixed NCP charge= 40 at increasing salt concentrations.
Bars in the lower right are the respective screening leng#)sNo added salk(= 0).
(b) Salt concentration 0.6 mMk(= 0.08nm ) and 1.6 mM k = 0.13nm ). (e)
Salt concentration 16.6 mMk(= 0.418& ). (f) Salt concentration 10.6 Mk(=
10.6nn1)

an interesting result of the numerical simulation done B].[6Kunze and Netz [62]
determined the equilibrium state of the DNA-NCP complex icalating the minimum

free energy of the DNA-NCP complex. In their work, the freemy expression for a
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fixed DNA-NCP configuration is

F Lp/L o l.Zt (L, e k(r(s)|—R)
— =— [ dsi“(s) — ds
keT 2 Jo ®) 1+kRJo Ir(s)|

e KIr(9)—r(S)|

L L
2
e /0 ols/S O @] (4.30)

where they utilized_» = 300A as the bare DNA persistence lengt(s) is a vector de-
scribing the DNA configuratiort, = 2/3.4 A is the linear DNA charge density,= 500 A
is the DNA polymer lengthZ = 40 is the NCP charge aril= 50A is the NCP radius.
The salt concentration is included in the Debye-Huckel matark. Since there is no
entropic term given in Eg. 4.30, we consider that Eq. 4.30asenappropriate to repre-
sent the energy of the DNA-NCP conformation instead of i fenergy. But we keep
the free energy notation from the source article. The srapsit equilibrium DNA-NCP
complex from minimizing Eq. 4.30 in different salt concexttons are shown in Fig. 4.8.
The minimization seems to refer to defined order parameterarfy one chosen confor-
mation.

From Fig. 4.8, there are partial dewrapping of the DNA-NCRiptex at zero and low
salt concentration which is not observed in our simulatiumze and Netz [62] attribute
the DNA-NCP unwrapping at zero and low salt concentratiothéostrong Coulomb re-
pulsion between DNA beads. In contrast, in our simulati@@NA-NCP coiling is more
pronounced at low salt. The NCP charge which is explaine®B}ih Fig 4.8 isZ = +40
whilst we useZ = +150. This could be one factor why in [62] the net DNA-DNA re-
pulsive force is larger than the net DNA-NCP coiling forcel@aw salt concentration.

However further exploration is needed to justify this ie&ting phenomenon.

4.5 Snapshots

Fig. 4.9 and 4.10 give some snapshots of DNA and NCP in simualatin Fig. 4.9,
the DNA concentration is 0.005 mg/ml, and in Fig 4.10 it is &1§/ml. The NCP is
represented as green spheres. For clarity, the salt iorelsrag excluded. These snap-
shots support the electrostatic free energy data. As ampictboth figures, when the salt

concentration increases, the NCPs will tend to be freed fteerDNA wrapping due to
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greater screening effect and Naompetition. From the free energy data (Table 4.3 and
4.4), it is clear that the most wrapped NEBNA structure corresponds to that with the
lowest free energies, which correspond also to low salteoinations.

It is evident that salt concentration at which the DNA ungdibm the NCP is a func-

DNA 0.005 mg/ml

o o
.

0.075 mM 0.1 mM ©0.25 mM

Figure 4.9: Snapshots of DNANCP particles at different salt concentrations. DNA comi@en
tion 0.005 mg/ml.

tion of DNA—NCP concentration. At 0.005 mg/ml, the DNACP unwrapping starts at
salt concentration-0.075 mM. While at DNA concentration 2.0 mg/ml, DNACP un-
wrapping starts at salt concentratierd0 mM. Thus choosing the appropriate DNA and
NCP concentration for studying the DNANCP coiling mechanism for variable salt con-
centration is critical in order to determine any type of ghdsgagram and the associated
properties of the phases. Fig. 4.11 gives some snapshdis BNA-NCP conformations
at different time intervals (reduced unit). After some tjrtiee energy and the DNA-NCP

conformation in the system are about fixed indicating théesgss in equilibrium.
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Chapter 5

Conclusion

The extent and intensity of the simulation studies was damable since relatively lit-
tle known of the conformational dynamics of the DNAICP complex in the presence
of salt. Hence many unknown variables presented themsatvb® outset of the work
and we had to survey a very broad terrain of simulation caomtit The above learning
experiences allow us to choose the appropriate conditmwerify both qualitatively and

quantitatively the following relative to our model.

1. Increasing the salt concentration increases the DNAWikyiindicated by the de-

crease of the DNA persistence length

2. Our equation for calculating the persistence length gfsaiff polyelectrolyte pre-
serves the persistence length as relatively constant gptle@rsalt concentrations
whereas in other theories, this length tends to infinity Wwidoes not accord with

reality

3. Our "ionic bridging effect" allows for the possibilitydaha charged polyelectrolyte

has a smaller persistence length than the uncharged polymer

4. The ionic bridging effect plays an equally important roleeducing the DNA per-

sistence length as the ionic screening effect

5. Molecular simulations are able to directly demonstrate éxistence of the ionic

bridging phenomenon



6. The persistence length of a stiff neutral chain from WLEadtty calculation only

holds up to a certain value of the chain bending modulus

7. Theionsincluded for calculating the ionic screeningpagtek are the free mobile

ions (salt and counterion) and the macroionic contribiare negligible

8. The original Poisson-Boltzmann cylinder cell model aareccount for the coun-

terion condensation at the DNA monomer neighbors

9. Increasing the NaCl concentration increases the coatidimnumber of Na about

the DNA chain
10. Increasing the salt concentration weakens the tenden®NA—-NCP wrapping

11. The electrostatic energy term gives a more significamtridmtion than the entropic
term to the electrostatic free energy change due to the #tiotuin the DNA-NCP

wrapping.

It is evident from the list above that this piece of researab bpened up at least 11 re-
search direction of topics in critical areas of biophysespolyelectrolyte research. The
investigation of any of the above topics would undoubtedbd to even greater elucida-

tions connecting atomistic interactions with macroscopanifestations.
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Appendix A

Reduced units

Reduced units are obtained by converting some constanévatua preferred constant
(e.g. 1.00) or associating some constant values to othexbkas. Following the conven-

tion, any variables in reduced unit will be appended by theymbol.

A.1 Length (L)

The unit of length in our simulation is the Bjerrum length)(defined as the distance

where the coulomb energy equals to the thermal enles@y Then

2

= A.l
ATEQE KT (A1)

le

wheree = 1.602176x 10 19C, g9 = 8.854187817% 10 12C2J Im~1is the vacuum per-
mittivity, €, the relative permittivity or dielectric constant is definasle, = €5/eo. We
arrive at the Bjerrum length of water as 7.13 A at 300 K whicthis value that we shall

subsequently use for all our simulation runs. Thus:

L* =L/lg . (A.2)

A.2 Temperature

We use the reduced unit temperatlife= €, ;/ks T wWhereg,; is a fixed energy increment.

In our workT* = 1 is equivalent to 300 K.



A.3 Energy

The reduced unit energ¥() is equivalent to the Lennard-Jones (LJ) energy seal€in

2.3, chapter 2) , wherg ; = kgT/T*. Thus

1.3807x 1023 x 300

gL = 1 —=4.142x 10721y, (A.3)
Furthermore
Ef = E/ELJ. (A4)

Clearly from the above ;*=1.

