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Chapter 1

INTRODUCTION

1.1 DNA

DNA is a double helical structure composed of ribose sugar (deoxiribose), aromatic bases

(adenine, guanine, thymine and cytosine), and phosphate groups. The double helix struc-

ture is formed by two individual DNA strands held together byhydrogen bonds between

individual bases [1]. DNA exists in several forms, for example B-, A-, C-, D-, T-, and Z-

form. The B-form is the most common structure found in eukaryotic cells. In this thesis,

the term DNA denotes the structure and dimension of the B-form. The general structure

of DNA is illustrated in Figure 1.1(a)(b).

The nucleosome core particle (NCP), with a DNA strand wrapped around it, is approxi-

mately a disk-like cylinder of diameter 110 Å and length 57 Å.The disk center contains

protein of two H3 and H4 subunits and H2A-H2B dimers [2]. Thisdisk-like cylinder is

also known as an "octameric histone core" because it contains eight proteins in total. The

term "H2A", as well as "H2B, H3, and H4" does not denote a specific particle or structure.

Instead, each refers to a variety of closely related structures or genetic roles. For example,

H2A is coded by many genes including H2AFB1, H2AFB1, H2AFBJ,H2AFBX, etc.

In a cell, DNA wraps around the NCP by about 1.6-1.8 complete turns of the NCP cir-

cumference. At the points of contact of the DNA strand and NCPcomplex (when the

DNA initially winds about the NCP and when it departs from theNCP surface) another

single fifth histone called H1 is thought to be present, binding onto the proximate NCP

surface. It is known that the regular DNA-protein combinations can be found once every



34Å

3.4Å

20Å

(a)

57Å

110Å

(c)
Figure 1.1: (a) The representation of the DNA double helix [1]. (b) The chemical structure of

sugar (deoxiribose), bases (adenine, guanine, thymine andcytosine), and phosphate
groups. (c) Dissociation of a DNA-NCP complex yields a DNA strand and eight his-
tone proteins. [2, 3]
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200 base-pairs [3]. The NCP or histone core binds to about 150base-pairs of DNA, while

the histone H1 binds to the remaining 50 base-pairs. Fig 1.1(c) illustrates the DNA−NCP

wrapping and dissociation structure.

The nucleosomal DNA assemblage has primary roles in its ability to serve as a template

for essential enzymatic activities such as replication, recombination, repair and transcrip-

tion [4]. In nature, plants are subjected to salt concentration changes because they are

largely immobile, but the environment conditions fluctuate. The high salinity of soils are

attributable to natural processes such as weathering of mineral rocks and human interven-

tion. Some experimental work has revealed the effect of Na, Cd and As ions on genotoxic

cell damage. The genotoxic cell effect could be due to DNA strand breaks, DNA-protein

cross-linking, oxidative DNA-damage, enhanced proliferation, depressed apoptosis and

inhibited DNA repair [5–8]. However the mechanism of ions indamaging the nucleoso-

mal DNA and the mechanism of certain molecules in increasingthe salt tolerance of the

organism are not well understood.

1.2 Molecular Dynamics Simulation

Following Yonezawa [9], there exists limitations in experimental research such as:

a. The experimental inaccessibility of materials or situational setup

b. The non-observability of a physical property

c. The difficulty of controlling and defining the experimental environment

d. The limitation of state-of-art apparatus.
On the other hand, computer simulations can address all these points and even provide a

much wider scope in the elucidation of fundamental physics [9].

In molecular dynamics (MD) the spatial coordinates are obtained by numerically solv-

ing differential equations of motion and, hence, the positions are functions of time. The

positions reveal the dynamics of individual molecules as ina motion picture. In other

simulation methods the molecular positions are not temporally related. For instance, in

Monte Carlosimulations the positions are generated stochastically such that a molecular

configurationr N depends only on the previous configuration [10].

MD is applied to a system containing several hundred to several thousand atoms. This
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Figure 1.2: Periodic Boundary Condition.

system will be much affected by the surface of the MD cell thatcontain the particles.

Bulk properties cannot be obtained by sampling over the entire cell because of these ef-

fects. To remove the surface effects, periodic boundary conditions (PBC) are used. In

applying the PBC, we define our system containingN molecules inside a cubic box with

volumeV as theprimary cell, where this primary cell is surrounded by its exact replicas

in all directions. These replicas are calledimage cells. This cell replication is periodically

extended and forms a macroscopic system which represents the bulk system of interest

[11]. Fig. 1.2 depicts the application of periodic boundaryconditions. As a mathematical

illustration, take any reference point within the surface of a cubic box with box length

L, where the initial space coordinate of particlei is r i(x0
i , y0

i , z0
i ), wherex0

i , y0
i , z0

i are the

distances between particlei and the origin over the three Cartesian coordinates. Suppose

a particle moves outside the cubic box (i.e. in thex direction), where the new coordi-

nate of particlei is (r i(xt
i +L), yt

i , zt
i). If PBC are applied, the new coordinate of particle

i becomesr i(xt
i , yt

i , zt
i). Any atoms can freely move to other adjacent cells but the sum

total of atoms in each cell will remain constant since any atom leaving a cell wall will

spontaneously enter the same cell through the opposite wall[12].

In the canonical ensemble the number of particles,N, the volume,V, and the temperature,

T, are fixed. Because the temperature is defined by the ensembleaverage of the kinetic

energy, it is possible to fixT by adjusting the particles’ velocity. Several types of ther-

mostats, such as due to Berendsen, Langevin and Nose-Hooverhave been proposed. The
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Langevin thermostat (used here) utilizes the Langevin equation:

ma=−ξν+ f (r)+ f ′, (1.1)

wherem is the particle mass,a is the acceleration,f (r) is the conservative force,ν is the

velocity,ξ is a frictional constant, andf ′ is a random force. The random force is randomly

determined from a Gaussian distribution.

The interactions between particles are determined by some equations called force fields.

Force field methods (also known as molecular mechanics) ignore the electronic motions,

and calculate the energy of the system as a functions of nuclear positions only [13]. Some

examples of force fields are those generated by bond stretching, angle bending, torsional

twist, out-of-plane bending, cross interactions term, electrostatic interactions, and van der

Walls phenomena. Further details about the force fields usedin our study is given in

Chapter 2.

It is often convenient in MD simulation to use reduced units.Reduced units are obtained

by converting constant values to a preferred scaled constant (e.g. 1.00) for a minimum set

of independent variables. An important reason to use reduced units [see Frenkel and Smit

[12]] that many combination of variables like density, temperature, energy and length all

correspond to the same state in reduced units. Another reason is the numerical values

of the quantities that we are computing (e.g. energy and acceleration) are either much

less or much larger than 1. If we operate using such quantities in our standard floating

point arithmetic, we face the risk that we might obtain results that were due to overflows

and underflows. Further descriptions of reduced unit used inthis research is given in

Appendix A.
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Chapter 2

RESEARCH METHODOLOGY

This chapter give details of the simulation methodology. Italso discloses how a DNA−NCP

salt solution system is modeled in a manner suitable for MD implementation.

2.1 The DNA, NCP and NaCl Salt Models

The DNA double helix is modeled as 360 negatively charged monomer spheres with ra-

dius 10 Å and charge -12 (all in reduced units) linked linearly by a harmonic bonding

potential. Each of these spheres represent 6 base pairs. In acell, the DNA strand wraps

around the so called nucleosome core particle (NCP). In thisstudy, the NCP is represented

by a large sphere with radius 35 Å and charge +150. The simulations are performed both

with and without the NCP particles, which when present are 12in number. A number of

counterions are added to neutralize the charge of the system. The NaCl salt is represented

as a radius 2 Å charged sphere of either +1 or -1 charge modeling single Na+ or Cl− ions

respectively. These size reflect the actual size of the respective particles as determined

by structured analysis [2]. For DNA concentration 0.005 mg/ml, the salt concentration

was chosen to be in the 0.0-0.25 mM range while for DNA concentration 2.0 mg/ml

the salt concentration is within the 0.0-100 mM range. The upper limit corresponds to

the maximum computational resources available here. The Bjerrum length of 7.13 Å at

temperature 300 K corresponds to water solvent dielectric.The Langevin thermostat is

applied to regulate the equilibrium temperature in the NVT ensemble. Periodic boundary

conditions are applied to avoid surface effects.



2.2 Research Equipment

The computers used to perform the simulations included the following:

1. High performance computing (HPC) cluster system at PusatTeknologi Maklumat

(PTM), University of Malaya. This HPC system consist of 1 master node with 4

processors and 4 compute nodes with 8 processors each. The master Intel Xeon

X5272 3.40GHz processors and total memory of 16.5 GB. All compute nodes has

Intel Xeon E5440 2.83GHz processors with total memory 16.5 GB per node.

2. Single multiprocessing (SMP) machine at Pusat TeknologiMaklumat (PTM), Uni-

versity of Malaya. This SMP consist of Intel Dual-Core Itanium 9130M processors.

The total memory of this SMP machine is 128 GB.

3. IBM-Cluster at MIMOS Berhad. This cluster 1 master node with 4 processors and

8 compute nodes with 4 processors each. The master node has Dual-Core AMD

Opteron 2218 processors with total memory of 4 GB. All compute nodes have Dual-

Core AMD Opteron 2220 processors with total memory 16.5 GB per node.

2.3 Research Method

ESPResSo1, Extensible Simulation Package for Research on Soft Matter, is the package

used for molecular dynamics simulation. ESPResSo runs on linux platforms which re-

quire additional software which include TCL2, FFTW3and MPI library (i.e.: OpenMPI4,

LAM/MPI 5, MPICH6). In order to run a simulation, we need to submit a TCL script

to an ESPResSo executable file. Two TCL scripts were used for our simulation. The first

form is used for′equilibrium′ run. The first form declares the particles properties, system

parameters, force fields and the energy measurement commands. We run the TCL script

until the system reaches equilibrium before using the second TCL script for production

runs which contain commands for the sampling of energy, end-to-end distance, radius of

1http://espressowiki.mpip-mainz.mpg.de/wiki/index.php/Main_Page
2http://www.tcl.tk/software/tcltk/
3http://www.fftw.org/
4http://www.open-mpi.org/software/ompi/v1.4/
5http://www.lam-mpi.org/7.1/download.php
6http://www.mcs.anl.gov/research/projects/mpich2/
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gyration, radial distribution function, contour length, average bond angle and particle co-

ordinates for snapshots. Examples of both TCL scripts are given in Appendix B.

For further and more detailed analysis utilizing hypernetted chain approximation, Percus-

Yevick approximation, persistence length algorithms, linear regression and standard de-

viation formulas and expression for harmonic bond constantdetermination, coordination

number, determination using Debye-Huckel approximation,etc, we write our own C++

or TCL codes to numerically derive the above properties [20–22].

2.4 Particles Properties

The table below lists the physical variables used in simulation. These values are chosen to

mimic the particles properties obtained from experiment. The radii of DNA and NCP are

Parameter DNA monomer NCP Na Cl

Radius (Å) 10.0 35.0 2.0 2.0

Soft core radius (Å) 2.0 2.0 2.0 2.0

Hard core radius (Å) 8.0 33.0 0.0 0.0

Charge (e) -12 +150 +1 -1

Mass (×10−26 kg) 612.62 18026.68 3.819 5.889

Mass (reduced unit) 160.41 4270.26 1.0 1.54

Table 2.1: The properties of DNA, NCP, Na+ and Cl− in simulation

taken from the experimental data which are presented in the Introduction Chapter. The

radii of Na+ and Cl− are chosen from the data given by Simonin et al. [18] and [19].In

their work, they fitted the experimental mean activity coefficient of some simple salt so-

lutions with theoretical calculation. They applied mean spherical approximation (MSA)

as the theoretical framework with only one adjustable parameter, the effective ionic di-

ameter. Simonin et al. [18] obtained the effective diameterfor the cation Na+ in NaCl

solution as 3.90Å. Fawcett and Tikanen [19] obtained 3.88Å for the diameter for Cl− ion

as the best fit to the experimental mean activity coefficient of NaCl solution. The radius

of a particlei defines the closest distance for any other particle’s surface contact to the

surface of particlei. We apply the Lennard-Jones force field to control and fix the closest
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ionic distances possible.

Regarding the values of hard core and soft core radius, the main purpose of selecting these

values is not related to the electronic configuration, electron density or van der Waals and

London interactions between ion-ion or ion-solvent pairs.This is because the Lennard-

Jones force-field used in this simulation is for the purely repulsive part and the attractive

part (due to London forces) is omitted by truncation of the Lennard-Jones potential (Fig.

2.3). Thus the value of the soft core radii of all ions are chosen to provide a smooth repul-

sive displacement when two particles meet in contact. From Fig. 2.3 we notice that the

steep Lennard-Jones energy increase (implying a large repulsive force) about the closest

ionic contact (roff +σ) prevents two particles from getting closer than the sum of their

radii.

2.5 System Parameters

The system parameters applied for this research are given inthe Table 2.2. The simulation

Parameter value

Temperature (K) 300

Temperature (reduced unit) 1

Bjerrum length (Å) 7.13

DNA bond length (Å) 20.4

Thermostat Langevin

Ensemble NVT

Table 2.2: The general parameter of the simulation system

uses reduced units. The detail derivation of the reduced units used in this research is given

in Appendix A. The NVT ensemble implies that the simulationsare conducted in fixed

number of particles, volume and temperature. DNA bond length 20.4 Å corresponds to

the DNA axial distance comprising six base pairs (i.e. 6×3.4).
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2.6 Force Fields

2.6.1 Intramolecular Force Fields

Harmonic Stretching Bond

The monomer-monomer bonding interaction is governed by theharmonic oscillator po-

tential:

Uh(r) = kh(r − rh)
2, (2.1)

wherekh is the harmonic bond constant andrh is the equilibrium harmonic distance. Fig-

ure 2.1 depicts the harmonic stretching phenomenon. To determinekh, we equilibrate the

rh

r

~Fh

Figure 2.1: An illustration of a monomer-monomer displacements (grey circle) from its equilib-
rium position (white circles).

force between two bonded monomers. The detail calculation of kh andrh will be given at

the end of this Chapter.

Bending Angle

The bending angle potential of three consecutive monomers is defined by the following

equation:

Uθ(θ) = kθ(θ−θ0)
2, (2.2)

wherekθ is the bending constant.θ0 is the equilibrium bending angle, which equals to

zero for our DNA polymer model [see Fig. 2.2]. To obtain thekθ, we relate it with

the experimental DNA persistence length. The details of DNApersistence length are

described in Chapter 3.
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θ

Figure 2.2: An illustration of a bending angle atomic displacement (grey circle) from its equilib-
rium bending angleθ = θ0 = 0 (white circles).

2.6.2 Intermolecular Force Fields

Lennard-Jones Interaction

To model the short range interaction, we use the Lennard-Jones (LJ) potential. LJ poten-

tial equation is [14]:

ULJ(r) = 4εLJ

{

(

σ
r − roff

)12

−

(

σ
r − roff

)6

+cshift

}

, (2.3)

FLJ(r) = 4εLJ

(

12σ12

(r − roff)13 −
6σ6

(r − roff)7

)

, (2.4)

whereεLJ = kBT = 4.14195× 10−21J is the Lennard-Jones energy unit,r is the inter-

particle distance,σ is the sum of the soft core radius,roff is the sum of the hard core

radius andcshift is a constant such thatULJ = 0 at distancercut. rcut is a distance parameter

defined where at a distance larger that thercut the LJ interaction vanishes andULJ = 0.

The sixth power (r−6) term of the LJ potential (Eq. 2.3) represents the attractive van der

Walls interaction due to electron correlations [11]. The twelfth power term (r−12) mod-

els qualitatively the strongly repulsive interaction based on the Pauli exclusion principle.

There are no strong argument concerning the exponent of the term r−12 in Eq. 2.3. The

r−12 factor is computationally convenient because its value is the square of ther−6 term.

In this researchrcut = 21/6 σ, implying that the purely repulsive Lennard-Jones potential

is used.

Coulombic Interaction

The Coulombic potential represents a long range interaction. ESPResSo uses the particle-

particle-particle mesh (P3M) method to calculate the Coulombic interaction [15–17]. The
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r

ULJ

σ εLJ

roff

Figure 2.3: The energy profile of Lennard-Jones (LJ) potential (Eq. 2.3). The solid line is the
original LJ model. The dashed line represents the shifted and truncated LJ potential
at rcut = 1.1225σ. The vertical dotted line represents the sum of hard core radii of
interacting particles.