A.4 Mass

To use reduced units for particles mass, the particle wighlitthtest mass has reduced
unit massm* = 1. where the mass of this standardns For any other mass, we have
m* = m/ms. The particles simulated here are DNA monomers (each monocoméains 6
bp), nucleosome core particles (histone octamers) andadd CI. From the literature

([1][64]), we obtain:

e Mass of Na = 3.81% 1026 kg/particle
e Mass of Cl = 5.889% 1026 kg/patrticle
e Mass of DNA bead (average) = 612621025 kg/monomer

e Mass of NCP = 18.02668 10 23 kg (per histone octamers).

Because Na has the smallest mass, this mass will be used as the stamagrdius:
° nf\la+ =1.0
e m, =154

i rnI*DNA monomer: 16041

o Myp=4270.26
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A.5 Velocity

In energy term, velocity is a part of the kinetic energy. Fritva@ previous definitions, we

have

1 1 1
Ec=-mV = Efg=-mmV = E=_-m M2\ (A.5)
2 2 2 &y

By the invariance principle, for any reduced unit, the défmifor kinetic energy remains

the same. Hence
E, = =m"(v")?. (A.6)

Comparing Eg. A.5 and A.6, we have

(W)ZZZ—EVZ (A7)
or

v = z_‘sv (A.8)
A.6 Time

The time variablet( is always related to the velocityand distance as follows:

1
r:vtﬁr*lB:,/E\ﬁtﬁr*:\f*,/ﬁ—t. (A.9)
ms ms |

By the invariance principle,

r=vit*. (A.10)
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By comparing (A.9) and (A.10), we derive

1 /e
tv=—,/—1t . (A.11)
ls V M

From the known values d§, € ; andm, Eq. A.11 yields
t=2.165x 10 2 t* .

If we used the reduced time-step 0.001 in simulation, it @ctime-step in laboratory

units would be 2.165% 10 1° seconds or 2.165 femtoseconds.

A.7 Harmonic Bond Constant

The Hooke’s law is used to model the bonding potential, glwen
1
En = ékh(Ax)2 :

whereE, is the harmonic oscillator energyAx = x — Xo wherex; is the interparticle
distance andg the equilibrium distance. Therefore
1 knle?

* 1 * *
EhsLJzékh<AX |B)2:> Ehzé c
LI

(AX)? = %kh (AX)? . (A.12)

Thus, by the usual method of comparison,

R |52
ki = kil (A.13)
8LJ
By submitting known values for the physical constant, weehav
7.13x10710)2
_ (718X 10707 s 794x k, (A.14)

4.14x 1021
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A.8 Bending Angle Constant

Similarly, the bending angle energy is expressed by:
1, a2

Since0 is dimensionless, we hage= 6*. Therefore

1ho g2

* 1 %k k
EeSLJIEke(e )2:>E :28
LJ

Hence by the invariant principle,

ke ke

and therefore

A.9 Acceleration

The definition of acceleration for an infinitesimal time iagrentt is

€ * *
a:V2—V1 _ \/ ﬁ (V2 - V1>

t o % t*

Converting Eqg. A.18 to reduced units for all the variablagylies

&y Vo =V g,
Clms t* lams

Thus:

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)
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A.10 Force

By the invariance principle, we can similarly write

Thus

(A.21)

(A.22)
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Appendix B

Tool Command Language (TCL)

Scripts

To run a molecular dynamics (MD) simulation with ESPResBe HSPResSo executable
file will read the user's commands in a TCL script. In this apgig, two main TCL
scripts for running MD simulation are given. Some codes atétem (in either C++ or
TCL) for analyzing the output of the MD run. The analysis cestabout calculations
to determine such parameters as the persistence lengttrpstatic energy and entropy,
coordination number and harmonic stretching constanioMarapproximations are used
in the calculation (e.g. the Percus-Yevick and hypernettedn approximation). Several
equations are also utilized (e.g. Debye-Huckel-PoissoltzBiann, Ornstein-Zernike and

modified Grosberg equations). Those codes are not loadédithesis.

B.1 Equilibrium Run

The TCL script in this section is used to derive a system inligguwm. This script
contains the system set up, particles properties, forcagsfi@ésignment, interaction pa-
rameters, trajectory file generator, system checkpouourder for the next run, and the
energy measurement.

The script is reproduced below:



set t1 [clock second]

puts "[code_info]"

HHH R PRO CEDURE ##t#HHHH R
# Add configuration in TXYZ (Tinker) format to the trajectofife "f tinker"
# Below puts all particle including salts in trajectory file

proc conf_tinker { f_tinker } {

global box_| n_MD n_part chem_typ atom_typ

puts $f_tinker "$n_part after [setmd time] i.u., BOX: $bdix

for {setj 0} {$j < [expr $n_MD -1]} {incr j} {

puts $f_tinker "[expr $j+1] $chem_typ($)) [part $j print pjobatom_typ($j) [expr $j+2] "
}

for {set j [expr $n_MD-1]} {$j < $n_part} {incr j} {

puts $f_tinker "[expr $j+1] $chem_typ($)) [part $j print pldbatom_typ($))"
1

# Add configuration in XMOL format to the trajectory file "f >al

# Below only puts DNA Monomers and NCP in trajectory file

proc confxmol {f_xmol } {

global box_| chem_typ n_MD n_NCP

puts $f xmol [expr int([expr $n_MD + $n_NCP])]

puts $f xmol " after [setmd time] i.u., BOX: $box_| $box_I&b I"

for {setj 0} {$j < [expr $n_MD + $n_NCP]} {incr j} {

puts $f xmol " $chem_typ($)) [part $j print pos]"

1

proc DNATOCENTER { }{

global box_| nt_MD pid_MD

# assumes the same mass for each group of particles in a rieoétcu
set xcom 0.

set ycom O.

set zcom O.

# set ii [expr $i + 1]

# loop over molecules

# pid_MD=0 nt_MD=total monomers, j will be the pid

for {set j $pid_MD } {$j < $nt_MD}{incr j} {

# compute center-of-mass for each molecule

set xcom [expr $xcom + [lindex [part $j print pos] 0] ]

set ycom [expr $ycom + [lindex [part $j print pos] 1] ]

set zcom [expr $zcom + [lindex [part $j print pos] 2 1]

}

set xcom [ expr $xcom / $nt_MD ]

set ycom [ expr $ycom / $nt_MD ]

set zcom [ expr $zcom / $nt_MD ]

# Here we already get the COM polymer.
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# Below moving all particle, where COM polymer will be in theddle of box
for {set j $pid_MD} {$j < $nt_MD}{incrj}{

set xnew [expr [lindex [part $j print pos] 0] - $xcom + 0.5*$bd]

set ynew [expr [lindex [part $j print pos] 1] - $ycom + 0.5*$bd]

set znew [expr [lindex [part $j print pos] 2] - $zcom + 0.5*$bd)

part $j pos $xnew $ynew $znew

1

HitHHHHHHH A Length Units= Bjerrum Length ##HHHHH
setl b7.13

set| _unit$l_b

HHHHHH AR H AR H AR PARAME T ER SHAHHH T H A HHHHH
set title "24typel”

#first, set polymer concentration you wish

set polymer_concentration 0.005

# bead/monomer weight and volume scale-=(x 10"-20) gr and ml
set bead_weight 0.61262

set polymer_weight [expr $bead_weight*360]

set v_solvent [expr ($polymer_weight*1000)/$polymemeoentration]
set box_lori [expr pow(($v_solvent/100000.),0.33333)00.]

puts "polymer concentration = $polymer_concentrationmity/

puts "box length = $box_lori Angstrom"

## Simulation Box

set shield 1.

#volume box (v_box) below later for calculating salt amount

set v_box [expr pow($box_lori,3)]

set box_| [expr $box_lori/$|_unit]

setmd box_| $box_| $box_| $box_|

## Thermostat, here use thermostat for NVT type

setgamma 1.0

settemp 1.0

integrate set nvt

thermostat langevin $temp $gamma

set time_step 0.015

setskin 0.4

setmd time_step $time_step

setmd skin $skin

setmd temp

puts""

puts " ===========—===="
puts "= 360-chain polymer ="

puts " ===========—===="
puts " "
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### Particles ###

##DNA

# num of DNA

setn D1

# num of monomers per DNA

setn_MD 360

# total monomers

set nt_MD [expr $n_D*$n_MD]

# mass of monomers

setm_MD 160.41

# radius of monomers (I_unit*A), equal to the width o DNA ddeibelix
setr_MD [expr 10./$|_unit]

# radius of monomers soft core (effective radii)
setr_sMD [expr 2./$l_unit]

# radius of monomers hard core radii (ineffective radii)
setr_hMD [expr $r_MD-$r_sMD]

# charge of monomers

setq_MD -12

# total charge of monomers

set q_totalMD [expr $q_MD*$n_MD*$n_D]

# bond length between two nucleus, equal to 6*3.4 A
set | _MD [expr 20.4/$|_unit]

# type of monomers

settype_MD 0O

# start monomer pid, for creating id of the first monomers
set pid_MD 0

# creating DNA chem_typ for gopenmol needs

for {set i $pid_MD} {$i < [expr $pid_MD+3$nt_MD]} {incr i} {set chem_typ($i) "O" ;
set atom_typ($i) "40"}

## NCP

# Num of NCP

setn_NCP 12

# mass

setm_NCP 4270.26

# radius

setr_NCP [expr 35./$|_unit]

# radius of NCP soft core (effective radii)

setr_sNCP [expr 2./$]_unit]

# radius of NCP hard core radii (ineffective radii)

setr_ hNCP [expr $r_NCP-$r_sNCP]

# charge

set q_NCP 150
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# total charge of NCP

set g_totalNCP [expr $g_NCP*$n_NCP]

# type of NCP

settype NCP 1

# start NCP pid, for creating id of the first NCP
set pid_NCP [expr $pid_MD+$nt_MD]

# creating NCP chem_typ for gopenmol needs

for {set ii $pid_NCP} {$ii < [expr $pid_NCP+$n_NCP]} {incr ii} {set chem_typ($ii)

"C"; set atom_typ($ii) "14"}

## Calculating additional ion for neutralizing system
set g_add [expr -1*($q_totalMD+$q_totaINCP)]
if {$g_add > 0} {

set addNa $g_add

setaddCl 0

} elseif {$g_add< 0} {

set addNa O

set addCl [expr abs($q_add)]

}else {

set addNa O

setaddCl 0

}

## SALT

# Just put your desired salt concentration, in mM unit
setc_salt 0.25

set n_salt [expr int($c_salt*602e-09*$v_box)]
# (Nar+1)

set n_Na [expr $n_salt+$addNa]

setm_Na 1.

#it#set r_Na [expr 0.98/$|_unit]

setr_Na [expr 2./$l_unit]

setg_Nal

set g_totalNa [expr $g_Na*$n_Na]

settype Na 2

set pid_Na [expr $pid_NCP+$n_NCP]

# creating Na chem_typ for gopenmol needs

for {set j $pid_Na} {$j < [expr $pid_Na+3Sn_Na]} {incr j} {set chem_typ($j) "Na" ; set

atom_typ($j) "81"}

# (CIM-1)

set n_Cl [expr $n_salt+$addCl]
setm_Cl 1.54

#itttset r_Cl [expr 1.81/$l_unit]
setr_Cl [expr 2./$|_unit]
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setq Cl-1

set q_totalCl [expr $q_CI*$n_Cl]

settype _CI 3

set pid_CI [expr $pid_Na+$n_Na]

# creating Cl chem_typ for gopenmol needs

for {set jj $pid_CI} {$jj < [expr $pid_Cl+$n_CI} {incr jj} {set chem_typ($jj) "CI" ; ®t
atom_typ($jj) "93"}

## particle amount

set n_part [expr $nt_MD+$n_NCP+$n_Na+$n_ClI]
### Interaction ###

## (1) Between type 0 & O ##

# Lennard-Jones

setlj_eps00 1.0

set lj_sig00 [expr 2*$r_sMD]

set |j_rcut00 [expr 1.122462*3$l]_sig00]

set |j_cshift00 [calc_lj_shift $Ij_sig00 $lj_rcut00]
set |j_roff00 [expr $r_hMD+$r_hMD]

# Harmonic stiffer bonds

setr_spring 20.3417956

set harm_r [expr $r_spring/$I_unit]

set harm_k 2500.

# Angle bending (DNA persistence length)

# Bond angle

set bend_k [expr 500./20.4]

set bend_phiO [PI]

puts $bend_phiO

## (2) Between type 0 & 1 ##

# Lennard-Jones

setlj_eps011.0

set lj_sig01 [expr $r_sMD+$r_sNCP]

set |j_rcutO1 [expr 1.122462*$lj_sig01]

set |j_cshift01 [calc_lj_shift $Ij_sig01 $Ij_rcut01]
set |j_roff01 [expr $r_hMD+$r_hNCP]

## (3) Between type 0 & 2 ##

# Lennard-Jones

setl_eps02 1.0

set lj_sig02 [expr $r_sMD+$r_Na]

set |j_rcut02 [expr 1.122462*$lj_sig02]

set lj_cshift02 [calc_lj_shift $lj_sig02 $lj_rcut02]
set |j_roff02 [expr $r_hMD+0.]

## (4) Between type 0 & 3 ##

# Lennard-Jones

95



setlj_eps03 1.0

set lj_sig03 [expr $r_sMD+$r_Cl]

set |j_rcut03 [expr 1.122462*$lj_sig03]

set lj_cshift03 [calc_lj_shift $lj_sig03 $lj_rcut03]
set |j_roff03 [expr $r_hMD+0.]

## (5) Between type 1 & 1 ##

# Lennard-Jones

setlj_eps111.0

set lj_sigl1 [expr 2*$r_sSNCP]

set lj_rcutll [expr 1.122462*$lj_sigl1]

set lj_cshiftll [calc_lj_shift $lj_sigl1 $lj_rcutll]
set |j_roffll [expr $r_hNCP+$r_hNCP]

## (6) Between type 1 & 2 ##

# Lennard-Jones

setlj_eps121.0

set lj_sig12 [expr $r_SNCP+$r_Na]

set lj_rcutl2 [expr 1.122462*$lj_sig12]

set |j_cshift12 [calc_lj_shift $Ij_sig12 $Ij_rcutl?2]
set |j_roff12 [expr $r_hNCP+0.]

## (7) Between type 1 & 3 ##

# Lennard-Jones

setlj_epsl131.0

set lj_sig13 [expr $r_SNCP+$r_Cl]

set lj_rcutl3 [expr 1.122462*$lj_sig13]

set lj_cshift13 [calc_lj_shift $lj_sig03 $lj_rcutl3]
set |j_roff13 [expr $r_hNCP+0.]