Coulombic-P3M potential is given by [14]:

UC-P3M(r) = lBkBT
q1q2

r
, (2.5)

whereqi is the charge of particlei, r is the inter-particle distance,T is the temperature

andkB is the Boltzmann constant. The Bjerrum length,lB, is defined by:

lB = e0
2/4πεkBT, (2.6)

wheree0 is the elementary proton charge 1.602×10−19C andε is the dielectric constant

of the medium.

2.7 Particle Amounts in the Simulation

The system set chosen is a fixed number of DNA monomers and NCP particles in a cubic

box of known volume implying a fixed DNA monomer and NCP concentration. We then

add salt ions into this system. Below are the number of DNA, NCP, counterion and salt

12



particles that must be present to correspond to the stated concentration in our simulation

cubic box. The set described here is given for purposes of illustration only. Only a subset

of these system size were simulated because our program algorithms and computers could

not cope with larger particle numbers.

2.7.1 DNA−Salt System

DNA polymer = 1

DNA monomer amount / polymer = 360

NCPs amount=0

Na+ counterion amount=4320

DNA Concentration Box Length Salt Concentration Na+ + Cl− Total Particle

(mg/ml) (Å) (mM) from Salt Number

0.005 7612.0052 0.001 530 5210

0.005 7612.0052 0.01 5310 9990

0.005 7612.0052 0.1 53102 57782

0.005 7612.0052 0.25 132758 137438

2.0 1033.1287 0.01 12 4692

2.0 1033.1287 1.0 1326 6006

2.0 1033.1287 10.0 13276 17956

2.0 1033.1287 50.0 66382 71062

2.0 1033.1287 100.0 132766 137446

Table 2.3: Particle amounts in the DNA-Salt system (withoutNCP in simulation).

2.7.2 DNA−NCP−Salt System

The following data incorporates NCP particles into the simulation. The numbers corre-

spond to the number of particle in the simulation cell (box).

DNA polymer = 1

DNA monomer amount / polymer = 360

NCPs amount=12
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Na+ counterion amount=2520

DNA Concentration Box Length Salt Concentration Na+ + Cl− Total Particle

(mg/ml) (Å) (mM) from Salt Number

0.005 7612.0052 0.001 530 3422

0.005 7612.0052 0.01 5310 8202

0.005 7612.0052 0.1 53102 55994

0.005 7612.0052 0.25 132758 135650

2.0 1033.1287 0.01 12 2904

2.0 1033.1287 1.0 1326 4218

2.0 1033.1287 10.0 13276 16168

2.0 1033.1287 50.0 66382 69274

2.0 1033.1287 100.0 132766 135658

Table 2.4: Particle amounts in the DNA−NCP−Salt system.

2.8 Determining the Harmonic Bonding Constantkh and

the Equilibrium Harmonic Distance rh

We determine the parameterkh and rh in Eq. 2.1 for what follows. The defined bond

length,b, between two monomers is 20.4 Å. At equilibrium, we assume that the total force

between two bonded monomers is zero when the monomer-monomer distance equals the

bond lengthb.

~Ftotal(b,Ω) = ~Fharmonic(b,Ω)+~Fbending(b,Ω)+~FLJ(b,Ω)+~FCoulomb(b,Ω) = 0, (2.7)

whereΩ are any variables involved in the respective force calculations. We regard the

charge repulsions between non-adjacent monomers gives secondary effects compared to

the adjacent monomers repulsion. In addition, the repulsive forces between a monomer

and other monomers from opposite directions will decrease the nett force. Computing

the additive forces from non-adjacent monomers can be complicated since we need to
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account the position changes due to bending. Then we calculate ~Ftotal(b,Ω) as the force

between two adjacent monomers only. Because this force onlyinvolves two contiguous

monomers,~Fbending= 0. We calculateFLJ(b,Ω) andFCoulomb(b,Ω) with the parameters

stated earlier for our simulations.

~FLJ(b) = 4εLJ

(

12σ12

(b− roff)13 −
6σ6

(b− roff)7

)

, (2.8)

whereεLJ = 4.142×10−21, σ = 4×10−10 m, b= 20.4×10−10 m, androff = 16×10−10

m. Thus:

~FLJ(b) = 4×4.142×10−21
(

12(4×10−10)12

(4.4×10−10)13 −
6(4×10−10)6

(4.4×10−10)13

)

= 16.568×10−21
(

2
(1.1)13 −

1
(1.1)7

)

×1010×1.5

= 1.64×10−11= 0.164×10−10N

~FCoulomb(b) = lBkBT
q1q2

b2 , (2.9)

with lB = 7.13×10−10 m, kB = 1.38×10−23, q1 = q2 = −12, andb= 20.4 Å = 20.4×

10−10 m.

~FCoulomb(b) =
7.13×10−10×1.38×10−23×300×−12×−12

(20.4×10−10)2

= 1.021×10−10N .

Inserting~FLJ(b) and~FCoulomb(b) in Eq. 2.7 (~Fbending= 0). We obtain:

~Ftotal(b) = ~Fharmonic(b)+~FLJ(b)+~FCoulomb(b) = 0 (2.10)

~Fharmonic(b) =−kh(b− rh) =−~FLJ(b)−~FCoulomb(b)

kh(b− rh) = (0.164+1.021)×10−10

kh(20.4×10−10− rh) = 1.185×10−10 . (2.11)
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The unit ofrh in Eq. 2.11 is the meter. For simplification, we omit the factor 10−10 to

obtain therh in Angstroms. Thus:

rh = 20.4−
1.185

kh
. (2.12)

We use reduce units for the harmonic constantkh. We had calculated the relationship

betweenkh and its reduced unitk*
h for our simulation, wherek*

h = kh × 122.794. See

Appendix A for the details of thekh−k*
h calculation. Then

rh = 20.4−
1.185

k*
h/122.794

(2.13)

= 20.4−145.511/k*
h . (2.14)

The reason for replacingkh with k*
h in Eq. 2.13 is because we wish to obtain the relation-

ship betweenrh andkh directly using the parameterk*
h, which is parameter used in our

simulation. The value ofk*
h in Eq. 2.14 will be converted to its unreduced form in the

Boltzmann integration that follows.

The Boltzmann probability factor is

P(r) =
e−U(r)/kBT

∫
e−U(r)/kBT dr

, (2.15)

assuming the degeneracy is the same over all possibler. Then

r̄ =
∫

rP(r) dr =

∫
re−U(r)/kBT dr∫
e−U(r)/kBT dr

, (2.16)

where ¯r is the average equilibrium distance between bonded monomers. It equals the

DNA bond length 20.4 Å. The integration of Eq. 2.16 is performed from zero to in-

finity. The potential energyU(r) contains the Lennard Jones, Coulombic and harmonic

stretching potential energies.

r̄ =

∫ ∞
0 re−(ULJ(r)+UCoulomb(r)+Uharmonic(r))/kBT dr∫ ∞
0 e−(ULJ(r)+UCoulomb(r)+Uharmonic(r))/kBT dr

. (2.17)
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Figure 2.4:k*
h and ¯r (written rbar in the graph) relationship obtained from the integration ofEq.

2.17.

The integration of the Eq. 2.17 involved a complicated gammafunction, where numeri-

cal integration was used. By choosing a value ofk*
h, we obtainrh from Eq. 2.14 andkh

(kh = kh
∗/122.794). Then we calculate theULJ, UCoulombandUharmonicas functions ofr and

use them as inputs for the integration of Eq. 2.17. In this numerical integration we apply

the composite Simpson [23] rule withr ranging from 0−15.000 Å and the grid width,

∆r, 0.02 Å. In our observation, increasing the range ofr or reducing the grid width,∆r,

does not change the ¯r resulted significantly.

Table 2.5 and Fig. 2.4 give the relationship betweenk*
h, rh, and ¯r as the result of the

integration of Eq. 2.17. We intend to obtain appropriate parameters for the equilibrium

monomer-monomer distance 20.4 Å. Table 2.5 shows that usingk*
h ≥ 2500 all yield the

average monomer distance 20.4 Å. Thus in our simulation we choose the minimumk*
h

= 2500 and the correspondingrh= 20.341796 Å (from Eq. 2.14). The minimum value

is chosen so as to avoid computational singularities and overflows that would result from

higher values. Energy non-conservation would also result since we are numerically inte-

grating the dynamical equations. To confirm the correctnessof the chosenkh
∗ andrh, in

Fig. 2.5 we give the average contour length (Fig. 2.5.a) and bond length (Fig. 2.5.b) of

polyelectrolyte chain from some simulations. The contour length of a polymer chain is
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k*
h rh r̄

0.5 -270.622 20.834

1.0 -125.111 20.867

5.0 -8.702 21.010

10.0 5.849 21.034

50.0 17.49 20.781

100.0 18.945 20.652

250.0 19.818 20.522

500.0 20.109 20.459

750.0 20.206 20.4352

1000.0 20.254 20.423

2500.0 20.342 20.405

5000.0 20.371 20.401

7500.0 20.381 20.40

10000.0 20.385 20.40

25000.0 20.394 20.40

50000.0 20.397 20.40

75000.0 20.398 20.40

100000.0 20.399 20.40

Table 2.5: k*
h, rh and ¯r relationship obtained from integration of Eq. 2.17.

the length at when the chain is set linearly without imposinga strain force on the system.

Thus contour length is the sum of all monomer-monomer bond distances or the length

of a straight DNA. We compare the contour length from simulations with the theoretical

contour length 359×20.4= 7323.6 Å. From Fig. 2.5, the average contour length and the

bond length data from our simulations are in good agreement to the theoretical values.

The error estimations of the average values from simulations are below 0.1 % from the

theoretical expectation. Thus the chosen values fork*
h andrh are reasonable with respect

to experiment. In the simulation box, the extra salt screen the electrostatic interaction

leading to a slight departures to the predicted contour length.
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Figure 2.5: Average contour length (a) and bond length (b), both with two standard deviation
error bars, from simulations using the harmonic constant 2500 (in reduced unit) and
equilibrium bond length set at 20.3418 Å. Simulation results are compared to the
theoretical values.
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Chapter 3

DNA FLEXIBILITY AND

PERSISTENCE LENGTH

3.1 Definition and Calculation of Persistence LengthLP

Persistence length is the variable to describe the stiffness of a polymer chain. The per-

sistence length is the average projection of the end-to-endtangent vectors of polymer

chain at a distances from the initial vector for a chain of an arbitrarily length (sometimes

defined in the limit of infinite chain length). Evans and Wennerstrom [24] defined the

persistence length as the length over which two parts of the chain keep their orientational

correlation and Cifra [25] referred the persistence lengthas the distance over which the

direction of the chain persists.

3.1.1 Calculating Persistence Length with Cosine Correlation Func-

tion

The persistence lengthLP can be determined from the following equation:

〈cosθ(s)〉= e−s/LP, (3.1)



wheres is the segment length of the chain as depicted if Fig. 3.1. Thesegment points

can be taken at any point along the chain. The angleθ is the result of the orientational

difference between two end points of any segments with length s. To find the persistence

s1
b

s2b

s3b

Figure 3.1: A continuum chain showing some
points that determine chain seg-
ments. The arrows indicate the ori-
entation at each point segment.

b

1
2

θ1

3

θ2

4

n

θ3

Figure 3.2: A discrete chain. The angleθ1, θ2

and θ3 are formed by two ends of
segments with lengthsb, 2b and 3b.

length of a discrete polymer model with bond lengthb, Eq. 3.1 can be modified as follows:

〈cosθ(i, i +k)〉= e−kb/LP, (3.2)

whereθ is formed by the orientation difference ofith and the(i +k)th monomer. Fig. 3.2

explains how Eq. 3.2 is used for a polymer withn total monomers. The segment lengths

is equal tokb. Fork= 1, 2 and 3 with respect to monomer 1, the segment length increase

asb, 2b and 3b. Each segment lengths will generate a certainθ. To get the average cosθ

from Eq. 3.2, the cosθ for a particular segment lengths is used for all possible segments

for the entire polymer. To give a practical example, Eq. 3.2 can be written as:

|cosθ(i, i +k)|= |cosθ(s)|=
∣

∣

∣

∣

~ui ·~ui+k

|ui ||ui+k|

∣

∣

∣

∣

=

∣

∣

∣

∣

~ui ·~ui+k

s2

∣

∣

∣

∣

= e−s/Lp (3.3)

or

ln |〈cosθ(s)〉|=−
1
LP

s . (3.4)
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The reason for putting the absolute marks in Eq. 3.3 because the tangent of two end points

of segment is modeled by a positive exponential form (Eq. 3.1). To obtain the persistence

length, the cosθ(s) is averaged from the 1st monomer to the
(

n− s
b +1

)th
monomer. This

average is plotted versuss. From Eq. 3.4, the slope of the ln|〈cosθ(s)〉| vs. s is equal to

−1/LP.

3.2 The Relationship between Persistence Length, Bend-

ing Modulus (B) and Angle Force Constant (kθ)

3.2.1 Neutral Polymer Persistence Length

This subsection will gives the relationship between persistence lengthLP and bending

stiffnessB as described by [26]. Recall for a single chain with total lengthL, any segment

of lengthswill have the two end points, and the tangent vectors will make an angleθ; we

shall ensemble averageθ by considering all possible length segments. Then fors≪ LP,

θ would be exceedingly small, Then the following:

〈cosθ(s)〉 ≈ 1−s/LP, (3.5)

and forθ −→ 0, cosθ(s)≈ 1−θ2(s)/2, which from Eq. 3.5 leads to

〈θ2(s)〉 ≈ 2s/LP . (3.6)

Since Eq. 3.6 is obtained from the assumption thatθ is close to zero, this relationship

holds for only stiff chain such as DNA. The total elastic bending energy of a segment

with lengths is:

∆E =
1
2

sBρ2 , (3.7)
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whereρ is the curvature which is the inverse of the radius of curvature. B is the bending

modulus/stiffness of the polymer. The energy written in Eq.3.7 is a local variable, where

∆E/s= 1/2Bρ2 is the energy per unit length of a segment with lengths and radius of

curvature 1/ρ. Sinceρ = θ/s, then

∆E =
1
2

sB

(

θ
s

)2

=
1
2s

Bθ2. (3.8)

The angleθ is formed by the intersection of the tangents of the ends of the curve with

lengths. Then put the elastic bending energy in the Boltzmann integration to obtain the

average curve. In order to achieve the standard result, Grosberg and Kholkhlov [26] used

the standard Boltzmann averaging, but introduced a factor of 2 which does not appear in

the denominator partition function because "2 independentplanes" (page 8, [26]). Their

derivation reads:

〈θ2(s)〉=
2
∫ π

0 e
− ∆E

kBT θ2dθ
∫ π

0 e
− ∆E

kBT dθ
=

2
∫ π

0 e
−

Bθ2/2s
kBT θ2dθ

∫ π
0 e

−
Bθ2/2s
kBT dθ

=
2skBT

B
(3.9)

for s≪ B/kBT. Eq. 3.6 and 3.9 results in the following:

〈θ2(s)〉=
2s
LP

=
2skBT

B
,

Lp=
B

kBT
(standard result). (3.10)

The Eq. 3.10 is the well-known equation in the worm-like chain (WLC) theory relating

the persistence length and bending stiffness [27]. TheLP−B relationship given by Eq.

3.10 suggests that the value ofLP is only a function ofB for fixed temperature.

To test the reliability of Eq. 3.10, we have done a simulationfor a single neutral polymer

having bending stiffnessB (Section 3.6). There is no salt and the polymer chain is un-

charged. The parameterB is included into the parameterkθ in the bending energy force

fields (see Chapter 2, Eq. 2.2) in the following manner.
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∆E =
B
2s

θ2 =
1
2

kθθ2 , (3.11)

kθ =
B
s
. (3.12)

Becausekθ is a parameter for the monomer-monomer bond, the bending potential energy

from Eq. 3.11 is a local variable. Then the segment lengths approximately equals the

monomer-monomer distanceb (s≈ b) if θ close to zero. Assumeθ is very small for stiff

chain, then by utilizing Eq. 3.10 we obtain

kθ =
B
b
=

LP

b
kBT . (3.13)

If we expect a DNA chain has a certain persistence length (LP), we employ Eq. 3.13 to

obtain thekθ parameter for simulation.

3.2.2 Polyelectrolyte Chain Persistence Length

TheLP−B relationship derived for a neutral polymer cannot in general be used for poly-

electrolyte chains without modification. The uniform charge along the polyelectrolyte

chain induce repulsive forces among the charged point monomers which results in a larger

persistence length. In this section we review some polyelectrolyte persistence length the-

ories before presenting our own ideas.

3.2.2.1 Odijk-Skolnick-Fixman (OSF) Theory

The idea behind OSF theory is to determine the electrostaticpersistence length by cal-

culating the energy difference between circular and rodlike conformation. This is ac-

complished by adding this difference to the bending energy contribution (Odijk [28] and

Skolnick and Fixman [29] in [30]). Eq. 3.14 represents the electrostatic energy difference

of two configurations.

∆Uelectrostatic(θ)
kBT

= lBq2
∞

∑
n=1

(

e−κr(n)

r(n)
−

e−κbn

bn

)

≈
lBq2

8κ2b3θ2, (3.14)
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wherelB is the Bjerrum length,q is the monomers valence,κ is the inverse of the Debye

screening length andr(n) is the straight distance between 2 monomers center separated

by n bonds in the circular conformation (r(n) ≈ bn(1− n2θ2/24) for θ ≪ 1). We can

derive the total energy change∆Ubond as

∆Ubond

kBT
≈

∆Ubending(θ)
kBT

+
∆Uelectrostatic(θ)

kBT
(3.15)

=
Bθ2

2b
+

lBq2θ2

8κ2b3 =
1
2

(

B+
lBq2

4κ2b2

)

θ2

b
. (3.16)

In OSF theory, it is assumed that the persistence lengthLP can be identified withkθ (i.e.

LP =
kθb
kBT ). By comparing Eq. 3.13 and 3.14 we deduce thatkθ =

(

B+ lBq2

4κ2b2

)

1
b. Hence

from 3.13 we derive

LP = L0
P+LOSF=

B+BOSF

kBT
≈

(

B+
lBq2

4κ2b

)

/kBT , (3.17)

whereLOSF=
lBq2

4κ2b2 ×
1

kBT .

The termL0
P is defined as the persistence length of the uncharged polymerandLOSF is the

electrostatic persistence length. Clearly, OSF theory predicts a linear contribution to the

persistence length for charge interactions.

3.2.2.2 Dobrynin Theory

Experimental determination of persistence length showed aquadratic dependence torD at

relatively low salt concentration (whenrD is large) and a linear dependence at high salt

concentration (whenrD is is small). On the other hand, Eq. 3.17 shows that it is in agree-

ment with experiment only for low salt concentrations. For higher salt concentration,

Dobrynin [30] has attempted to modify the original OSF theory by including torsional

terms in the chain deformation energy. In the original OSF theory, the chain deformation

energy is a function of the bending angleθ with no torsion angle contribution. The deriva-

tion of [30] results in theκ−1 dependence of the electrostatic persistence length (LWLC),

where

LP = L0
P+LWLC =

B+BWLC

kBT
=

(

B+
0.32lBq2

κb

)

/kBT (3.18)
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3.2.2.3 Manning Theory

Manning [31] proposed a method to calculate DNA persistencelength by relating the

DNA persistence length (LP) and the persistence length of null isomer DNA (LP
∗), a hy-

pothetical structure where DNA phosphate groups are not ionized. The result of this

theory is in contradiction to the additive relationship (Eq. 3.17) of the OSF theory. The

relationship betweenLP andLP
∗ from Manning’s theory is given by:

LP =
(π

2

)2/3
R4/3(LP

∗)2/3Z−2lB
−1
[

(2Zξ−1)
κbe−κb

1−e−κb −1− ln(1−e−κb)

]

(3.19)

whereb is the charge spacing of DNA,R the radius of DNA (assumed cylinder),ξ the

charge density (ξ = lb/b), z the counterion charge and 1/κ Debye screening length which

characterizes the electrostatic strength of the salt solution. Generally the parameters stated

above is adapted to the typical structure of B-DNA [31] in salt-water solution (b= 1.7 Å;

R= 20 Å; lB = 7.13 Å; ξ = 7.13/1.7= 4.2; Z = +1 for Na+). Manning [31] proposed

the value ofLP
∗ is equal to 74 Å based on the experimental persistence lengthdata at 0.1

M NaCl (550 Å).

3.3 A New Derivation of Polyelectrolyte Persistence Length

For the following we propose a different scheme for polyelectrolyte persistence length

calculation. Before we proceed to our derivation, we first discuss the previous three theo-

ries.

Eq. 3.9 is the "foundation" for equations relating the persistence lengthLp to the bending

modulusB (Eq. 3.10). AnyLp derivation starting with an inappropriate application of Eq.

3.9 results in unrealistic values for the persistence length. In the following, we emphasize

three rules that should be obeyed when using Eq. 3.9.

(A) Since the energy difference∆E in the Boltzmann probability denotes the total energy

difference, the electrostatic energy changes must be included for a charged polymer.

(B) The average〈θ2(s)〉 is a quantity for a continuous segment, not a discretely bonded

monomer or a single point charge within a segment. This can beseen from Eq. 3.7
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which utilizes the curvature implying a continuous line.

(C) Eq. 3.9 cannot become Eq. 3.10 if the criterias≪ B/kBT is not obeyed. Fig. 3.3

shows the value ofLP calculated by Eq. 3.10 and 3.9 at different ratios of (B/kBT)

over s. The figure shows deviation of the equalityLP = B/kBT (Eq. 3.10) when

B/kBT ≤ s.

 0

 50

 100

 150

 200

 250

 300

 0  0.5  1  1.5  2

L P

(B/kBT)/s

LP Integration Result

LP = B/kBT (Original)

Figure 3.3: LP obtained by Eq. 3.10 (dashed line) and 3.9 (solid line) at different ratios of (B/kBT)
overs; s is fixed at 7×20.4= 142.8Å

In the following, some remarks on how previous theories applied Eq. 3.9 and their confor-

mity to the three rules above are given. Then the differencesto our derivation are pointed.

OSF theory :

1. There is only a single energy summation in Eq. 3.14, because OSF theory calculates the

delta conformational energy per monomer bond. We are apprehensive at this expression

since they neglected the importance of averaging in term of the segment conformation.

This apprehension arises because the foundational model ofpersistence length (Eq. 3.1

and 3.9) requires the ensemble averaging over different segment lengths. Since the OSF

theory only calculates the energy per monomer bond (∆Ebond), it implies that the energy

changes per segment (∆Esegment) (where the segment hasn+1 monomers)

∆Esegment= ∆Ebond× (n+1) . (3.20)
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This expression is incorrect because it does double counting of the electrostatic energy

calculation (cf. Eq. 3.21). Thus we infer that the OSF energyexpression does not repre-

sent a characteristic segment which breaks rule (B).

2. The summation limit in Eq. 3.14 forn infinity. Since the segment lengths= nb, thens

has limit infinity. This summation automatically breaks rule (C) wheres≪ B/kBT.

Dobrynin theory : Its basis is the OSF theory, thus it retains the characteristics of the

OSF theory. They add additional feature which is the torsional term. We comment that

they use the torsional angleφ to model the torsional degeneracy at a certain bending angle

θ. It is probably another alternative if we constructed a degeneracy based on the continu-

ous segment conformation (which is not developed here).

Manning theory : Manning used a different approach compared to the previoustwo. In

Manning, he retained Eq. 3.1 and 3.9 for a neutral polymer. Then he associated the elec-

trostatic extension force between charged monomers by using the force defined from the

counterion condensation theory. He defined the "null isomer" as the neutralized polyelec-

trolyte, where the extension force is balanced by a compressive force. He used elasticity

theories to model the compression force.

In our derivation : We start from Eq. 3.21 and 3.24 to satisfy rule (A) and use Eq.3.22

to conform to rule (B). Our derivation complies at every stage to rule (C).

By including the Coulomb energy in the total chain energy, wecan rewrite the chain

deformation energy for a single polyelectrolyte chain, where the salt effect in the poly-

electrolyte system is included in theκ value, whereκ = 1/rD andrD is the Debye length

[32].

∆E =
Bθ2

2s
+

n

∑
i=1

n+1

∑
j=i+1

lBkBTqiq j exp(−κ r i j )

r i j
. (3.21)

By assuming the polyelectrolyte segment bends in circular conformation (Fig. 3.4), we

obtain

r i j =
s
θ

√

2

(

1−cos

[(

θ
n

)

( j − i)

])

=
nb
θ

√

2

(

1−cos

[(

θ
n

)

( j − i)

])

. (3.22)

28



bc
s= nb

⊗
⊗

⊗
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⊗
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r i j

r = nb
θ

θ

n = the number of bonds

b = the bond length

Figure 3.4: Illustration of a polyelectrolyte segment withlengths which bends in a circular form.
Ther i j distance can be determined by the Cosines law.

Definer i j = nbG, with

G(n,θ, i, j) =
1
θ

√

2

(

1−cos

[(

θ
n

)

( j − i)

])

, (3.23)

where bothi and j denote two individual point charges (monomers) within the polyelec-

trolyte with chargeqi andq j respectively separated by a distance|r i − r j |. TheB ands

are the chain bending modulus and the segment length respectively. Then is the number

of bonds within the segment lengths. For the calculation above, the short range repul-

sive term (such as modeled by the Lennard Jones potential) need not be included in the

chain deformation energy. This is because the distance between pairs are larger than the

repulsive short range interaction distance. Further, the probability for end to end chain

interactions are infinitely small. We rewrite the Boltzmannintegration of Eq. 3.9 by
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including the coulomb energy term in the Grosberg averagingmethod [26].

〈θ2〉=
2
∫ 2π

0 e−
Bθ2/2s

kBT −
∑n

i=1 ∑n+1
j=i+1

lBkBTqiqj exp(−κnbG)
sG

kBT θ2dθ

∫ 2π
0 e−

Bθ2/2s
kBT −

∑n
i=1 ∑n+1

j=i+1
lBkBTqiqj exp(−κnbG)

sG
kBT dθ

(3.24)

〈θ2〉=
2
∫ 2π

0 e
−

(

B+∑n
i=1 ∑n+1

j=i+1
2lBkBTqi qj exp(−κnbG)

Gθ2

)

θ2

2skBT θ2dθ

∫ 2π
0 e−

(

B+∑n
i=1 ∑n+1

j=i+1
2lBkBTqiqj exp(−κnbG)

Gθ2

)

θ2

2skBT dθ

. (3.25)

Although not developed here, it seems very likely that othernon-equivalent averaging

methods are possible other than the Grosberg form. We defer such investigations here

and use the Grosberg form as the first approximation. DefineBnew as:

Bnew= B+
n

∑
i=1

n+1

∑
j=i+1

2lBkBTqiq j exp(−κnbG)

Gθ2 . (3.26)

Thus analogous to the integration of Eq. 3.9 and the derivation of Eq. 3.10, we can write

〈θ2〉=
2
∫ 2π

0 e−
Bnewθ2
2skBT θ2dθ

∫ 2π
0 e−

Bnewθ2
2skBT dθ

=
2skBT
Bnew

,

With the substitution of Eq. 3.6,〈θ2(s)〉 ≈ 2s/LP, we derive

LP =
Bnew

kBT
. (3.27)

We propose that the persistence lengthLP is the sum of the non-electrostatic persistence

lengthL0
P and the additional electrostatic persistence lengthLel

P . By combining Eq. 3.26

and 3.27, we obtain

LP =
B+Bel

kBT
= L0

P+Lel
P , (3.28)
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with

L0
P =

B
kBT

and (3.29)

Lel
P =

Bel

kBT
=

n

∑
i=1

n+1

∑
j=i+1

2lBkBT qiq j exp(−κnbG)

Gθ2 ×
1

kBT
. (3.30)

Returning to the functionG(n,θ, i, j), for any polyelectrolyte with uniform monomer

charge, we can rewrite Eq. 3.30:

Lel
P = 2lBq2

n

∑
i=1

vie−κnbG(n,θ,i)

G(n,θ, i)θ2 , (3.31)

with vi = n− i +1.

We have eliminated the independent variablej from G. We have also add a new variable

vi = vi(i,n) which denotes the Coulomb interaction factor between two point charges with

distanceib within a chain segment of lengthnb. Then the functionG(n,θ, i) is simplified

as follows:

G(n,θ, i) =
1
θ

√

2

(

1−cos

[(

θ
n

)

i

])

.

To simplify theG(n,θ, i) we use the assumption thatθ is small (θ < 1) so that (θi/n)≪ 1.

This assumption is reasonable for a stiff polymer whereθ is small, and this approximation

also accords with the expression in Eq. 3.24 where for largeθ, the probability is negligi-

ble compared to smallθ. Thus withx=
(θi

n

)

, cosx≈ 1− x2

2 , we have

G(n,θ, i) =
1
θ

√

√

√

√2

(

1−

[

1−

(θ
ni
)2

2

])

=
1
θ

√

(

θ
n

i

)2

G(n, i) =
i
n
.
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Eq. 3.31 become:

Lel
P =

2lBq2

θ2

n

∑
i=1

vieκbn i
n

i/n

Lel
P =

2lBq2n
θ2

n

∑
i=1

(n− i +1)
i

e−κbi . (3.32)

It can be shown ([33], symbolic algebra toolbox) that

n

∑
i

n− i +1
i

e−Ai = e−A
(

1
e−A−1

− (n+1)eA ln(1−e−A)

)

+
e−A(n+2)

n+2
(

(n+2)(−n−1+e−A)e2A

n(e−A−1)
− (n+2)(n+1)e2ASA(e

−A,1,n)

)

,

(3.33)

with SA(e−A,1,n) = ∑∞
k=0

e−Ak

(n+k) [34] andA= κb.

From the result (Eq.3.33), the integration of Eq. 3.32 wouldstill yield κb factor in expo-

nential form and the parametersκ andb will not be separated from their multiplication

κb form. The variablei (Eq. 3.32) vanishes and a new variablek is introduced in the

SA(e−A,1,n) formula (Eq. 3.33). However, the variablek in the SA(e−A,1,n) has fixed

values (from 0to ∞) and independents from any other variables. Thus we assume it is the

simplest and most reliable way to simplify the scale of electrostatic persistence lengthLel
P

by the following equation:

Lel
P ∼ 2lBq2n 〈〈 f1(n)〉b e−κb〈 f2(n)〉b〉θ . (3.34)

Notice that we keep theκb multiplication in the exponential factor. In the followingwe

concentrate in obtaining thef1(n) and f2(n) by curve fitting procedures. We note that Eq.

3.34 is only an approximation to Eq. 3.32. In this approximation, f1 and f2 are fitting

parameters to yield the best approximation to Eq. 3.34. We use non-linear least squares to

derive the results. The data for fitting are obtained by numerical integration of Eq. 3.24.

First we perform the numerical integration to test the relationship betweenL0
P andLP as

expressed in Eq. 3.28. Fig 3.5 depicts the numerical integration data, which proves the

linear dependence ofL0
P to LP. The electrostatic persistence lengthLel

P is calculated over
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different Debye length.

Fig 3.6 (a) and (b) are the numerical integration data showing the linear dependence of
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Figure 3.5: TheLP andL0
P relationship (in two different Debye lengthκ−1) obtained from numer-

ical integration of Eq. 3.24. This figure confirms theLP−L0
P relationship in Eq. 3.28

(LP = L0
P+ Lel

P). Eachκ value correspond to a definiteLel
P . For all κ values, a linear

dependency is observed but only two values are depicted.

the electrostatic persistence length (Lel
P) to lB and the quadratic dependence ofLel

P on q.

This data are shown to confirm the dependence of (Lel
P) to lB andq in Eq.3.32 at any fixed

Debye length.
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Figure 3.6: TheLel
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ship to the monomer chargeq (Fig. b) obtained from numerical integration of Eq.
3.24 (for different Debye lengthsκ−1). These figures confirm theLel

P − lB andLel
P −q

relationship in Eq. 3.34
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3.3.1 Details of the Fitting Procedures

The curve fitting for obtainingf1(n) and f2(n) are performed by using theLAB FIT1software

with Levenberg-Marquardtalgorithm (LMA)[35, 36]. The LMA has become a standard

method for fitting nonlinear least-squares functions[37, 38].