## (8) Between type 2 & 2 ##

# Lennard-Jones

setlj_eps22 1.0

set lj_sig22 [expr 2*$r_Na]

set lj_rcut22 [expr 1.122462*$lj_sig22]

set |j_cshift22 [calc_lj_shift $Ij_sig22 $Ij_rcut22]
set lj_roff22 0.0

## (9) Between type 2 & 3 ##

# Lennard-Jones

setl_eps23 1.0

set lj_sig23 [expr $r_Na+$r_Cl]

set |j_rcut23 [expr 1.122462*$lj_sig23]

set lj_cshift23 [calc_lj_shift $lj_sig23 $lj_rcut23]
set lj_roff23 0.0

## (10) Between type 3 & 3 ##

# Lennard-Jones



setlj_eps33 1.0

set lj_sig33 [expr 2*$r_Cl]

set |j_rcut33 [expr 1.122462*$lj_sig33]

set lj_cshift33 [calc_lj_shift $lj_sig33 $lj_rcut33]

set lj_roff33 0.0

#HitH AR AR H INT ERACT |ON SHE# R HH AT H A HH R H AR
### (1) Between O O ###

#LJ

inter 0 0 lennard-jones $lj_eps00 $Ij_sig00 $Ij_rcut00 &4hift00 $lj_roffo0
# Harmonic

inter O harmonic $harm_k $harm_r

# Bond angle

inter 1 angle $bend_k $bend_phiO

### (2) Between 0 1 ###

inter 0 1 lennard-jones $lj_eps01 $Ij_sig01 $Ij_rcut0l1 &hift01 $lj_roffol
### (3) Between O 2 ###

inter 0 2 lennard-jones $lj_eps02 $Ij_sig02 $Ij_rcut02 &§hift02 $lj_roff02
#i## (4) Between O 3 ###

inter 0 3 lennard-jones $lj_eps03 $Ij_sig03 $Ij_rcut03 &§hift03 $lj_roff03
### (5) Between 1 1 ###

inter 1 1 lennard-jones $lj_eps11 $Ij_sigll $Ij_rcutll &§hift1l $Ij_roff1l
### (6) Between 1 2 ###

inter 1 2 lennard-jones $lj_eps12 $Ij_sigl2 $Ij_rcutl2 &§hift12 $Ij_roff12
### (7) Between 1 3 ###

inter 1 3 lennard-jones $lj_eps13 $Ij_sigl3 $Ij_rcutl3 &§hift13 $lj_roffl3
#i## (8) Between 2 2 ###

inter 2 2 lennard-jones $lj_eps22 $Ij_sig22 $Ij_rcut22 &§hift22 $lj_roff22
### (9) Between 2 3 ###

inter 2 3 lennard-jones $lj_eps23 3$Ij_sig23 3$Ij_rcut23 &hift23 $lj_roff23
### (10) Between 3 3 ###

inter 3 3 lennard-jones $lj_eps33 $Ij_sig33 3$Ij_rcut33 &hift33 $lj_roff33
# Below decide whether we use the last configuration or stagtxarun

if { [ file exists "dnal4.end"]}{

puts "This script is not for reading the last data”

exit }

#itH AR CREATING PARTICLE SHAH#HHHAHHHHHHHHAHHHHHH A HH
#H# DNA ###

puts "Generating $n_D DNA of $n_MD monomers with charge $§ per-monomer
(total particle=$n_part)"

polymer $n_D $n_MD $I_MD start $pid_MD mode PSAW [expr $4ff00*1.2] charge
$g_MD distance 1 types $type_MD $type_MD bond 0

#fill the DNA mass
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for {set m $pid_MD} {$m < [expr $pid_MD+3$nt_MD]} {incr m} {
part $m mass $m_MD

}

#fill the dna angle bond

for {set m $pid_MD} {$m < [expr $pid_MD+$nt_MD-2]} {incr m} {
set m1 [expr $m+1]

set m2 [expr $m+2]

part $m1 bond 1 $m $m2

}

#move DNA to COB

DNAToCENTER

puts "Creating NCP"

#H## NCP ###

counterions $n_NCP start $pid_NCP mode SAW $Ij_roff01gb&g_NCP type $type NCP
#fill the NCP mass

for {set m $pid_NCP} {$m< [expr $pid_NCP+$n_NCP]} {incr m} {
part $m mass $m_NCP

}

puts "Creating SALT"

#H## SALT ###

salt$n_Na $n_Cl start $pid_Na mode SAW $lj_roff02 chargeMda$q_Cltypes $type_Na
$type_ClI

#fill the salt mass

for {set m $pid_Na} {$m< [expr $pid_Na+$n_Na]} {incr m} {

part $m mass $m_Na

}

for {set m $pid_CI} {$m < [expr $pid_Cl+$n_CI]} {incr m} {

part $m mass $m_Cl

}

## create initial position coord. file

set f_xmol [open init$title.xmol "w"

confxmol $f_xmol

close $f_xmol

Hit#HHHH R WARMIN G UP #H R
# the importance of warming up is not only for relaxing DNA yaoler but also for over-
lapping molecule position inside DNA & NCP hard sphere radiu
## Equilibrating use ljforcecap

setmin01 0

setmin02 0

setmin03 0

setminl110

setminl120
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setminl130

inter 0 1 lennard-jones $lj_eps01 [expr $r_MD+$r_NCP] jekd22462*[expr $r_MD+$r_NCP]]
[calc_lj_shift [expr $r_MD+$r_NCP] [expr 1.122462*[expr MD+$r_NCP]]] 0.0

inter 0 2 lennard-jones $lj_eps02 [expr $r_ MD+$r_Na] [ekdr22462*[expr $r_ MD+$r_Na]]
[calc_lj_shift [expr $r_MD+$r_Na] [expr 1.122462*[expr MD+$r_Na]]] 0.0

inter 0 3 lennard-jones $lj_eps03 [expr $r_MD+$r_ClI] [exd22462*[expr $r_MD+$r_Cl]]
[calc_lj_shift [expr $r_MD+$r_ClI] [expr 1.122462*[expr $MD+$r_CI]]] 0.0

inter 1 1 lennard-jones $lj_eps11 [expr $r_NCP+$r_NCPpfex122462*[expr $r_NCP+$r_NCP]
[calc_lj_shift [expr $r_NCP+$r_NCP] [expr 1.122462*[e>§r_NCP+$r_NCP]]] 0.0

inter 1 2 lennard-jones $lj_eps12 [expr $r_NCP+$r_Na] fexp22462*[expr $r_NCP+$r_Na]]
[calc_lj_shift [expr $r_NCP+$r_Na] [expr 1.122462*[expr_NCP+$r_Na]]] 0.0

inter 1 3 lennard-jones $lj_eps13 [expr $r_NCP+$r_Cl] peki22462*[expr $r_NCP+$r_ClI]]
[calc_lj_shift [expr $r_NCP+$r_ClI] [expr 1.122462*[ex$pr_NCP+$r_ClI]]] 0.0

set min01 [analyze mindist 0 1]

set min02 [analyze mindist O 2]

set min03 [analyze mindist 0 3]

set minll [analyze mindist 1 1]

set minl2 [analyze mindist 1 2]

set minl13 [analyze mindist 1 3]

puts "Minimum distance before warm up: min01= $min01; mm@E&min02; min03=
$min03; minl1l=$minll; min12=$minl2; min13= $minl13"

set F_max 2000

while { $min01 < [expr ($r_MD+$r_NCP)*0.9]| $min02< [expr ($r_MD+$r_Na)*0.9]

|| $min03 < [expr ($r_MD+$r_CI)*0.9]|| $minll < [expr ($r_NCP+$r_NCP)*0.9]|
$minl2< [expr ($r_NCP+$r_Na)*0.9]| $minl3< [expr ($r_NCP+$r_CI)*0.9] } {