We simplify the expression in Eq. 3.34 for the fitting procedure. Becauseq and lB are

independent of thef1(n) and f2(n) function, we may choose arbitrarilyq and lB. We

choose q=1 andlB = 1/2n. Thus Eq. 3.34 becomes

Lel
P (q= 1, lB = 1/2n,κ,b,n)∼ 〈〈 f1(n)〉b e−κb〈 f2(n)〉b〉θ . (3.35)

First we perform numerical integration of Eq. 3.24 to obtain〈θ2〉 as a function ofκ with

range within 1/5≤ κ ≤ 1/2450, which corresponds to salt concentration range 400 mM

- 0.0015 mM. Then we use Eq. 3.6 to obtainLP and Eq. 3.28 to getLel
P (Lel

P = LP−L0
P).

L0
P = B/kBT is a chosen parameter in numerical integration of Eq. 3.24, where we notice

as longL0
P ≪ b, the finalLel

P obtained does not change. In our observation, extending the

κ range did not give any significant change to the final result. Theκ range was divided

into 490 intervals which corresponds to the maximum number of points that can be fitted

for the software used. This integration is repeated for differentn (1 ≤ n ≤ 25). At this

point, we graphLel
P vs. κb at differentn and fit these graphs to the function

Lel
P = Ai exp(κbBi). (3.36)

We then obtain the parametersAi andBi for eachn. The sets ofAi andBi are used to

obtain f1(n) and f2(n) (Eq. 3.35).

Finally, each integration with the fixedn is repeated for different bond lengthsb. The

bond lengthb values include 1.7, 3.4, 5.1, 10.2, 15.3, and 20.4 Å. With theintegration at

differentb, we can determine〈 f2(n)〉b by analyzing thef2(n)−b relationship. Figure 3.7

gives a sample of the numerical integration (Eq. 3.24) and fitting result (Eq. 3.36).

1http://www.angelfire.com/rnb/labfit/
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Figure 3.7: Numerical integration of Eq. 3.35 and its fitting3.36, with parameters n=20, b= 20.4

Å; κ is varied between 1/5 and 1/2450 Å
−1

.

3.3.2 Obtaining f1(n)

In order to test the dependency, we first determine thef1(n) function. This function is

not the same as〈 f1(n,b)〉, but related to it. We wish to derivef1(n) as a functionnot

dependent onb; f1(n) is defined in 3.34. In order to confirm non-dependency on theb

factor, we plotAi (3.36) whereAi is obtained from the fitting of Eq. 3.24 to the function

Lel
P in Eq. 3.36. (In other words, for eachn and fixedb, we can determineLel

P from which

Ai can be obtained from curve-fitting). Then we repeat this plotting for different bond

lengthsb. Eq. 3.36 is a parametric form for Eq. 3.35. It would be convenient if Ai were

not strongly dependent onb. In the parametric form,Ai ≡ f1(n).

Fig. 3.8 shows thef1(n)−n relationship at different bond lengthsb. From the figure,

we conclude that the most reliable form forf1(n) is f1(n) = An+B with the A andB

parameters obtained by curve fitting. Table 3.1 gives the fitting result of f1(n) = An+B.

From Fig. 3.8 and Table 3.1, we observe that the change in parameterA and B over

differentb is not significant. The standard deviation for the parameterA is 3.46% from

its mean and the standard deviation of the parameterB is 3.49%. We attributed the slight

change to the approximation used in the fitting algorithm. Todetermine the final function
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Figure 3.8: f1(n) (from Eq. 3.35) versusn at different bond lengthb. These curves will be used to
determine the best form off1(n).

b (Å) f1(n) = An+B (dimensionless)

1.7 0.0069n + 0.024

3.4 0.0069n + 0.024

5.1 0.0070n + 0.024

10.2 0.0072n + 0.023

15.3 0.0074n + 0.023

20.4 0.0075n + 0.022

Table 3.1: Numerical result of fitting the functionf1(n) = An+B in Fig. 3.8. The mean of pa-
rameterA is 0.00714, with standard deviation 0.000248. The mean of parameterB is
0.0234 with standard deviation 0.000819

f1(n) = An+B, we take theA andB parameters from their averages resulting in:

f1(n) = 0.0071n+0.0234. (3.37)

3.3.3 Obtaining f2(n)

The general idea to obtainf2(n) is the same as withf1(n). Instead of usingAi parameter

in the parametric function Eq. 3.36, theBi parameter is considered equivalent to thef2(n)

factor in Eq. 3.35, i.e.Bi ≡ f2(n). We first determineBi from fitting Eq. 3.24 to Eq.
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3.36 at some fixedn. We then plot this set ofBi vs. n. We repeat the above procedure

by varying the bond length parameterb. Based on the derivation of Eq. 3.34 which

is a fitting model, we expect theBi − n ( f2(n)−n) relationship to be also independent

of b. Figure 3.9 shows the relationship betweenf2(n) andn for differentb’s. It is found
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Figure 3.9: f2(n) (from Eq. 3.35) versusn at different bond lengthsb. These curves will be used
to determine the best form off2(n).

through many fittings thatf2(n) is (i) a linear function ofn and (ii) that the gradient of this

function exhibitsb dependency. On the other hand from the originalLel
P result (Eq. 3.32

and 3.33), theb parameter always appears in theκb multiplication term only and not in

the f2(n) term. Thus we attribute the effect of bond length parameterb on a dimensionless

modifying functionf *
2 to account for the observations. As such each graph may be plotted

as a straight line from the origin(0,0) where we infer that thef2(n) function is separable

and can be written in the form:

f2(n,b) = f *
2 (b)n. (3.38)

In the following, we proceed to obtainf *
2 (b). The slope of each line in figure 3.9 (numer-

ically given in table 3.2) represents the dimensionlessf *
2 (b). It is shown that the value of

b will slightly affect the gradientf *
2 in the exponential scalingf2(n,b), where the standard

deviation of the gradientf *
2 (b) is 6.93 % of its mean.

We emphasize that the parameterf *
2 (b) pertains only to scalingb in Å unit. To guarantee
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b (Å) f2(n) = f *
2 (b)n (dimensionless)

1.7 0.161 n

3.4 0.167 n

5.1 0.171 n

10.2 0.181 n

15.3 0.187 n

20.4 0.193 n

Table 3.2: Numerical result of fitting the functionf2(n,b) = f *
2 n in Fig. 3.9. The mean of thef *

b
parameter is 0.177, with standard deviation 0.0123.

that f *
2 (b) is dimensionless for all length units, we can rewritef *

2 (b) as

f *
2 (b) = f *

2 (b/l0)

wherel0 = 1 Å.

We plot the graphf *
2 (b) vs b in figure 3.10 to obtain the scaling off *

2 (b) over different

b, which ranges from 1.7 Å−20.4 Å. The dots in Fig. 3.10 represent the slope of the
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Figure 3.10: Thef *
2 (b) andb relationship (dots) and the fitting function (curve)

lines in Fig. 3.9 (and numerically in Table 3.2). The continuous curve in Fig. 3.10 is

the best fit according to the L-M algorithm. Concerning the fitted curve of Fig. 3.10,

we choose an arbitrary function with the minimum number of parameters; an appropriate

form was found to bef *
2 (b/l0) = A ln(b/l0+B), A= 0.0521 andB= 21.17 to yield the

38



final expression as

f *
2 (b, l0 = 1Å) = 0.0521 ln(b/l0+21.17) . (3.39)

3.3.4 Final Result of the Fitting Procedure

Returning to the initial expression of the electrostatic persistence length,Lel
P, in Eq. 3.34,

Lel
P ∼ 2lBq2n 〈〈 f1(n)〉b e−κb〈 f2(n)〉b〉θ

and thef1(n) and f2(n) functions from Eq. 3.37, 3.38 and 3.39 intoLel
P , we arrive at the

final expression:

Lel
P ∼ 2lBq2n (0.0071n+0.0234) e−(κbn)0.052 ln(b/l0+21.17) ,

= 2lBq2n (0.0071n+0.0234) eln(b/l0+21.17)−0.052κbn
,

= 2lBq2n (0.0071n+0.0234) (b/l0+21.17)−0.052κbn . (3.40)

SinceLP = L0
P+Lel

P , then

LP = L0
P+2lBq2n (0.0071n+0.0234) (b/l0+21.17)−0.052κbn , (3.41)

where thel0 = 1 Å is the parameter to makeb/l0 dimensionless.

3.4 Discussion on The New Derived Persistence Length

We compare theLP result obtained from numerical integration (Eq. 3.24) and fitting (Eq.

3.41) in Fig. 3.11. From Fig. 3.11, the fitting function is in good agreement with the

numerical integration data. We attribute the slight discrepancy in the fitted-data to the

fitting approximations that we made and which was described in detail above.

The bending modulusB= EI is a function of Young’s modulusE and the area moment

of inertiaI , thereforeB is not a function of the segment lengths= nb. SinceLP = B/kBT

holds for smalls (s≪ B/kBT (Eq. 3.5 and 3.9)), thus the variableLP is independent of
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Figure 3.11: Persistence length (LP) versus Debye screening lengthrD = 1/κ from numerical
integration (Eq. 3.24), compared to the fitting equation (Eq. 3.41). For these curves,
L0

P= 500 Å, lB = 7.13 Å, q=−12,b= 20.4 Å, andl0 = 1 Å.

the segment lengths for smalls. The new persistence length equation (3.41) contains the

parameter bond numbern (n= s/b). Thus at smalln, LP should not be a function ofn.

Equation 3.6,〈θ2〉 ≈ 2nb/LP can be used to determineLP function not dependent onn.

We can calculate〈θ2〉 from

〈θ2(n)〉 ≈ 2nb/LP(n) ,

whereLP is obtained from Eq. 3.41. The〈θ2(n)〉 data are plotted overn. The gradient

(m) of the〈θ2〉−n plots equals 2b/LP. Thus

LP = 2b/m . (3.42)

Our theory was based on thes= nb length being "small", in accordance with the assump-

tion used in framing the conventional polymer equations (see subsection 3.2.1, Eq. 3.5

and 3.9). It is observed that at smallnb (smalls), we indeed derive a linear curve (Fig.

3.12) and hence it is safe to conclude that we have provided a formulation that includes an

electrostatic contribution directly to the〈θ2〉 calculation in Eq. 3.9 that other theories did

not include or neglect. We caution that this theoretical foundation is based on the Gros-
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Figure 3.12: 〈θ2〉−n relationship based on the Eq. 3.6 (〈θ2〉 ≈ 2nb/LP(n)). TheLP(n) is calcu-
lated by Eq. 3.41. Theq andb parameters for Eq. 3.41 are given above each figure.
L0

P= 500Å, lB = 7.13Å, andl0 = 1Å for all curves.

berg partition function and integration [26]. Another expression (see Scipioni et al. [39]

who provides a different interpretation for the virtual segments) insignificantly modifies

our numerical results above where the same conclusion wouldobtains as for the Grosberg

scheme which we shall use in what follows. We intend to pursueour own alternative

formulation not based on Grosberg’s methodology in the future.

In the experimental work of Scipioni et al. [39], the measurable experimental segment

length is half of ours (Fig. 3.4). Definessc andθsc as the virtual segment length and angle

they defined, where

ssc=
1
2

s and θsc=
1
2

θ , (3.43)

and wheres andθ are quantities in our work. Eq. 3.24 becomes

〈θ2
sc〉=

2
∫ 2π

0 e−
Bθ2

sc/2ssc
kBT −

1
2 ∑n

i=1∑n+1
j=i+1

lBkBTqiqj exp(−κnbG(θ))
sG(θ)

kBT θ2
scdθ

∫ 2π
0 e−

Bθ2
sc/2ssc
kBT −

1
2 ∑n

i=1 ∑n+1
j=i+1

lBkBTqiqj exp(−κnbG(θ))
sG(θ)

kBT dθ

(3.44)

Notice the ensemble averaging is done for the〈θ2
sc〉 although the integration is done over

θ. The calculation of the electrostatic energy term is the same with Eq. 3.24 since there is

an additional segmentssc appended at the tail of the central segmentssc. The 1/2 factor

preceding the electrostatic energy term appears because weonly calculate the energy of
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segmentssc (a half of segments). Then substituting the〈θ2
sc〉 from Eq. 3.44 to 3.6 we

obtain

LP =
2ssc

〈θ2
sc〉

(3.45)

The numerical result using the above procedure due to Scipioni is not significantly differ-

ent from our result.

3.5 Representing the Real DNA with Our Model. How

Accurate is It?

Experimental DNA contains negative charges at its surface due to the phosphate groups.

The axial distance between two nearest distance phosphate groups on opposite sides is

1.7 Å. The nearest axial distance between two same-sided phosphate groups is 3.4 Å(see

Fig. 1.1).

We choose the diameter of our monomer models as 20Å which is the same as the di-

ameter of the experimental DNA cross section. Consequentlyeach monomer contains a

total charge of -12, and the monomer-monomer distance equals−12×1.7 Å = 20.4 Å.

Fig. 3.13 depicts some polyelectrolyte models with different monomer chargeq and bond

-12 -12 b = 20.4 Å(a)

-2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 b = 3.4 Å(b)

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 b = 1.7 Å(c)

20.4 Å

20.4 Å

Figure 3.13: Some polyelectrolytes modelling a DNA chain. The bond length/charge ratio (1.7
Å/charge) is the same as the experimental DNA data.

lengthb. All models (a,b and c) have the same bond length/charge ratio. The models (b)

and (c) are closer to the experimental DNA distance and charge magnitudes while model

(a) is what we use. If (b) and (c) are our benchmarks, we can compare our (a) with (b)
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and (c) for meaningful variables such as the persistence length which is reported in Table

3.3, using equation (3.41).

Table 3.3 shows that models with higher monomer charge, despite the same bond

rD / b= 1.7 Å; q=−1 b= 3.4 Å; q=−2 b= 20.4 Å; q=−12

csaltmM LP(Å) s(Å) r2 LP(Å) s(Å) r2 LP(Å) s(Å) r2

9.63/100.0 554.10 61.2 0.999 559.24 61.2 0.999 601.91 61.2 1.0

30.44/10.0 603.95 61.2 0.995 617.34 61.2 0.995 778.752 61.2 0.996

96.25/1.0 628.03 61.2 0.992 646.05 61.2 0.991 888.91 61.2 0.989

304.4/0.1 636.78 61.2 0.990 656.55 61.2 0.989 933.51 61.2 0.986

Table 3.3: Persistence length determined by Eq. 3.41 at different salt concentrations for three
models in Fig. 3.13 whereL0

P = 500 Å, lB = 7.13 Å, andl0 = 1 Å for models (a), (b)
and (c). The〈θ2(n)〉−n lines are plotted fromn= b to n= s (see Sec. 3.4);r2 is the
correlation coefficient for the plots.

length/charge ratio, have larger persistence lengths. Thus from a theoretical standpoint,

our polyelectrolyte model is not accurate enough to represent the real DNA in terms of

chain flexibility. However our model is retained for convenience. In the following the

justify the convenience of our DNA model.

The closest axial distance between two negatively charged phosphate groups in experi-

mental DNA chain is 1.7 Å. The DNA chain has diameter 20 Å (Fig.1.1). In many

simulations, a single particle or ion is usually modeled by aspherical volume. If we want

to create a spherical monomer which cover the whole DNA diameter, it means we must

create a monomer with radius 10 Å. This 10 Å radius monomer of DNA approximately

consists 12 phosphate groups (since DNA chain has 12 phosphate groups per 20.4 Å chain

segment length). In the following, other models of the DNA chain are offered, where the

pros and cons between possibility and convenience are given.

The particle radius in our simulation is defined by their short-range interaction parame-

ters (i.e. hard-soft sphere radii in the LJ interaction). Weassume we can model the DNA

monomer with a discrete charge−1 with an adjacent charge distance of 1.7 Å (Fig. 3.13).

Then the sum of hard and soft core radii of the DNA monomer thatcan interact with

mobile ions equals 10 Å so we can model the experimental DNA chain diameter. Up to

now we do not encounter problems. Problems occur when we think about the short-range
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interaction between the DNA monomers. If we assign 10 Å as thesum of DNA hard-soft

radii for DNA-DNA LJ interactions, the monomer bonds will automatically break due to

force overflow since the monomer bond distance is 1.7 Å. Otherwise, if we set the sum of

hard-soft sphere monomer radii to 0.85 Å for DNA-DNA LJ interactions to comply with

the monomer bond length, it means that we allow non-adjacentmonomers to get closer to

each other until the closest distance is 1.7 Å. This close distance is not possible since we

have a 20 Å DNA chain diameter.

The solution is to create a DNA chain model with monomer charge −1 for each 1.7 Å

axial distance by applying a non-spherical LJ potential (i.e. Gay-Berne potential for disk

shape) to regulate the short range interaction among the DNAmonomers. We have tested

this type of potential in the ESPResSo MD simulation packagewhich cannot run this po-

tential for a very long chained polymer, unfortunately. Even with a short chain (i.e. 5

monomers) the simulation required a very small time-step (i.e. ±1× 10−12 in reduced

units) which is simply not reliable for equilibration. A long chain model in simulation is

preferred to obtain good averaged properties and minimize the non-isotropic effects at the

two ends of chain, and this is the reason why our model in convenient.

3.6 Simulation Results

In the following the DNA persistence length data from MD simulation are given. In Fig.

3.14, the data from simulations of neutral polymer are given. These data are used to ex-

amine the theoretical prediction of the neutral polymer persistence length. The theoretical

persistence length is given by the WLC theory of Eq. 3.10,LP = B/kBT, whereLP is the

persistence length andB/kBT is chosen to define the bending angle constant parameter

(kθ) in our model [see Eq. 3.13 and Eq. A.17 in the Appendix A]. We simulate a single

neutral polymer with the same dimension as our DNA model. We perform simulations in

two kinds of time-step (1×10−3 and 1×10−5 in reduced unit) to confirm that the systems

are in equilibrium. In the simulations, the polymer did not experience any type of non-

bonding intermolecular interactions (e.g. Lennard-Jonesor Coulombic). The harmonic

bonding potential preserved the equilibrium bond distanceand the bending angle poten-
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tial governs the polymer flexibility. The bending modulusB range is [50-1500] ÅkBT.

The straight lines in Figures 3.14 (a,b) are the expected persistence length from the WLC

theory. The simulationLP are calculated by using Eqs. 3.3 and 3.4 which represent the
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Figure 3.14: Persistence length (LP) of the neutral polymer possessing the same dimension with
the polyelectrolyte DNA models, with 2 standard deviation error bars, at different
bending modulus (B) parameters. The straight lines are the theoretical prediction.
The simulations are performed with time-step 1×10−3 (Fig. (a)) and 1×10−5 (Fig.
(b)).

natural definition of persistence length. For all persistence length calculations which re-

quire a plot between any functionf (s) ands, wheres is the segment length, we choose the

maximum segment lengths= 61.2 Å. The reason is because from observation, the corre-

lation coefficientr2 (0≤ r2 ≤ 1) from any gradient determination (Eq. 3.4 for the DNA

monomer coordinate in the simulation, verification of Eqs. 3.6 and 3.42 for theoretical

calculation) will be less than 0.98 fors> 61.2 Å. Another reason is that the theoretical

equations for persistence length are derived from the assumptions≪ LP (Eq. 3.5 and 3.9),

and the bond length 20.4 Å in our models already contributes arelatively large distance

to the segment lengths.

From the data in Fig. 3.14, the simulationLP agree with the theoreticalLP when the

bending modulusB is within the range [50-550] ÅkBT. For B≥ 600 ÅkBT, the simula-

tion persistence length deviates from the theoretical predictions. The deviation becomes

larger as the bending modulus increases. As far as we know, the maximumB value for

which the theoreticalLP is reliable has never been discussed. In what follows, we provide

suggestions with regard to this departure. We conjecture that the theoretical WLC equa-
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tion fails at largeB because in its derivation (Eq. 3.9) the energy contributions from each

segments to the Boltzmann factor are considered independent. In other words, we divide

a very long chain into many small segments and assume that thetopology of each segment

does influence the topology of neighboring segments. We argue that despite polymer stiff-

ness, dynamics caused by a segment will affect neighbors leading to additional bending.

That added bending occurs is clearly observed for stiff enough chains.
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Figure 3.15: Persistence length (LP) of our DNA polyelectrolyte simulations, with 2 standard de-
viation error bars, at salt concentration 0.0−0.25 mM. The simulation results are
compared to theLP prediction from OSF, Dobrynin and Manning theories (a, b, c).
Comparison with our derivation is given in (d). The uncharged DNA bending modu-
lus B0 = 500 ÅkBT throughout. The horizontal dashed line is the persistence length
of the neutral uncharged DNA (L0

P = 500 Å) [see Eq. 3.28].

We present the persistence length of the DNA polyelectrolytes at different salt concentra-

tions in Figures 3.15. The highest salt concentration 0.25 mM corresponds to the maxi-

mum capability of our computer resources and the MD package used. Before we continue
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discussing about persistence length, we want to illustratethe importance of choosing the

DNA concentration. The DNA concentrations in our simulations is 0.005 mg/ml which

defines the cubic simulation box length 7612.005 Å. Table 3.4presents the end-to-end

distance (Re) and radii of gyration (Rg) of the DNA in different salt concentrations.Re is

the straight distance between two ends chain.Rg is defined as the mean square distance

away from the center of gravity (r cg), where center of gravity is the average location of

the weight of the polymer.Rg can be determined by the following equation

R2
g =

1
N

N

∑
k=1

(rk− r cg)
2, (3.46)

wherek is the monomer index andN is the number of monomers. ThusRg is a measure of

the size of the chain. Table 3.4 shows that the values ofRe andRg in equilibrium are much

smaller than the cubic box length. Thus we infer that it is safe to neglect the DNA-DNA

interactions between the cell neighbors when determining the DNA topology. From sim-

Salt Concentration (mM) Re (Å) δRe(Å) Rg (Å) δRg(Å)

0.001 5731.06 8.81 1604.60 1.78

0.025 5393.09 26.38 1487.54 6.46

0.1 5100.30 21.81 1383.59 4.72

0.15 4825.28 20.39 1322.53 1.22

0.25 4465.05 12.38 1284.93 1.58

Table 3.4: End-to-end distance (Re) and radii of gyration (Rg) of DNA models at different salt
concentrations. TheδRe andδRg are the standard deviations ofRe andRg respectively.

ulation data in Fig. 3.15, the DNA persistence length decreases as the salt concentration

increases. At low salt concentration, the Debye screening length (rD = κ−1) is very large

(i.e. rD ≈ 3044.0 Å at 0.001 mM 1:1 salt). It causes the Coulombic repulsive interaction

between monomers to be almost unscreened. This strong monomer-monomer repulsion

maximizes the persistence length. From Fig. 3.15, at relatively low salt concentrations

0.0-0.05 mM, the averageLP from simulations does not alter. At this concentration range,

the LP is about 1100 Å. As the salt concentration increases, the Debye length becomes

smaller, resulting in a weaker DNA-DNA repulsive potentialleading to smaller persis-
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tence lengths. From Fig. 3.15, the DNA persistence length generally decreases at salt

concentration 0.05 mM and above.

Fig. 3.16 shows some DNA snapshots at different salt concentrations. At salt concentra-

Figure 3.16: Snapshots of DNA chains in different salt concentrations. Salt concentrations are
written at the bottom of the pictures.

tions below 0.01 mM, the DNA structures do not change significantly. At salt concentra-

tion above 0.01 mM, the DNA chains form a more curved structure. The curved structures

are formed because the salt ions screen the repulsive Coulombic potential between DNA

monomers. It is also clear that the weakening of the monomer-monomer repulsions by

screening ions reduces the dimension of the overall DNA which is indicated by the data

of end-to-end distance and radii of gyration (Table 3.4).

Figure 3.17 shows the DNA conformations at different time intervals (in reduced unit).

The initial configuration of the DNA chain was created randomly inside the cubic simula-

tion box. As the time elapsed, the chain equilibrates its conformation within the system.

After some time the system energy and the chain conformationstabilized. These are

sufficient indications of an equilibrium chain conformation.
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Figure 3.17: Snapshots of DNA conformation at different time intervals (reduced unit). DNA
concentration 0.005 mg/ml and salt concentration 0.1 mM.

3.7 Experiment vs. Theory

In the following the comparison between experimental and theoretical persistence length

is discussed. Theoretically, our model in simulation is notaccurate enough to represent

the experimental DNA flexibility, so we compare our theoretical predictions with real

DNA data from experiments. We notice that the experimental data are based on different

physical variables that arise from measurements that include light scattering, sedimenta-

tion velocity, electro-optics, ligase-catalized cyclization, gel electrophoresis, circulariza-

tion kinetics, electric dichroism and scanning force microscopy (SFM) visualization [40].

These variables are then interpreted according to an appropriate theory that yields the per-

sistence length. Indeed, there is inconsistency in the results. The above techniques have

limitations, because the persistence length is not a measurable property, thus we have to

convert the measurable property (e.g. diffusion coefficient, average radius of gyration,

end-to-end distance, force of extension) to persistence length through model-dependent

theories. Thus it is impossible to discuss the experimentalpersistence length in detail

without considering each experimental method used. Another issue is the flexibility of

the DNA is dependent on its base pair sequence [39].

In Fig. 3.18, the DNA persistence length from theoretical calculation is compared to
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Figure 3.18: Experimental data and theoretical calculations of the DNA persistence length at dif-
ferent salt concentrations. The experimental data are taken from Baumann et al. [42]
(rectangle); Nordmeier [41] (diamond); Rizzo and Schellman [43] (closed circle) ;
Smith et al. [40] (cross).

some experimental data. It seems in general that the trends of the data for the different

determinations are not consistent. It suggests the need of athorough understanding of

the experimental procedure before comparing experiment and theory. Due to the lack of

our DNA experimental experience at the moment, we choose to focus on simulation and

theories because both rely on universal mechanical laws.

3.8 Simulation vs. Theory

In Fig. 3.15, we compare the experimental persistence length to the theoretical predic-

tion from the OSF (a), Dobrynin (b), Manning (c) theories andfrom our derivation (d).

Specific to the Manning equation (Eq. 3.19), the monomer charge (q) variable is not
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explicitly present. From his derivation [31], he use the dimensionless DNA line charge

density parameterξ = lB/b = 4.2 to model the DNA charge properties where the DNA

has a negative charge−1 for each 1.7 Å distance. To apply Manning’s calculation for our

DNA model, we use a related line charge density parameter,ξ = lB
b/|q| instead ofξ′ = lB

b

whereb/|q| denotes the segment length per unit charge. Thus theξ = 4.2 which is the

same asξ′ = 4.2 used by the Manning model.

The equations of those theories are based on mechanics wherethe stiff rod model is used.

Thus the usage of these theories are not limited to DNA only (i.e. DNA double helix with

phosphate groups charge−1 and charge spacing 1.7 Å). These theories should be appli-

cable for any stiff polymer, including our DNA simulation models (DNA with monomer

charge−12 and bond length 20.4 Å). From Fig. 3.15, it is clear that there is no theoretical

LP calculation that can match the simulation results. The OSF,Dobrynin and ManningLP

go to infinity at very low salt concentrations. Our model retains theLP as constant at low

salt concentration, but as the salt concentration increases, the simulationLP diminishes

much faster than ourLP theoretical model which is still qualitatively accurate. However,

the basic ideas of our derivation can be used to develop a chain stiffness concept, since it

prevents the persistence length from going to infinity at very low salt concentration. We

attribute the premature decrease of the simulation persistence length to the "ionic bridg-

ing" phenomenon which will be introduced in the Section 3.10.

3.9 Lpolyelectrolyte
P < Lneutral polymer

P . Is It Possible?

In figure 3.19, the DNA persistence length derived by the OSF,Dobrynin and Manning

theories and ours are presented. The parameters given are for the real DNA (chargeq=-1,

bond lengthb=1.7 Å). TheL0
P in each model are defined to obtain the DNALP=550 Å,

as the consensus persistence length of experimental DNA in 0.1 M NaCl concentration.

The L0
P is 500, 540, 74 and 500 Å for the OSF, Dobrynin, Manning and ourtheory re-

spectively. From the simulation data in Fig. 3.15, at salt concentration 0.25 mM, the

simulationLP (polyelectrolyte) decrease below theL0
P (neutral polymer). The condition

Lpolyelectrolyte
P < Lneutral polymer

P is impossible for the OSF and Dobrynin theories and also

our theoretical model because these theoretical calculations follow the basic assumption
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Figure 3.19: Theoretical persistence length (LP) calculated by the OSF, Dobrynin and Manning
theory, and our derivation.

LP=L0
P+Lel

P (Eq. 3.28) with positiveLel
P. TheLel

P is the additional persistence length due

to the monomer-monomer repulsion. TheLP equation given by Manning [31] (Eq. 3.19)

is the only calculation which does not follows the expression LP=L0
P+Lel

P . The theoreti-

cal LP given by Manning offers the possibility of a charged polymerto have persistence

length lower than its uncharged polymer. But a quite disturbing fact from the calcula-

tion derived by Manning is that the persistence length valuecan even be negative at high

salt concentration (Fig. 3.19) despite Manning’s [[31], p.3613] statement"the persistence

length of DNA is many times larger than the persistence length of its uncharged isomer".

This implies that the DNA persistence length cannot be smaller than the uncharged DNA.

Due to this contradiction, we may doubt the applicability ofthese theories to predictLP

over the entire range of salt concentrations. In the next section we introduce the "ionic

bridging" phenomenon, which may lead to the inequalityLpolyelectrolyte
P < Lneutral polymer

P at

salt concentrations 0.25 mM (Fig. 3.15). Thus we conclude that polyelectrolytes with

smaller persistence length than its uncharged polymer ispossibleif the "ionic bridging"

phenomena exists.
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3.10 Ionic Bridging: a New Postulate?

We suggest that the premature persistence length decrease in our simulations is due to

the unbalanced counterion condensation around the DNA surface. We use Fig. 3.20 to

illustrate this concept.

Figure 3.20.(a) is the hypothetical condition, where we expect the counterion distributions

in the regionsα andβ to be the same. This is the condition expected by many classical

theories in charged systems, where charge distribution around a central macroion is in-

dependent of the orientation of the macroion. The bending angle 12◦ (6◦+ 6◦) in Fig.

3.20.(a) gives an example of the polyelectrolyte equilibrium bending angle in the hypo-

thetical state. We suggest that when the bending monomers orientate to theβ region,

the DNA negative charge density in theβ region (narrow angle) is larger than in theα

region. Due to the larger negative charge density, Na+ ions would tend to be attracted

in the β region. The accumulation of Na+ ions in this region increase the bending an-

gle of the DNA segment because of the larger magnitude of DNA−Na+ attraction [Fig.

3.20.(b)]. The additional bending angle (e.g. of magnitude8◦ in Fig. (b) which comes

from 20◦−12◦), will again increase the negative charge density in theβ region side. This

positive feedback mechanism leads to a further DNA−Na+ attraction in theβ region by

attraction of more adjacent DNA monomers which is propagated along the chain in theβ

region (Fig.(b),regionβ). The DNA−Na+ attraction eventually produces a smaller pre-

ferred electrostatic energy. We call the change of the hypothetical (Fig. 3.20.(a)) to the

real state (Fig. 3.20.(b)) as the "ionic bridging" or "counterion bridging" effect, because

a large amount of Na+ ions inside the narrow angle of regionβ acts as "bridge" between

DNA monomers (from the figure point of view). Normally, the adjacentm1, m2, and

m3 (see Fig. 3.20) are mutually repulsive. The "bridging" is used to refer to the posi-

tioning charged salt ions that ameliorates the repulsive tendencies, allowing for an added

curvature withinβ region. This ionic bridging effect is balanced by the polymer bend-

ing potential, DNA monomer-monomer repulsion and the system entropy. Figure 3.21

presents two snapshots from our simulations to substantiate the occurrence of the ionic

bridging effect. The red spheres are the DNA monomers and thesmall purple spheres

are the Na+ ions. It is clear that when Na+ ions accumulate at one side of DNA surface,
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Figure 3.20: Figure (a) is the hypothetical condition. Fig.(b) is the real condition. The verti-
cal dashed line is an imaginary boundary dividing the polymer environment at the
equilibrium bending plane.

the DNA bending segments orientate to the side of Na+ accumulation. We denote A1

and A2 in each figure as the regions where ionic bridging occurs. We consider the ionic

bridging in the A1 and A2 regions as the local in nature because the additional bending

occurs amongst the closest monomer neighbors. We denote byA in both figures as the

global ionic bridging region because in this region the Na+ ions can "bridge" the DNA

monomers along larger distances (e.g. amongst the oppositely facing monomers indicated

by the double arrow line in (a)).