# setting ljforcecap

inter ljfforcecap $F_max

#integrate a number of steps, e.g. 20

integrate 2000

#check the system status

set min01 [analyze mindist O 1]

set min02 [analyze mindist O 2]

set min03 [analyze mindist 0 3]

set minll [analyze mindist 1 1]

set minl12 [analyze mindist 1 2]

set minl13 [analyze mindist 1 3]

puts "F_max in warming = $F_max, minimum distance: min01#k; min02=$min02;
min03=$min03; minl1l=$minll; min12= $minl12; min13= $mih13

incr F_max 2000

# confxmol $f_xmol

flush stdout

}
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#close $f_xmol

puts "Warm up finished. Minimal Distance now: min01= $min®iin02= $min02;
min03=$min03; minl1l=$minll; min12= $minl12; min13= $mih13

# turn off the ljforcecap

inter ljforcecap O

puts "return the truth LJ interaction”

inter 0 O lennard-jones $lj_eps00 $Ij_sig00 $Ij_rcut00 &hift00 $lj_roff00
inter 0 1 lennard-jones $lj_eps01 $Ij_sig01 $Ij_rcut0l1 &hift01 $lj_roff01l
inter 0 2 lennard-jones $lj_eps02 $Ij_sig02 $Ij_rcut02 &§hift02 $lj_roff02
inter 0 3 lennard-jones $lj_eps03 3$Ij_sig03 $Ij_rcut03 &hift03 $lj_roff03
inter 1 1 lennard-jones $lj_eps11 $Ij_sigll $Ij_rcutll &§hift1l $lj_roffll
inter 1 2 lennard-jones $lj_eps12 $Ij_sigl2 $Ij_rcutl2 &§hift12 $lj_roff12
inter 1 3 lennard-jones $lj_eps13 $Ij_sig13 $Ij_rcutl3 &hift13 $lj_roff13
inter 2 2 lennard-jones $lj_eps22 $Ij_sig22 $Ij_rcut22 &§hift22 $lj_roff22
inter 2 3 lennard-jones $lj_eps23 3$Ij_sig23 $Ij_rcut23 &hift23 $lj_roff23
inter 3 3 lennard-jones $lj_eps33 3$Ij_sig33 3$Ij_rcut33 &hift33 $lj_roff33
# bonus integration

integrate 2000

THEEEHEP R R TESTING S S
puts "

puts "Below to test the truth of the system:"

puts "

puts "box_length original = $box_lori A"

puts "salt concentration = $¢_salt mM"

puts "harmonic constant and r_spring = $harm_k & $r_spring"

puts "angle constant and theta_0 = $bend_k & $bend_phiO"

puts "time step= $time_step"”

puts "total monomer = $nt_MD"

puts "total NCP = $n_NCP"

puts "total Na = $n_Na"

puts "total Cl = $n_CI"

puts "total particle = $n_part"

puts "addNa = $addNa"

puts "addCl = $addCl"

puts "DNA mass = $m_MD"

puts "NCP mass = $m_NCP"

puts "Na mass = $m_Na"

puts "Cl mass = $m_CI"

#paticle id

puts "the last particle id = [expr $pid_CIl+$n_CI-1] must #ane with [expr $n_part-1]"
# total charge of particles

puts "charge of particle: $g_totalMD+$q_totaINCP+$qalida+$q_totalCl=[expr $q_totalMD+
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$qg_totaINCP+$q_totalNa+$q_totalCI]"

puts [inter]

HUHHHHHHHH A Tuning P3M #HHHHHHHHHHHHHHHHHE R S
puts "here | tune P3M with Bjerrum length = 1 and accuracyQRe-

inter coulomb 1 p3m tune accuracy 1.e-02

puts "[inter coulomb 1 p3m tune accuracy 1.e-02]"

HitHHHHHHH A Set Up Observable Files ##t# i HHHHHHHHE
#HHHHH#H Temperature and Energy ####H#H#HHHHH#

set energyinp [open "energy.dat" "a+"]

puts $energyinp "Time Temperature Energy Total Energgetic Energy Potential”
HHHHHHHH T INT EGRAT ION S HHH R HH T
puts "Integration”

## create trajectory coord. file

set f_xmol [open traj$title.xmol "a+"]

sett_half [clock second]

## simulation

set n_cycle 1000

set n_steps 10000

setiO

sett_loop [clock second]

while { $i<$n_cycle }{

integrate $n_steps

#itHHH TEMPERATURE AND ENERGY #####HHHHH

set ek [analyze energy kinetic]

set etot [analyze energy total]

set ep [expr $etot-$ek]

set temperature [expr $ek/(([degrees_of freedom]/E0)part)]

#write in file

puts $energyinp "[setmd time] $temperature $etot $ek $ep”

#show in screen

puts -nonewline "Temp = $temperature Etot = $etot"; puts “Eiek Ep = $ep"
flush stdout

### checkpoint each 200,000 step ###

if { [expr (($i+1)*$n_steps)%200000] == 0 }{

checkpoint_set $title.[expr ($i+1)*$n_steps].cpt

}

#ittHH CONFIGURATION ###HHHHHHHHHHHHHHHHHHHET

#take configuration each 100.000 step

if { [expr (($i+1)*$n_steps)%100000] == 0 }{

confxmol $f_xmol

}

incri
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puts "$i"

flush stdout

}

close $f_xmol

## R AFTER INTEGRATION #H#HH#HAHAHH
###H## Record the last configuration #####H#HEH

set varinp [open "variable.dat" w]

blockfile $varinp write variable all

checkpoint_set end$title.cpt

set f_tinker [open end$title.txyz "w"

conf_tinker $f_tinker

THE AR ENDING S R
close $f_tinker

close $energyinp

close $varinp

puts "FINISH"

set t2 [clock second]

set time [expr $t2-$t1]

set time_setup [expr $t_half-$t1]

puts "time_setup = $time_setup"

puts "total time = $time second"

#iH#HH R END OF PROGRAM ###H#HHHH#HHHAHH T H

B.2 Production Run

The TCL script which follows is used to sample propertieshef $ystem in equilibrium.
This script contains the commands for sampling the energadgal distribution function,
end-to-end distance, radii of gyration, contour lengtlerage bond length, average bend-
ing angle, particles trajectory, and activating the systeeckpoint/recorder for the next
run.