In the following we attempt to include the ionic bridging effect in the expression of the

persistence length calculation. For clarity we collect andrewrite some equations

〈θ2〉=
2
∫ 2π

0 e−
Bθ2/2s

kBT −
∑n

i=1 ∑n+1
j=i+1

lBkBTqiqj exp(−κnbG)
sG

kBT θ2dθ

∫ 2π
0 e−

Bθ2/2s
kBT −

∑n
i=1 ∑n+1

j=i+1
lBkBTqiqj exp(−κnbG)

sG
kBT dθ

3.24
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(a) (b)

Figure 3.21: Snapshots from the DNA chain simulations in salt concentration 0.25 mM (a), and
0.30 mM (b). AreaA gives the global ionic bridging, and region A1 and A2 denote
the local ionic bridging. We run the simulation at 0.30 mM (which took one month)
only to focus on the ionic bridging without sampling becausethis would too much
time.

Bnew= B+
n

∑
i=1

n+1

∑
j=i+1

2lBkBTqiq j exp(−κnbG)

Gθ2 3.26

LP =
B+Bel

kBT
= L0

P+Lel
P 3.28

If we just rely on the above equations to determineLP, whereLP < L0
P, we will end up with

negativeLel
P. The negativeLel

P is impossible because the second term of Eq. 3.26 which

supplies the value forLel
P is always positive forqi = q j .

Recall that the goal is not to have negativeLel
P , but to include the ionic bridging effect to

produce "small"LP. In the following, there are two possible ways for the ionic bridging

inclusion to provide smallerLP

1. The exponential term in Eq. 3.26 comes from the Debye-Huckel potential theory,

where the monomer charge repulsion reduces due to the screening of ions. The

Debye-Huckel potential (exponential term) appears from models which have high

symmetry (planar, spherical or cylindrical), implying an isotropic screening about

the symmetrical axis. Since the ionic bridging produces non-isotropic ionic distri-
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butions between both sides of Fig. 3.20.b, the exponential term in Eq. 3.26 needs

to be modified completely (i.e. by using the Poisson-Boltzmann equation). The

exponential term cannot be retained to produce smallLP because it always supplies

a positive value to the second term of Eq. 3.26. The only possible way to have

smallerLP in this way is when the screening ions lead to changes in the the poten-

tial sign of the monomer charge such that the monomer-monomer repulsive force

becomes attractive. Then the second term in Eq. 3.26 becomesnegative.

2. For the second possibility, consider the chain conformation in Fig. 3.20.a at a cer-

tain state where the availability of the mobile ions do not affect that particular state.

If ionic bridging exists, it implies the ions can change the chain state of Fig. 3.20.a

into another "preferred" state such as shown in Fig. 3.20.b.Hence the chain state of

Fig. 3.20.b has a larger degeneracy than the state in Fig. 3.20.a. Then there should

be another factor in Eq. 3.24 to denote the degeneracy due to ionic bridging, i.e.

〈θ2〉=
2
∫ 2π

0 G(θ)e−
Bθ2/2s

kBT −
∑n

i=1 ∑n+1
j=i+1

lBkBTqiqj exp(−κnbG)
sG

kBT θ2dθ

∫ 2π
0 G(θ)e−

Bθ2/2s
kBT −

∑n
i=1 ∑n+1

j=i+1
lBkBTqi qj exp−κnbG

sG
kBT dθ

,

whereG(θ) is the degeneracy factor. Thus if ionic bridging exists, it could produce

a smallerLP since theG(θ) is relatively large for largerθ.

To examine the existence of the ionic bridging effect, we simulate a short DNA chain in 20

mM salt concentration. The number of monomer equals 21 monomers. Short DNA chain

is chosen to provide a much smaller space thus we can focus in observing the particles

displacement. We fix the position of the center monomer (the 11st monomer) to minimize

the chain translational movement so that we can focus on the chain bending conforma-

tion. Figure 3.22 gives the snapshot of the short DNA chain conformation at different time

intervals. The snapshots were taken randomly from the particle’s trajectory. We used a

small time-step (1−2×10−5 in reduced unit) to minimize the amplitude of the displace-

ment of mobile ions. Even with such small time step, we observe that the fluctuation of

the ions in space is still quite large (i.e. the variance of the ion concentration at a specified

site is very high during the sampling over time). This is a qualitative statement and a

whole new quantitative theory must be constructed to verifythe simulation data. From
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Figure 3.22: A short DNA chain conformation in different time intervals. The number of monomer
equals 21. NaCl salt concentration is 20 mM. This simulationwas run to examine
the availability of ionic bridging effect in different timeintervals. The Na+ and Cl−

particles are modeled by the purple and brown spheres respectively.
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Fig. 3.22, the accumulation of the Na+ particles (purple spheres) at the narrow angle is

more pronounced at the beginning of simulation (time interval ∼ 0−1000). It is shown

that when the chain is in bent conformation, many Na+ ions positioned themselves within

the narrow angle. This Na+ positioning supports the proposal of ionic bridging effect. At

larger time interval (∼ 3922−6064) where the system has reached equilibrium, there is

only one bending site in the chain line. More linked monomerswere present in straight

conformation due to the strong monomer-monomer repulsion and large chain stiffness.

In larger time intervals, the indication of the ionic bridging effect is not clearly visible.

We attribute the low indication at large time interval to theminimum bent conformation

and the large fluctuation of mobile ions in space. We suggest that the fluctuation of ions

in the narrow chain angle occurs because of the balance of ionic bridging and Na+ ions

repulsion. To precisely determine the existence of ionic bridging, one possible method is

measuring the local density around a charged polymer. This measurement is not included

in this work because separate research with specially designed simulation and algorithms

are needed to pursue this topic.

As far as is known, this "ionic bridging" phenomenon is neveraccounted for in calculat-

ing the DNA persistence length. We conclude that studies of the mutual effects of chain

orientations and ionic distributions are essential for determining the topological properties

of polyelectrolytes.
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Chapter 4

IONIC DISTRIBUTION IN A DNA

SYSTEM

4.1 Theoretical Review of Ionic Distribution

The radial distribution function (symbolizedg(r)) describes how the density of surround-

ing matter varies with the distance function. It also denotes the probability of finding a

particle at a distancer from a central particle. Consider a spherical shell with inner radius

r and outer radiusr +δr. If we specifyr as the distance from any point within the shell

with thicknessδr, we can expressg(r) as:

g(r) =
nreal

nbulk

wherenreal is the total number of particle betweenr andr +δr, andnbulk is the number of

particles if the density of the system is homogeneous everywhere.

At infinitely low density, where the effect of the third particle to a pair interaction can be

neglected, the radial distribution function (RDF) betweencentral particleM and diffused

particle typei can be determined by a Boltzmann-like distribution [44]:

g(r) =
ciM

ci
= exp

(

−zieψ(RiM )

kBT

)

(4.1)



whereciM is the concentration of the ioni at a distanceRiM (from the surface of particle

M to the center of particlei), ci is bulk the concentration of ioni, zi is the valence of

ion i, andψ(RiM) is the potential "felt" by particlei at positionRiM from the surface of

particleM. In this thesis, the central particleM will be used to denote a macroion or

DNA monomer, while the term particlei will point to any of the ionic species Na+, Cl−

or Nucleosome Core Particle (NCP). The Debye-Huckel approximation (DHA) can be

used to calculate the value ofψ(RiM), where it is an approximate solution of the Poisson-

Boltzmann equation [45].

Debye-Huckel Approximation

Debye-Huckel approximation (DHA) is derived from the Poisson-Boltzmann equation

with the assumption the system is low in potential, or
∣

∣

∣

zieψ(RiM )
kBT

∣

∣

∣
< 1. In a univalent elec-

trolyte system, DHA obtains at potentialψ(RiM) < 25.7 mV. The potential at a distance

RiM from a central ionM (DNA monomer) surface is obtained from DHA [46] as:

ψ(RiM) = ψM
rM

RiM + rM

exp(−κRiM), (4.2)

where

ψM =
σM

ε
rM

1+κrM

(4.3)

κ =

(

1000e2NA

εkBT ∑
i

z2
i ci

)

; (4.4)

ψM is the surface potential of the DNA monomer with radiusrM, κ is the inverse Debye

length,ε is the dielectric of the medium,kB is the Boltzmann constant,e is the elementary

proton charge 1.602×10−19 C, T is temperature andNA is the Avogadro number.

The distanceRiM and surface charge density is defined by:

RiM = r iM − rM (4.5)

σM =
zMe

4πr2
M

, (4.6)

60



wherer iM is the distance of the center of the ioni from the center of DNA monomer andzM

is the DNA monomer charge. Some extensions of DHA has been proposed, for example

the Far-Field Approximation (FFA). According to Sader [47], the FFA has a wider range

of applicability than DHA.

4.2 Clarifying the Ambiguity of the Screening Parameter

κ

In some references, we find that the ionic strength parameterκ (Eq. 4.4) for calculating

any electrostatic properties varies in term of ions involved in the screening effect. . The

parameterκ itself characterizes the magnitude of ionic screening in the system because

its value is the inverse of the Debye screening length. Morisada et al. [46] mentioned

that we only need to use thezi andci from salt particles, while Schmitz [48] mentioned

there are conditions where we should include the counterionand macroion as well. Thus

the specification regarding which ions should be included indetermining theκ parameter

is still unclear.

In this section, we examine this ambiguity. We will be able toobtain an unambiguous

κ in analysis which will be used to compute potentials throughout this chapter. We sim-

ulate free macroions having the same dimension and properties as the DNA monomer.

We will call these macroions as particle-like DNA monomer (PLDNA). These monomer

macroions, with the concentration equal to the number of monomers in the DNA chain,

which itself has a definite concentration in our simulation,are freely dispersed in salt

solution. Then the radial distribution function of PLDNA obtained from simulation will

be compared to the RDF calculated theoretically by PB the model. There are three types

of κ used in RDF calculation from the model that utilizes the DHA in conjunction with

Eq. 4.1, and this concept will be referred to as PB hereafter.The first uses only salt

ions with chargezi and counterionci (κsalt) as the only independent particle variables

(κsalt= κsalt(ci ,zi,Ω)) whereΩ are the other thermodynamical variables. The second is a

function of salt and counterion charge and concentration (κsalt-counterion) and the third is a

function of DNA, salt and counterion charge and concentration (κall-ion). The RDF calcu-
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lation results that most agree with the simulation results will be taken as the calculation

having the properκ.

In Fig. 4.1 and 4.2, the simulation RDF of two different PLDNAconcentrations are
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Figure 4.1: PLDNA−Na+ and PLDNA−Cl− RDF obtained from simulation and PB model cal-
culation. The PB model is calculated for three kinds of ionicscreening parametersκ.
PLDNA concentration 0.005 mg/ml and salt concentration 0.25 mM
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Figure 4.2: PLDNA−Na+ and PLDNA−Cl− RDF obtained from simulation and PB model cal-
culation. The PB model is calculated for three kinds of ionicscreening parametersκ.
PLDNA concentration 2.0 mg/ml and salt concentration 0.25 mM. The only system
difference from Fig. 4.1 is the PLDNA concentration

compared with the RDF results from PB calculations [46]. At PLDNA concentration
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0.005 mg/ml, all three calculations with differentκ match the simulation result and are

indistinguishable. At particle-like DNA concentration 2.0 mg/ml, the RDF calculations

are distinguishable but there is no match with the simulation results. Recall that the DHA

is an approximation for low potentials, not for low macroionconcentration. Thus the

simulation-PB disagreement at DNA concentration 2.0 mg/mgis not due to the DHA. It

implies that the simulation-calculation RDF disagreementoccurs because the Boltzmann-

like expression (Eq.4.1) is inapplicable at DNA concentration 2.0 mg/ml (or higher). The

assumption in Boltzmann-like equation (Eq.4.1) is that theinteraction and distance be-

tween two particles is random and independent of the interaction with other particles. At

higher DNA concentration, the PLDNA−Na+ attraction will be reduced due to strong

attractive interaction between the Na+ ion and other close PLDNA ion. At very low DNA

concentrations, the Boltzmann-like equation is applicable because the distance between

PLDNA in the system are far apart. Thus the effect of the thirdDNA particle in the

DNA−Na+ interaction is negligible.

To overcome the RDF disagreement at high concentration of DNA, we apply the Ornstein-

Zernike (OZ) relationship instead of the Boltzmann-like expression, where the effect of

the third particle is accounted for in any pair interaction.For details of the OZ method,

refer to the following references for example [48–51]. The OZ relationship is expressed

by the calculation that can also be iteratively utilized:

hi j (r) = ci j (r)+
S

∑
k=1

ρk

∫
cik(r − r ′)hk j(r

′)dr ′ (4.7)

with

hi j (r) = gi j (r)−1 (4.8)
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wherehi j (r) is defined as thetotal correlation function, ci j (r) is thedirect correlation

functionandρk is the density of particle typek. We can obtain anotherhi j −ci j relation-

ship by using the Hypernetted-Chain Approximation (HNC) and Percus-Yevick Approx-

imation (PYA). The HNC and PYA expressions are:

cHNC
i j (r) =−βVi j (r)+hi j (r)− ln[hi j (r)+1] (4.9)

cPYA
i j (r) =

(

1−exp[βVi j (r)]
)

(hi j (r)+1). (4.10)

In order to use the OZ equation, the initial value ofhi j (r) is guessed. Then theci j (r)

counterpart is calculated by either PYA or HNC. The initialhi j (r) andci j (r) values are

used as the input for the OZ equation to produce a newhi j (r) in Eq. 4.7. This pro-

cess is iterated until the value ofhi j (r) andci j (r) converge. For our system consisting

of three different kind of particles, we need to calculate nine correlations, DNA−DNA,

DNA−Na+, Na+−DNA, DNA−Cl−, Cl−−DNA, Na+−Na+, Na+−Cl−, Cl−−Na− and

Cl−−Cl−. The integration in the OZ equation is in 3-dimensional space, consequently

this calculation is highly time consuming. To reduce the cputime, we have to parallelize

the C++ code that was specifically written for this purpose. As an illustration, for one

run using 8 processors, we need 3-5 days for the iteration to converge, with speeds about

6-7 times faster compared to serial run [52–56]. Applying the OZ computation is not

straightforward. We need to make a reasonable guess such that during the interaction the

fluctuation in the intermediate steps do not become too largeso as to cause divergences.

Fig. 4.3 shows the results for HNC and PYA. These graphs show that the RDF calculation

usingκsalt-counterionare in close to the simulation. The above calculation is limited to the

effect of the third particle. More accurate calculations can be performed if we apply the

OZ equation at higher orders, i.e. count the effect of the 3rd, 4th, · · · , nth particles simulta-

neously. Since the closest RDF is found when we useκsalt-counterion, we will use thisκ for

the rest of our calculations. From our observation in performing the OZ equation, some

tempting questions appear. Such as (i) is the equation for calculatingκ is system specific?

and (ii) are the screening effects encountered by each particle type in a system different?.