The script run as follows:

set t1 [clock second]

puts "[code_info]"

Hip R PRO CEDURE ###HHHHHHHHHHHHHHHHHH
# Add configuration in TXYZ (Tinker) format to the trajectofife "f _tinker"

102



# Below puts all particle including salts in trajectory file

proc conf_tinker { f_tinker } {

global box_|In_MD n_part chem_typ atom_typ

puts $f_tinker "$n_part after [setmd time] i.u., BOX: $bdix_

for {setj 0} {$j < [expr $n_MD -1]}{incr j} {

puts $f_tinker "[expr $j+1] $chem_typ($j) [part $j printléed_position] $atom_typ($))
[expr $j+2] "

}

for {set j [expr $n_MD-1]} {$j < $n_part} {incr j} {

puts $f_tinker "[expr $j+1] $chem_typ($j) [part $j print gjobatom_typ($))"

1

# Add configuration in XMOL format to the trajectory file "f >aty

# Below only puts DNA Monomers and NCP in trajectory file

proc confxmol {f_xmol } {

global box_| chem_typ n_MD n_NCP

puts $f_xmol [expr int([expr $n_MD + $n_NCP])]

puts $f xmol " after [setmd time] i.u., BOX: $box_| $box_I&b I"

for {setj 0} {$j < [expr $n_MD + $n_NCP]} {incr j} {

puts $f xmol " $chem_typ($j) [part $j print pos] "

1

# procedure to get sqrt of a double/real number. Since teiaasyrt a real/long format
proc NewSqrt {n }{

return [expr {exp(log($n)/2)}]

}

puts""

puts " =============—==="

puts "= Taking the Last Polymer Data Run ="

puts " e e

puts " "

set rlast [open "dnal4.end" r]

while { [blockfile $rlast read auto] != "eof" } {}

close $rlast

setmd time_step $time_step

# creating DNA, NCP, Na, Cl chem_typ for gopenmol needs

for {set i $pid_MD} {$i < [expr $pid_MD+$nt_MD]} {incr i} {set chem_typ($i) "O"
;set atom_typ($i) "40"}

for {set ii $pid_NCP} {$ii < [expr $pid_NCP+$n_NCP]} {incr ii} {set chem_typ($ii)
"C"; set atom_typ($ii) "14"}

for {set j $pid_Na} {$j < [expr $pid_Na+3Sn_Na]} {incr j} {set chem_typ($j) "Na" ; set
atom_typ($j) "81"}

for {set jj $pid_CI} {$jj < [expr $pid_Cl+$n_CI} {incr jj} {set chem_typ($jj) "CI" ; t
atom_typ($jj) "93"}
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## create initial position coord. file

set f_xmol [open init$title.xmol "w"

confxmol $f_xmol

close $f_xmol

HHHHHHHHHHHH R TESTING
puts "

puts "Below for to test the truth of the system:"

puts "

puts "box_length original = $box_lori A"

puts "salt concentration = $¢_salt mM"

puts "harmonic constant= $harm_k"

puts "angle constant= $bend k"

puts "time step= $time_step"

puts "total monomer = $nt_MD"

puts "total NCP = $n_NCP"

puts "total Na = $n_Na"

puts "total Cl = $n_CI"

puts "total particle = $n_part"

puts "addNa = $addNa"

puts "addCl = $addCl"

#paticle id

puts "the last particle id = [expr $pid_Cl+$n_CI-1] must gaene with [expr $n_part-1]"
# total charge of particles

puts "charge of particle: $g_totalMD+$q_totalINCP+$qalida+$q_totalCl=[expr $g_totalMD+
$qg_totaINCP+$q_totalNa+$q_totalCI]"

HitHHHHHHH A Set Up Observable Files ##t# i HHHHHHHHE

HiHHHHH Enerqy #HHHHHHHHH

set energyinp [open "energy.dat” "w"]

puts $energyinp "Temperature Energy_Kinetic Ek_stddeerin Potential Ep_stddev
Energy_Total Etot_stddev Energy _Coulomb Ecol_stddev"

set dump_ek 0.

setdump_ep O.

set dump_etot 0.

set dump_ecoulomb O.

# later $avg_xx2 will be standard deviation sigma. But | acdynt std dev for energy, re
and rg, not for rdf. since rdf is a list and for simplicity

setavg_ek 0.

set avg_ek2 0.

setavg_ep 0.

setavg_ep2 0.

set avg_etot 0.

set avg_etot2 0.
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set avg_ecoulomb O.

set avg_ecoulomb2 0.

HHHHH Y RDF SHH## i it

set rdfinp [open "rdf.dat" "w"]

puts $rdfinp "rlist rdf00 rdf01 rdf02 rdf03 rdfl1 rdfl12 rdfx@f22 rdf23 rdf33"
set rdf_bin 5000

set rdf_fac 1.

set rdf_min O.

setrdf_count 0

#below is the initial setting of avg_rdfxx containing a It number, not only a single
number

#later it will be an accumulation of each rdf value sampledjcl then averaged after
total amount of rdf sampled = $dump

set dump_rdf0o0 "™

set dump_rdf0o1 "™

set dump_rdf02 "™

set dump_rdf03 "™

set dump_rdf11 ™

set dump_rdf12 ™

set dump_rdf13 ™

set dump_rdf22 "™

set dump_rdf23 ™

set dump_rdf33 "™

for {set ii 0} {$ii < $rdf_bin} {incr ii}{

set dump_rdf00 [concat $dump_rdf00 0]

set dump_rdf01 [concat $dump_rdf01 0]

set dump_rdf02 [concat $dump_rdf02 0]

set dump_rdf03 [concat $dump_rdf03 0]

set dump_rdfl1 [concat $dump_rdfl1 0]

set dump_rdfl2 [concat $dump_rdf12 0]

set dump_rdfl13 [concat $dump_rdf13 0]

set dump_rdf22 [concat $dump_rdf22 0]

set dump_rdf23 [concat $dump_rdf23 0]

set dump_rdf33 [concat $dump_rdf33 0]

}

#below is the initial setting of avg_rdfxx containing a laft number, not only a single
number

#later it will be an accumulation of averaged rdf value framele dump, which then aver-
aged after total amount of dumping = $total_dump

set avg_rdf00 ™

set avg_rdfol ™

set avg_rdf02 "™
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set avg_rdf03 ™

setavg_rdfl11 ™

set avg_rdfi2 "™

set avg_rdfi3 ™

setavg_rdf22 "™

set avg_rdf23 ™

setavg_rdf33 ™

for {set ii 0} {$ii < $rdf bin} {incr ii} {

set avg_rdf00 [concat $avg_rdf00 0]

set avg_rdf01 [concat $avg_rdf01 0]

set avg_rdf02 [concat $avg_rdf02 0]

set avg_rdf03 [concat $avg_rdf03 0]

set avg_rdfll [concat $avg rdfll 0]

set avg_rdfl2 [concat $avg rdf12 0]

set avg_rdf13 [concat $avg rdf13 0]

set avg_rdf22 [concat $avg_rdf22 0]

set avg_rdf23 [concat $avg_rdf23 0]

set avg_rdf33 [concat $avg_rdf33 0]

}

#below is only for taking rlist, rdf02 is only a means for reding rlist. It lists the distance
containing the particle density. clearly will be x variable RDF plot
setrlist™

set rdf02 [analyze rdf O 2 $rdf _min [expr $box_I/$rdf fac§i$ bin]
foreach value [lindex $rdf02 1] {

lappend rlist [expr [lindex $value 0]*$l_unit]

}

R TOPOLOGY #H# i s R
set topoinp [open "topology.dat” w]

puts $topoinp "re redev re2 rg rgdev rg2"

## setting below have the same idea with rdf above. but beldywapntain a value, not a
list of value like rdf

setdump_re 0.

set dump_re2 0.

set dump_rg 0.

set dump_rg2 0.

setavg_re 0.

setavg_re2 0.

set avg_redev 0.

setavg _rg 0.

setavg_rg2 0.

set avg_rgdev 0.

T CONTOUR LENGTH #### A R
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set contourinp [open "contour.dat" w]
puts $contourinp "contour_length stddev_cont_lengthaye bond_length average _bond_angle
dev_bond_angle"

set tmp_contour 0.

set avg_contour 0.

set dev_contour O.

set tmp_angle 0.

setavg_angle 0.

set dev_angle 0.

setn_contour 0

### INTEGRATION ###

puts "Integration”

## create trajectory coord. file

set f_xmol [open traj$title.xmol "a+"]
sett_half [clock second]

set n_cycle 200

set n_steps 10000

set dump 10
set total_dump [expr $n_cycle/$dump]
setiO

sett_loop [clock second]

while { $i <$n_cycle } {

integrate $n_steps

Rt ENERGY S H#H# St H
#set energylist [analyze energy]

set etot [analyze energy total]

set ek [analyze energy kinetic]

set ep [expr $etot-$ek]

set ecoulomb [analyze energy coulomb]

set temperature [expr $ek/(([degrees_of freedom]/E0)part)]

set dump_ek [expr $dump_ek+$ekK]

set dump_ep [expr $dump_ep+$ep]

set dump_etot [expr $dump_etot+S$etot]

set dump_ecoulomb [expr $dump_ecoulomb+$ecoulomb]
#show in screen

#puts "E = $energy list"

puts -nonewline "Temp = $temperature Etot = $etot"; puts “Eiek Ep = $ep"
HHHHHH R (df SRR R R R
#it must zero for putting a RENEWED list, that will be addedatay_ rdf
set rdflist00 "

set rdflist01 "™

set rdflist02 "™
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set rdflist03 "™

set rdflist11 ™

set rdflist12 "™

set rdflist13 ™

set rdflist22 ™

set rdflist23 ™

set rdflist33 ™"

set rdf00 [analyze rdf 0 0 $rdf _min [expr $box_I/$rdf facfi$ bin]
set rdf01 [analyze rdf 0 1 $rdf_min [expr $box_1/$rdf_faciif bin]
set rdf02 [analyze rdf O 2 $rdf _min [expr $box_I/$rdf fac§i$ bin]
set rdf03 [analyze rdf 0 3 $rdf_min [expr $box_1/$rdf_faciif bin]
set rdf11 [analyze rdf 1 1 $rdf_min [expr $box_1/$rdf_faciif bin]
set rdf12 [analyze rdf 1 2 $rdf _min [expr $box_I/$rdf fac§i$ bin]
set rdf13 [analyze rdf 1 3 $rdf_min [expr $box_1/$rdf_faciif bin]
set rdf22 [analyze rdf 2 2 $rdf _min [expr $box_I/$rdf facfif bin]
set rdf23 [analyze rdf 2 3 $rdf _min [expr $box_I/$rdf fac§i$ bin]
set rdf33 [analyze rdf 3 3 $rdf_min [expr $box_1/$rdf_faciif bin]
foreach valueOO [lindex $rdf00 1] valueO1 [lindex $rdf01vHlue02 [lindex $rdf02 1]
value03 [lindex $rdf03 1] valuell [lindex $rdfll 1] valuefliddex $rdfl2 1] valuel3
[lindex $rdf13 1] value22 [lindex $rdf22 1] value23 [lindédf23 1] value33 [lindex
$rdf33 1] {

set rdflist00 [concat $rdflist00 [lindex $value00 1]]

set rdflist01 [concat $rdflistO1 [lindex $value0l 1]]

set rdflist02 [concat $rdflist02 [lindex $value02 1]]

set rdflist03 [concat $rdflist03 [lindex $value03 1]]

set rdflist11 [concat $rdflist11 [lindex $valuell 1]]

set rdflist12 [concat $rdflist12 [lindex $valuel2 1]]

set rdflist13 [concat $rdflist13 [lindex $valuel3 1]]

set rdflist22 [concat $rdflist22 [lindex $value22 1]]

set rdflist23 [concat $rdflist23 [lindex $value23 1]]

set rdflist33 [concat $rdflist33 [lindex $value33 1]]

}

set dump_rdf00 [vecadd $dump_rdfO0 $rdflist00]

set dump_rdf01 [vecadd $dump_rdfO1 $rdflist01]

set dump_rdf02 [vecadd $dump_rdf02 $rdflist02]

set dump_rdf03 [vecadd $dump_rdf03 $rdflist03]

set dump_rdfl1 [vecadd $dump_rdf11 $rdflist11]

set dump_rdf12 [vecadd $dump_rdf12 $rdflist12]

set dump_rdfl3 [vecadd $dump_rdf13 $rdflist13]

set dump_rdf22 [vecadd $dump_rdf22 $rdflist22]

set dump_rdf23 [vecadd $dump_rdf23 $rdflist23]

set dump_rdf33 [vecadd $dump_rdf33 $rdflist33]
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THEERHE R TOP OLOGY IHHEIHE I S T
analyze set chains 0 1 $n_MD

set dump_re [expr $dump_re+[lindex [analyze re] O]]

set dump_re2 [expr $dump_re2+[lindex [analyze re] 2]]

set dump_rg [expr $dump_rg+[lindex [analyze rg] 0]]

set dump_rg2 [expr $dump_rg2+[lindex [analyze rg] 2]]

HHAHH AR R R R R R R
### DUMPING ###

HHAHHHH AR AR R R R R
if { [expr ($i+1)%$dump]==0 } {

### ENERGY

# below we average values of one dump then accumulate toxxg_e

set avg_ek [expr $avg_ek+[expr $dump_ek/$dump]]

set avg_ek2 [expr $avg_ek2+[expr pow(($dump_ek/$dunjip),2

set avg_ep [expr $avg_ep+[expr $dump_ep/$dump]]

set avg_ep2 [expr $avg_ep2+[expr pow(($dump_ep/$dunip),2

set avg_etot [expr $avg_etot+[expr $dump_etot/Sdump]]

set avg_etot2 [expr $avg_etot2+[expr pow(($dump_etotifia),2)]]

set avg_ecoulomb [expr $avg_ecoulomb+[expr $dump_eotuBdump]]
set avg_ecoulomb2 [expr $avg_ecoulomb2+[expr pow(($dwnpulomb/$dump),2)]]
#after this we must make the value of $dump_exx become ze&iio,agince we will start
a new dump

set dump_ek 0.

setdump_ep O.

set dump_etot 0.

set dump_ecoulomb O.

### RDF

#here we dumping $dump_rdfxxx, containing each rdf datapdeah after each $dump
step, then average over in each dump

set avg_rdf00 [vecadd $avg_rdfO0 [vecscale [expr 1.0/%g@Bdump_rdfO0]]
set avg_rdf01 [vecadd $avg_rdf01 [vecscale [expr 1.0/$g@Bdump_rdfO1]]
set avg_rdf02 [vecadd $avg_rdf02 [vecscale [expr 1.0/$g@Bdump_rdf02]]
set avg_rdf03 [vecadd $avg_rdf03 [vecscale [expr 1.0/$gBdump_rdfO3]]
set avg_rdfl1 [vecadd $avg_rdfll [vecscale [expr 1.0/§g@idump_rdf11]]
set avg_rdfl2 [vecadd $avg_rdf12 [vecscale [expr 1.0/$g@Bdump_rdf12]]
set avg_rdfl3 [vecadd $avg_rdf13 [vecscale [expr 1.0/$g@Bdump_rdf13]]
set avg_rdf22 [vecadd $avg_rdf22 [vecscale [expr 1.0/§g@idump_rdf22]]
set avg_rdf23 [vecadd $avg_rdf23 [vecscale [expr 1.0/%g@Bdump_rdf23]]
set avg_rdf33 [vecadd $avg_rdf33 [vecscale [expr 1.0/$g@Bdump_rdf33]]
set dump_rdf00 "™

set dump_rdfo1 ™

set dump_rdf02 "™

109



set dump_rdf03 ™

set dump_rdf11 ™

set dump_rdf12 ™

set dump_rdf13 ™

set dump_rdf22 "™

set dump_rdf23 ™

set dump_rdf33 "™

for {set ii 0} {$ii < $rdf_bin} {incrii} {

set dump_rdf00 [concat $dump_rdf00 0]

set dump_rdf01 [concat $dump_rdf01 0]

set dump_rdf02 [concat $dump_rdf02 0]

set dump_rdf03 [concat $dump_rdf03 0]

set dump_rdfl1 [concat $dump_rdfl1 0]

set dump_rdfl12 [concat $dump_rdf12 0]

set dump_rdfl13 [concat $dump_rdf13 0]

set dump_rdf22 [concat $dump_rdf22 0]

set dump_rdf23 [concat $dump_rdf23 0]

set dump_rdf33 [concat $dump_rdf33 0]