In Fig. 4.3 we can notice an anomaly at one of the graph from thePYA calculation,

specifically at the screening parameterκ equalsκsalt. For that anomalous graph, we infer
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Figure 4.3: PLDNA−Na+ RDF obtained from simulation, HNC and PYA. The HNC and PYA
calculation are done for three kinds of ionic screening parameterκ.

that the iteration of the PYA calculation did not converge. In the numerical iteration, we

observe that all HNC and PYA calculations will experience an"oscillating phase" before

finally converging to a certain smooth graph without significant changes in further iter-

ations. We have attempted methods to break the anomaly in thegraph in Fig. 4.3 (i.e.

by using different grid widths or different initial condition), but the result still persists. It

could reflect the limits of applicability on the PYA application because the other graphs

depict the expected forms.
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4.3 Coordination number in various salt concentration

The first variable we wish to measure is the coordination number of ions about any DNA

monomer. We concentrate on the Na+ ions here, since Cl− is repulsive and there are

only 12 NCP particles. As the DNA monomer has a nett charge−12, Na+ ions will

accumulate at the DNA surface. The expression to calculate the first coordination number

[57] is:

nNa
DNA = 4πρ0

Na

∫ rs

0
gDNA-Na(r)r

2 dr . (4.11)

wheregDNA-Na(r) is the RDF of DNA−Na+ pair interaction,ρ0
Na is the Na+ bulk density

andrs is the position of the first valley ofgDNA-Na(r).

Table 4.1 and 4.2 gives the coordination number of Na+ ions at DNA concentration

Salt Concentration (mM) nNa
DNA

0.0 13.87

0.001 14.00

0.0025 14.22

0.005 13.67

0.0075 13.62

0.01 13.49

0.025 12.75

0.075 12.96

0.1 13.41

0.15 12.58

0.25 14.45

Table 4.1: Coordination number of Na+ ions
about DNA. DNA concentration 0.005
mg/ml. First valley distance of
DNA−Na RDF= 26.6420 Å

Salt Concentration (mM) nNa
DNA

0.0 15.67

0.01 15.82

0.1 15.57

1.0 15.86

2.5 16.34

7.5 16.69

10.0 16.96

25.0 18.25

50.0 19.11

75.0 20.33

100.0 21.66

Table 4.2: Coordination number of Na+ ions
about DNA. DNA concentration 2.0
mg/ml. First valley distance of
DNA−Na RDF= 26.4739 Å

0.005 mg/ml and 2.0 mg/ml respectively. At DNA concentration 0.005 mg/ml, where the

salt concentration varies between 0−0.25 mM, we do not observe a trend in coordination

number. We surmise that at DNA concentration 0.005 mg/ml, the lack of a trend is be-

cause the salt concentration range is too narrow.
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At DNA concentration 2.0 mg/ml, the coordination number is relatively constant at low

salt concentration. At a certain threshold (∼10mM NaCl at this study), the coordination

number increases as the salt amount increases. This statement supports the previous ar-

gument when the DNA concentration was 0.005 mg/ml, where thecoordination number

does not change at low salt concentration. We attribute the increase of coordination num-

ber at high salt concentration to the higher possibility of DNA−Na+ contact, leading to a

greater propensity for DNA−Na+ binding.

4.4 Determining the Electrostatic Free Energy of DNA−NCP

interactions

Currently models are required to estimate the DNA−ion interactions. We review here

the rather primitive first attempts where an extended cylindrical shell (representing the

environmental charge) interacts with an extended rod (representing the negatively charged

DNA polymer chain) inside the cylindrical shell.

x

y

z

b

Rc

−
−

−
−
−

b+ b+
b+

b+

b+
b+

b+
−

Vslice

Figure 4.4: The cylinder model of the charged system. The inner cylinder is an infinite charged
rod with charge spacingb. Rc is the cylinder radius defined by the charged rod con-
centration.Vslice is a cylinder volume that is perpendicular to the rod with heightb and
radiusRc.
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4.4.1 The Poisson-Boltzmann Cylindrical Cell Model (PBCCM)

Changes to the electrostatic energy and entropy occurs whenthe DNA polyelectrolyte

is introduced into the salt system. The original expressionof the additional electrostatic

energyEel per unit charged group is (i.e see [58–60]) :

Eel/kBT =
1

2lB
ξφM +

1
2

∫ Rc

rM

2πr ∑
α
(zαρα(r))φ(r)dr, (4.12)

where theφM = eψM/kT is the reduced electrostatic surface potential,φ(r)=eψ(RiM )/kT

is the reduced electrostatic potential withr = RiM + rM, ξ = lB/b is the line charge density

of the polyelectrolyte, andρα(r) is the charge density ofα-species at a distancer from

the DNA polyelectrolyte surface which is given asρα(r) = gDNA-α(r) ·ρ0
α. ThegDNA-α(r) is

the RDF of speciesα relative to the DNA ions andρ0
α is the bulk charge density of species

α. According to Korolev et al. [58],Rc is the radius of the cylindrical cell defined by the

DNA concentration (Fig. 4.4),cDNA = ξ/4πlBNARc
2.

We note that the right the right hand side of Eq. 4.12 has dimension length−1 which is

dimensionally inconsistent. Nevertheless, equation 4.12can still be used if interpreted

according to that which follows. We require the value of the electrostatic energy per unit

bond length. In order to obtain the reduced energyEel/kBT, we have to exclude the term

length−1 in the calculation. A clearer expression for Eq. 4.12 is:

{Eel/kBT}/(unit length) =

[

1
2

φM +
1
2

∫ Rc

rM

2πrb∑
α
(zαρα(r))φ(r)dr

]

/b , (4.13)

where we calculate the value inside the square bracket of Eq.4.13 as the electrostatic

energy betweenrM andRc.

The electrostatic entropy contribution due to the mixing and redistribution of ions around

a polyelectrolyte is dimensionally inconsistent given by [58, 60]:

Sel/kB =−

∫ Rc

rM

2πr ∑
α

ρα(r) ln

[

ρα(r)

ρ0
α

]

dr , (4.14)

where the explanation about the usage and unit of electrostatic entropy is analogous to the

previous electrostatic energy equation. Korolev et al. [59] has calculated the electrostatic
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contribution in the formation of DNA−NCP complex. At their work, they used PBCCM

calculation to determine the density profile (RDF) of the DNA-ion pair interaction.

Since RDF from simulationρα(r) is known, we check whether the equations given by

Stigter Dirk [60] and Korolev et al. [58] is applicable to oursystem. We perform two

simulations, the first involves the DNA polymer and the second involves particle-like

DNA monomers (PLDNA), both of which exist within an ionic milieu. Except for the

shape of the DNA macroion, both types of simulations are conducted under the same

physical and ionic conditions.

In Fig. 4.5, the DNA−Na+ and DNA−Cl− RDF from the pair PB-model, simulation of

DNA and simulation of PLDNA are compared. Fig. 4.5 shows thatthe PB model RDF
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Figure 4.5: DNA−Na+ and PLDNA−Na+ RDF simulation compared to PB calculation. Simu-
lation are done without (a) and with NCP (b)

is only comparable to the RDF of the Particle-Like DNA (PLDNA) simulation. The PB

model cannot explain the fluctuation of the DNA−Na+ RDF which occurs in the poly-

electrolyte DNA simulation. The fluctuation of DNA−Na+ RDF is uniform within the

range 17.5-20 Å. We infer that these uniform fluctuations occur due to the Na+ accumu-

lation at DNA monomer neighbors because the DNA−DNA monomer distance is 20.4 Å.

Fluctuation distances which are smaller than the DNA bond length are attributed to the

effect of DNA bending.

Stigter Dirk [60] and Korolev et al. [58] obtained the potentials (φM,φ(r)) for Eq. 4.12

with the PBCCM and they used the Boltzmann-like integral, Eq. 4.1, to derive the particle

density profile. Since the RDF obtained from Eq. 4.1 does not account for the availability
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of the third particle, we believe that those authors actually only calculated the potential

and particle density that obtains for regions that are perpendicular to the axis of the DNA

rod, such as the region withinVslice (see figure 4.4), with no lateral interactions other than

the perpendicular plane. Hence they did not account for the potential and density at the

upper and lower position of the monomer. Thus, unless our interpretation of the papers

of [60] and [58] is wrong, they principally divided an infinite rod cylindrical rod into

a stack of many small cylinders with the height of the cylinders equal to the monomer

bond length. By calculating the electrostatic energy and entropy in a small cylinder in-

dividually and neglecting the electrostatic contributionof the neighboring cylinders, they

obtained the electrostatic contribution per monomer charge (or per bond length). Hence

equation 4.12 and 4.14 do not account the electrostatic contributions of cylinder neigh-

bors, whereas the RDF profile of our simulation is the result of all interactions, including

of course the lateral ones. This statement is supported by the RDF result from simulation

involving PLDNA where the derived PB RDF used by [60] agrees to the RDF of PLDNA,

where the DNA−DNA distance effect on the DNA−Na+ interaction is negligible

This conclusion casts doubts as to, whether our RDF simulation result can be accounted

for by the Eqs. 4.12 and 4.14. One method that can be used to correlate our polymer

RDF with that of equation (4.12 and 4.14) is to take the RDF data from our polymer DNA

simulation until the first valley, which is the first layer of DNA−Na+ interaction. There-

after, we use the RDF data of either PB or PLDNA simulation forall other distances. This

method avoids counting Na+ ion aggregation at DNA monomer neighbors, but there is a

discontinuity in the DNA−Na+ RDF profile because of matching the two different RDF

data. This RDF discontinuity resembles the counterion condensation theory suggested

by Manning [63] (quoted from [60]). In counterion condensation theory the RDF dis-

continuity occurs due to the difference in calculating the potential inside and outside the

’condensation’ volume.

The other method that might be employed to rationalized the experimentally derived

RDF’s is to modify the Eqs. 4.12 and 4.14, where instead of calculating the electro-

static contribution per unit charge, both equations are modified to calculate the change of

the electrostatic contribution to the thermodynamics (perDNA strand). In our modifica-

70



tion we allow each DNA monomer to interact with the Na+ ions that are associated with

neighboring monomers units. These "neighbors" extend to the whole DNA chain.

In the following, we discuss modification of Eq. 4.12 and 4.14. The first term in Eq.

4.12 is the surface potential of the monomer. Because the polyelectrolyte model contains

same monomer charge and dimension, the total surface potential is the summation ofN

monomers. The parameterξ = lB/b in Eq. 4.12 has to be changed to becomelB/Nb to

denote the unit over the polyelectrolyte length. The secondterm is the electrostatic energy

due to the interaction withα-type ions.

Summing up the electrostatic energy of each monomer-α-type particles, we have:

{Eel/kBT}/(unit length) = N
1

2lB

lB
Nb

φM +
N

∑
i=1

1
2

∫ Rc

rM

2πr ∑
α

(

zαρ0
αgi

α(r)
)

φ(r)dr, (4.15)

whereρα(r) = ρ0
αgi

α(r). Thegi
α(r) is the RDF of theα type particle to the monomer with

index i. The radial distribution function obtained from simulation is the average RDF

of the RDF due to each of the monomers. Thusgα(r) =
∑N

i=1 gi
α(r)

N . Expanding Eq. 4.13

yields:

{Eel/kBT}
(unit length)

=
N
2

1
Nb

φM +
N

∑
i=1

1
2
[
∫ Rc

rM

2πr z1ρ0
1g

i
1(r)φ(r)dr

+
∫ Rc

rM

2πrz2ρ0
2g

i
2(r)φ(r)dr+ · · · ]

(4.16)

=
N
2

1
Nb

φM +
1
2
[
∫ Rc

rM

2πrz1ρ0
1

(

N

∑
i=1

gi
1(r)

)

φ(r)dr

+
∫ Rc

rM

2πrz2ρ0
2

(

N

∑
i=1

gi
2(r)

)

φ(r)dr+ · · ·]

(4.17)

=
N
2

1
Nb

φM +
1
2
[
∫ Rc

rM

2πr z1ρ0
1N g1(r)φ(r)dr

+

∫ Rc

rM

2πrz2ρ0
2N g2(r)φ(r)dr+ · · ·]

(4.18)

=
N
2

1
Nb

φM +
N
2

∫ Rc

rM

2πr

(

∑
α

zαρ0
α gα(r)

)

φ(r)dr . (4.19)
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In order to get the reduced electrostatic energy (Eel/kT) per unit polyelectrolyte length,

we need to include the theNb contour length factor in the denominator.

Thus we arrive at the final expression for the modified electrostatic energy in a cylindrical

cell:

{Eel/kBT}
(unit length)

=

[

N
2

φM +
N2b

2

∫ Rc

rM

2πr

(

∑
α

zαρ0
α gα(r)

)

φ(r)dr

]

/Nb . (4.20)

To modify the electrostatic entropy, we begin summing up theelectrostatic entropy for all

monomers along the chain:

{Sel/kB}

(unit length)
=

N

∑
i=1

[

−
∫ Rc

rM

2πr ∑
α

ρ0
αgi

α(r) lngi
α(r)

]

dr (4.21)

=−

∫ Rc

rM

2πr ∑
α

ρ0
α

(

N

∑
i=1

gi
α(r) lngi

α(r)

)

dr , (4.22)

whereρα(r) = gα(r)ρ0
α. The summation in Eq. 4.22 contains a natural logarithm, which

is difficult to solve. Thus we make an assumption that the RDF of individual monomers is

the same over the chain. This approximation is reasonable for a very long chain because

we can neglect the end effects. In our model which simulates avery long chain containing

360 monomers with contour length 7344 Å, this approximationis reasonable. Thus:

{Sel/kB}

(unit length)
=−

∫ Rc

rM

2πrN ∑
α
(ρ0

αgα(r) lngα(r))dr . (4.23)

As with the electrostatic energy, we need to include the contour lengthNb in the denomi-

nator to get the entropy term (TSel/kBT) per chain length:

{Sel/kB}

(unit length)
=

[

−

∫ Rc

rM

2πrN2b∑
α
(ρ0

αgα(r) lngα(r))dr

]

/Nb . (4.24)

In Eq. 4.20 and 4.24, only the formula inside the square brackets will be used in calcula-

tions since we are interested in total energies.

Theφ(r) electrostatic potential is obtained by solving the for PB equation for a cylindrical
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cell [60]:

d2(zφ)
dr2 +

1
r

d(zφ)
dr

= κ2sinh(zφ) , (4.25)

whereφ = eψ/kBT is the reduced electrostatic potential.

This differential equation and others [Korolev et al. [58],Eq. (10)] must be solved it-

eratively. In order to calculate the entropy, energy and free energies for our modified

equations, we need to numerically computeφM andφ(r). This is a separated and dilated

study in differential equations which will not be presentedhere. On the other hand, in

order to illustrate computational ease of our equations, weshall use the Debye-Huckel

potential which is known in closed form as a function distance from the central ion. Thus

instead of using a cylindrical cell, we consider the spherical cell as more appropriate for

our present work. Another reason is that the computation of RDF in simulations is based

on the density within a spherical volume, which makes the Debye-Huckel and any spheri-

cally symmetrical potential convenient. In the future, a comparisonal study of cylindrical

and spherical cell would be conducted, where Eq. 4.25 would be solved to allow for the

intended calculations.

4.4.2 Modification of the Cylindrical to the Spherical Cell

In order to change the electrostatic contribution equationelement from the cylindrical

cell to spherical cell, we need to change the integration from over the volume of the

annulus, 2πrdrL, to that over the shell volume 4πr2dr. Consequently, we will change the

electrostatic energy and energy unit from the reduced energy and entropy per unit length

(in a cylindrical cell) to become reduced energy and entropy(in a spherical cell). This

is because in the spherical cell model we measure the total electrostatic changes in the

spherical cell volume.

The formula of the electrostatic energy and entropy of polyelectrolyte-ion a system in
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spherical cell are:

Eel/kBT =
N
2

φM +
N
2

∫ Rn

rM

4πr2
(

∑
α

zαρ0
α gα(r)

)

φ(r)dr (4.26)

Sel/kB =−
∫ Rn

rM

4πr2N∑
α

ρ0
αgα(r) lngα(r)dr . (4.27)

Then we will get the Helmholtz electrostatic free energy (F) with the expression:

Fel = Eel−TSel . (4.28)

In our work, we change the limits for integration of electrostatic energy and entropy.