}

### TOPOLOGY

set avg_re [expr $avg_re+[expr $dump_re/$Sdump]]

set avg_re2 [expr $avg_re2+[expr $dump_re2/$Sdump]]
set avg_redev [expr $avg_redev+[expr pow(($dump_re/$Ji]
set avg_rg [expr $avg_rg+[expr $dump_rg/$Sdump]]

set avg_rg2 [expr $avg_rg2+[expr $dump_rg2/$dump]]
set avg_rgdev [expr $avg_rgdev+[expr pow(($dump_rg/So@)]
#return the $dump_rx value to zero

set dump_re O.

set dump_re2 0.

set dump_rg O.

set dump_rg2 O.

flush stdout

}

#H## DUMPING FINISHED ######

### checkpoint each 200,000 step ###

if { [expr (($i+1)*$n_steps)%200000] == 0 }{
checkpoint_set $title.[expr ($i+1)*$n_steps].cpt

}

### trajectory and take contour length data each 10000G¢¢#ep
if { [expr (($i+1)*$n_steps)%100000] == 0 }{

confxmol $f_xmol

### contour_length data ####
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for {set k $pid_MD} {$k < [expr $pid_MD+$n_MD-1]}{incr k} {

set tmp_contour [expr $tmp_contour+ [bond_length $k [eBiprl]]]

if {$k > $pid_MD} {

set tmp_angle [expr $tmp_angle+ [bond_angle [expr $k-TeRbr $k+1] d]]
1

set avg_contour [expr $avg_contour + $tmp_contour]

set dev_contour [expr $dev_contour+ pow($tmp_contopr,2)

set tmp_contour 0.

set avg_angle [expr $avg_angle+ ($tmp_angle/($n_MD-2))]

set dev_angle [expr $dev_angle+pow(($tmp_angle/($n 2)R)]

set tmp_angle 0.

incr n_contour

}

flush stdout

incri

puts "$i"

}

close $f_xmol

### AFTER INTEGRATION ###

HHHHH#HE energy data ###HHHH##HE3

set avg_ek [expr $avg_ek/$total_dump]

set avg_ek2 [NewSqrt [expr ($avg_ek2/$total_dump)-pawgs ek,2)]]

set avg_ep [expr $avg_ep/$total_dump]

set avg_ep2 [NewSqrt [expr ($avg_ep2/$total_dump)-pavwd$Sep,2)]]

set avg_etot [expr $avg_etot/$total_dump]

set avg_etot2 [NewSqrt [expr ($avg_etot2/$total_dummiavg_etot,2)]]
set avg_ecoulomb [expr $avg_ecoulomb/$total_dump]
setavg_ecoulomb2 [NewSqrt [expr ($avg_ecoulomb2/$tdtahp)-pow($avg_ecoulomb,?2)]]
puts $energyinp "$temperature $avg_ek $avg_ek?2 $avg vep 8p2 $avg_etot $avg_etot2
$avg_ecoulomb $avg_ecoulomb2”

HHHHHHHAE vdf data A

set avg_rdf00 [vecscale [expr 1.0/$total _dump] $avg_GHf0

set avg_rdf01 [vecscale [expr 1.0/$total_dump] $avg_IHf0

set avg_rdf02 [vecscale [expr 1.0/$total _dump] $avg_2pf0

set avg_rdf03 [vecscale [expr 1.0/$total_dump] $avg_3Hf0

set avg_rdfll [vecscale [expr 1.0/$total_dump] $avg_THf1

set avg_rdfl12 [vecscale [expr 1.0/$total_dump] $avg 2pfl

set avg_rdfl3 [vecscale [expr 1.0/$total_dump] $avg_3Hf1

set avg_rdf22 [vecscale [expr 1.0/$total_dump] $avg_2Hf2

set avg_rdf23 [vecscale [expr 1.0/$total_dump] $avg 3pf2

set avg_rdf33 [vecscale [expr 1.0/$total_dump] $avg_3Hf3

foreach x_rdf $rlisty_rdf00 $avg_rdf00y_rdf01 $avg rilf@ rdf02 $avg rdf02y rdf03
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$avg_rdf03y_rdfll $avg_rdflly rdfl2 $avg_rdfl2y rdeb¥g rdfl3y rdf22 $avg_rdf22
y_rdf23 $avg_rdf23 y rdf33 $avg_rdf33 {

puts $rdfinp "$x_rdf $y_rdf00 $y_rdf01 $y_rdf02 $y_rdf03 $gf1l $y_rdfi2 $y rdfl3
Sy _rdf22 $y rdf23 $y_rdf33"}

HiHHHHHH topology data ###HHHHHHHH

set avg_re [expr $avg_re/$total_dump]

set avg_re2 [expr $avg_re2/$total_dump]

set avg_redev [NewSqrt [expr ($avg_redev/$total_dunguy{avg_re,2)]]

set avg_rg [expr $avg_rg/$total_dump]

set avg_rg2 [expr $avg_rg2/$total_dump]

set avg_rgdev [NewSqrt [expr ($avg_rgdev/$total_dumpiq@avg_rg,2)]]

# puts in real unit

puts $topoinp "[expr $avg_re*$l_unit] [expr $avg_redeliit] [expr $avg_re2*(pow($l_unit,2))]
[expr $avg_rg*$l_unit] [expr $avg_rgdev*$l_unit] [expasg_rg2*(pow($l_unit,2))]"
##### Record the last configuration ########

set varinp [open "variable.dat" w]

blockfile $varinp write variable all

checkpoint_set end$title.cpt

set f_tinker [open end$title.txyz "w"]

conf_tinker $f_tinker

#H##H CONTOUR LENGTH DATA ###H#HHH#itH#H

set avg_contour [expr $avg_contour/$n_contour]

set dev_contour [NewSqrt [expr ($dev_contour/$n_contpow($avg_contour,2)]]
set avg_angle [expr $avg_angle/$n_contour]

set dev_angle [NewSqrt [expr ($dev_angle/$n_contouw(avg_angle,2)]]

# puts in file in real unit (angstrom)

puts $contourinp "[expr $avg_contour*$l_unit] [expr $deontour*$l_unit]
[expr ($avg_contour*$l_unit)/[expr $pid_MD+$n_MD-1]p8g_angle $dev_angle"
R ENDING S
close $f_tinker

close $energyinp

close $topoinp

close $rdfinp

close $varinp

close $contourinp

puts "FINISH"

set t2 [clock second]

set time [expr $t2-$t1]

set time_setup [expr $t_half-$t1]

puts "time_setup = $time_setup"

puts "total time = $time second"

Hi#H AR END OF PROGRAM ###H#HHHHHHH I H
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