Instead of modelling the limit due to the distance radius (Rc) of a cylinder or a sphere,

where the volume of the cylinder or sphere is defined by the DNAconcentration, we

limit the integration limitRn as the distance obtained after we normalize the RDF. The

normalization follows the expression:

nα =
∫ Rn

0
4πr2gα(r)ρ0

αdr , (4.29)

wherenα is the total number of particlesα.

csalt (mM) Eel/(kBT) TSel/(kBT) Fel/(kBT) DNA−Na+ Coord. Number (nNa
DNA)

0.0 -72265.7 -15036.7 -57228.9 9.37

0.001 -69534.7 -14980.1 -54554.6 9.62

0.0025 -72861.1 -15468 -57393.1 9.87

0.005 -69718.7 -15495.5 -54223.1 9.89

0.01 -68420.5 -16271.3 -52149.1 9.96

0.025 -56314.2 -14695.9 -41618.4 10.75

0.05 -38843.0 -12918.2 -25924.8 11.86

0.075 -33044.9 -12357.2 -20687.7 12.35

0.15 -7301.54 -9519.26 2217.71 15.24

0.25 -5690.49 -9348.75 3658.26 15.41

Table 4.3: Electrostatic profile (Spherical Cell) of DNA−NCP interaction and DNA−Na+ coor-
dination number. DNA concentration 0.005 mg/ml
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csalt (mM) Eel/(kBT) TSel/(kBT) Fel/(kBT) DNA−Na+ Coord. Number (nNa
DNA)

0.0 -23608.1 -2559.41 -21048.7 8.86

0.01 -27293.0 -2335.91 -24957.1 9.04

0.1 -25589.8 -1677.85 -23912 8.89

1.0 -20212.3 -669.775 -19542.5 10.27

2.5 -13256.8 15.1975 -13272 11.85

7.5 -5963.7 967.279 -6930.98 14.28

10.0 -6927.31 358.699 -7286.01 13.58

25.0 -2020.57 1292.37 -3312.94 16.72

50.0 -1280.49 1341.04 -2621.53 18.15

75.0 -870.718 1570.49 -2441.2 20.58

100.0 -757.847 1728.26 -2486.11 21.60

Table 4.4: Electrostatic profile (Spherical Cell) of DNA−NCP interaction and DNA−Na+ coor-
dination number. DNA concentration 2.0 mg/ml

Table 4.3 and 4.4 give the numerical result of the electrostatic energy, entropy and free en-

ergy of DNA−NCP interaction at DNA concentration 0.005 mg/ml and 2.0 mg/ml. Those

tables also includes the DNA coordination number of Na+ ion to DNA. We graph these

tables in Fig 4.6(a,b). The results for both DNA concentrations show that the electrostatic

energy of DNA−NCP interaction increases with the addition of salt. It indicates that

the coulomb attractive potential between DNA and NCP weakens as the salt amount in-

creases. We attribute the weakening of the DNA−NCP attraction to the stronger screening

effect from salt ions. Table 4.3 and 4.4 show that as the salt amount increases, the DNA

coordination number to Na+ also increases. Thus besides the screening effect from dif-

fused ions, the addition of Na+ into the solution will compete with the NCP binding to

the DNA negatively charged surface. This Na+−NCP competition also plays a role in

weakening the DNA−NCP interaction.

From the entropy point of view, addition of salt will slightly increase the electrostatic

entropy of DNA−NCP interaction. The entropy escalation implies that the NCP position

will be more spread out in the system rather than being bound at the DNA surface. The

entropy increase indicates a smaller measure of DNA−NCP wrapping
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Figure 4.6: Electrostatic profile of DNA−NCP interaction. The unit ofEel, TSel andFel is in kBT

In this study the DNA−NCP electrostatic free energy reflects the DNA−NCP interactions

at equilibrium. The availability of other salt particles inthe solution is responsible for the

interaction parameters (condition) for the DNA and NCP particles. Lower free energies

indicate the preferred state of DNA−NCP interaction. From the graphs in Fig. 4.6, the

electrostatic energy contribution is more significant to the entropy contribution of the free

energy. Thus electrostatic energy between DNA and NCP has a more important role than

entropy in determining the nature of DNA−NCP interaction.

The comparison of Na+ ion coordination number to the DNA in simulations with and
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Figure 4.7: Coordination number of Na+ ions about DNA in simulation with NCP and without
NCP available in the system. The error estimation for each points is± 0.5
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without NCP is depicted in Fig. 4.7. From simulations, it is found that the NCP tends to

bind to the DNA polyelectrolyte at low salt concentration. Figure 4.7 substantiates this

observation in that at low salt concentrations, a smaller amount of Na+ is bound at the

DNA surface. The large positive charge of NCP will repel the Na+ from the DNA surface.

Recall that at low concentration the Debye screening lengthis very large leading to al-

most pure Coulombic repulsion between NCP and Na+. At higher salt concentrations, the

stronger screening effect weakens the DNA−NCP interaction and at a certain concentra-

tion, Na+ wins the competition in cation−DNA binding. Thus at high salt concentrations,

the NCP concentration will not affect DNA−Na+ interaction.

For a comparison to another study pertaining the DNA-NCP conformation, we present

Figure 4.8: Original figure from [62]. DNA-NCP configurationobtained by minimizing the free
energy (Eq. 4.30) for a fixed NCP chargeZ = 40 at increasing salt concentrations.
Bars in the lower right are the respective screening lengths. (a) No added salt (κ = 0).
(b) Salt concentration 0.6 mM (κ = 0.08nm−1) and 1.6 mM (κ = 0.13nm−1). (e)
Salt concentration 16.6 mM (κ = 0.418nm−1). (f) Salt concentration 10.6 M (κ =
10.6nm−1)

an interesting result of the numerical simulation done by [62]. Kunze and Netz [62]

determined the equilibrium state of the DNA-NCP complex by calculating the minimum

free energy of the DNA-NCP complex. In their work, the free energy expression for a
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fixed DNA-NCP configuration is

F
kBT

=
LP

2

∫ L

0
dsr̈2(s)−

lBZτ
1+κR

∫ L

0
ds

e−κ(|r(s)|−R)
|r(s)|

+ lBτ2
∫ L

0
ds

∫ L

s
ds′

e−κ|r(s)−r(s′)|

|r(s)− r(s′)|
(4.30)

where they utilizedLP = 300Å as the bare DNA persistence length,r(s) is a vector de-

scribing the DNA configuration,τ = 2/3.4Å is the linear DNA charge density,L = 500Å

is the DNA polymer length,Z = 40 is the NCP charge andR= 50Å is the NCP radius.

The salt concentration is included in the Debye-Huckel parameterκ. Since there is no

entropic term given in Eq. 4.30, we consider that Eq. 4.30 is more appropriate to repre-

sent the energy of the DNA-NCP conformation instead of its free energy. But we keep

the free energy notation from the source article. The snapshots of equilibrium DNA-NCP

complex from minimizing Eq. 4.30 in different salt concentrations are shown in Fig. 4.8.

The minimization seems to refer to defined order parameters for any one chosen confor-

mation.

From Fig. 4.8, there are partial dewrapping of the DNA-NCP complex at zero and low

salt concentration which is not observed in our simulation.Kunze and Netz [62] attribute

the DNA-NCP unwrapping at zero and low salt concentration tothe strong Coulomb re-

pulsion between DNA beads. In contrast, in our simulation the DNA-NCP coiling is more

pronounced at low salt. The NCP charge which is explained by [62] in Fig 4.8 isZ=+40

whilst we useZ = +150. This could be one factor why in [62] the net DNA-DNA re-

pulsive force is larger than the net DNA-NCP coiling force atlow salt concentration.

However further exploration is needed to justify this interesting phenomenon.

4.5 Snapshots

Fig. 4.9 and 4.10 give some snapshots of DNA and NCP in simulation. In Fig. 4.9,

the DNA concentration is 0.005 mg/ml, and in Fig 4.10 it is 2.0mg/ml. The NCP is

represented as green spheres. For clarity, the salt ion images are excluded. These snap-

shots support the electrostatic free energy data. As depicted in both figures, when the salt

concentration increases, the NCPs will tend to be freed fromthe DNA wrapping due to
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greater screening effect and Na+ competition. From the free energy data (Table 4.3 and

4.4), it is clear that the most wrapped NCP−DNA structure corresponds to that with the

lowest free energies, which correspond also to low salt concentrations.

It is evident that salt concentration at which the DNA uncoils from the NCP is a func-

Figure 4.9: Snapshots of DNA−NCP particles at different salt concentrations. DNA concentra-
tion 0.005 mg/ml.

tion of DNA−NCP concentration. At 0.005 mg/ml, the DNA−NCP unwrapping starts at

salt concentration∼0.075 mM. While at DNA concentration 2.0 mg/ml, DNA−NCP un-

wrapping starts at salt concentration∼10 mM. Thus choosing the appropriate DNA and

NCP concentration for studying the DNA−NCP coiling mechanism for variable salt con-

centration is critical in order to determine any type of phase diagram and the associated

properties of the phases. Fig. 4.11 gives some snapshots of the DNA-NCP conformations

at different time intervals (reduced unit). After some time, the energy and the DNA-NCP

conformation in the system are about fixed indicating the system is in equilibrium.
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Figure 4.10: Snapshots of DNA−NCP particles at different salt concentrations. DNA concentra-
tion 2.0 mg/ml.
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Figure 4.11: DNA-NCP conformations in different time intervals. DNA concentration 0.005
mg/ml, salt concentration 0.075 mM.
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Chapter 5

Conclusion

The extent and intensity of the simulation studies was considerable since relatively lit-

tle known of the conformational dynamics of the DNA−NCP complex in the presence

of salt. Hence many unknown variables presented themselvesat the outset of the work

and we had to survey a very broad terrain of simulation conditions. The above learning

experiences allow us to choose the appropriate conditions to verify both qualitatively and

quantitatively the following relative to our model.

1. Increasing the salt concentration increases the DNA flexibility indicated by the de-

crease of the DNA persistence length

2. Our equation for calculating the persistence length of any stiff polyelectrolyte pre-

serves the persistence length as relatively constant at very low salt concentrations

whereas in other theories, this length tends to infinity which does not accord with

reality

3. Our "ionic bridging effect" allows for the possibility that a charged polyelectrolyte

has a smaller persistence length than the uncharged polymer

4. The ionic bridging effect plays an equally important rolein reducing the DNA per-

sistence length as the ionic screening effect

5. Molecular simulations are able to directly demonstrate the existence of the ionic

bridging phenomenon



6. The persistence length of a stiff neutral chain from WLC theory calculation only

holds up to a certain value of the chain bending modulus

7. The ions included for calculating the ionic screening parameterκ are the free mobile

ions (salt and counterion) and the macroionic contributions are negligible

8. The original Poisson-Boltzmann cylinder cell model cannot account for the coun-

terion condensation at the DNA monomer neighbors

9. Increasing the NaCl concentration increases the coordination number of Na+ about

the DNA chain

10. Increasing the salt concentration weakens the tendencyfor DNA−NCP wrapping

11. The electrostatic energy term gives a more significant contribution than the entropic

term to the electrostatic free energy change due to the fluctuation in the DNA−NCP

wrapping.

It is evident from the list above that this piece of research has opened up at least 11 re-

search direction of topics in critical areas of biophysicalas polyelectrolyte research. The

investigation of any of the above topics would undoubtedly lead to even greater elucida-

tions connecting atomistic interactions with macroscopicmanifestations.
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Appendix A

Reduced units

Reduced units are obtained by converting some constant values to a preferred constant

(e.g. 1.00) or associating some constant values to other variables. Following the conven-

tion, any variables in reduced unit will be appended by the′∗ ′ symbol.

A.1 Length (L)

The unit of length in our simulation is the Bjerrum length (lB) defined as the distance

where the coulomb energy equals to the thermal energykBT. Then

lB =
e2

4πε0εrkBT
, (A.1)

wheree= 1.602176×10−19 C, ε0 = 8.854187817×10−12C2J−1m−1 is the vacuum per-

mittivity, εr the relative permittivity or dielectric constant is definedasεr = εs/ε0. We

arrive at the Bjerrum length of water as 7.13 Å at 300 K which isthe value that we shall

subsequently use for all our simulation runs. Thus:

L∗ = L/lB . (A.2)

A.2 Temperature

We use the reduced unit temperatureT∗ = εLJ/kBT whereεLJ is a fixed energy increment.

In our workT∗ = 1 is equivalent to 300 K.



A.3 Energy

The reduced unit energy (E∗) is equivalent to the Lennard-Jones (LJ) energy scale,εLJ (in

2.3, chapter 2) , whereεLJ = kBT/T∗. Thus

εLJ =
1.3807×10−23×300

1
= 4.142×10−21J. (A.3)

Furthermore

E∗ = E/εLJ. (A.4)

Clearly from the aboveεLJ
∗=1.

A.4 Mass

To use reduced units for particles mass, the particle with the lightest mass has reduced

unit mass,m∗ = 1. where the mass of this standard isms. For any other mass, we have

m∗ = m/ms. The particles simulated here are DNA monomers (each monomer contains 6

bp), nucleosome core particles (histone octamers) and Na+ and Cl−. From the literature

([1][64]), we obtain:

• Mass of Na = 3.819× 10−26 kg/particle

• Mass of Cl = 5.889× 10−26 kg/particle

• Mass of DNA bead (average) = 61262× 10−26 kg/monomer

• Mass of NCP = 18.02668× 10−23 kg (per histone octamers).

Because Na+ has the smallest mass, this mass will be used as the standard (ms). Thus:

• m*
Na+ = 1.0

• m*
Cl− = 1.54

• m*
DNA monomer= 160.41

• m*
NCP = 4270.26 .
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A.5 Velocity

In energy term, velocity is a part of the kinetic energy. Fromthe previous definitions, we

have

Ek =
1
2

mv2 ⇒ Ek
∗εLJ =

1
2

m∗msv
2 ⇒ Ek

∗ =
1
2

m∗

(

ms

εLJ

v2
)

. (A.5)

By the invariance principle, for any reduced unit, the definition for kinetic energy remains

the same. Hence

E*
k =

1
2

m∗(v∗)2 . (A.6)

Comparing Eq. A.5 and A.6, we have

(v∗)2 =
ms

εLJ

v2 (A.7)

or

v∗=

√

ms

εLJ

v . (A.8)

A.6 Time

The time variable (t) is always related to the velocityv and distancer as follows:

r = vt ⇒ r∗lB =

√

εLJ

ms
v∗ t ⇒ r∗ = v∗

√

εLJ

ms

1
lB

t . (A.9)

By the invariance principle,

r∗ = v∗t∗ . (A.10)
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By comparing (A.9) and (A.10), we derive

t∗=
1
lB

√

εLJ

ms
t . (A.11)

From the known values oflB, εLJ andms, Eq. A.11 yields

t = 2.165×10−12 t∗ .

If we used the reduced time-step 0.001 in simulation, it actual time-step in laboratory

units would be 2.165× 10−15 seconds or 2.165 femtoseconds.

A.7 Harmonic Bond Constant

The Hooke’s law is used to model the bonding potential, givenby

Eh =
1
2

kh(∆x)2 ,

whereEh is the harmonic oscillator energy ;∆x = xt − x0 wherext is the interparticle

distance andx0 the equilibrium distance. Therefore

E*
h εLJ =

1
2

kh (∆x∗ lB)
2 ⇒ E*

h =
1
2

khlB
2

εLJ

(∆x∗)2 =
1
2

k*
h (∆x∗)2 . (A.12)

Thus, by the usual method of comparison,

k*
h =

khlB
2

εLJ

. (A.13)

By submitting known values for the physical constant, we have:

=
kh (7.13×10−10)2

4.14×10−21 = 122.794×kh . (A.14)
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A.8 Bending Angle Constant

Similarly, the bending angle energy is expressed by:

Eθ =
1
2

kθθ2 .

Sinceθ is dimensionless, we haveθ = θ∗. Therefore

E∗
θεLJ =

1
2

kθ (θ∗)2 ⇒ E∗ =
1
2

kθ
εLJ

θ2 . (A.15)

Hence by the invariant principle,

k∗θ =
kθ
εLJ

=
kθ

kBT
T∗ , (A.16)

and therefore

k∗θ =
kθ

kBT
. (A.17)

A.9 Acceleration

The definition of acceleration for an infinitesimal time incrementt is

a=
V2−V1

t
=

√

εLJ
ms

(V∗
2 − V∗

1 )

lB

√

ms
εLJ

t∗
. (A.18)

Converting Eq. A.18 to reduced units for all the variables, implies

a=
εLJ

lBms

V∗
2 − V∗

1

t∗
=

εLJ

lBms
a∗ . (A.19)

Thus:

a∗ =
lB

msεLJ

a . (A.20)
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A.10 Force

By the invariance principle, we can similarly write

F = ma=
m∗msεLJa∗

lB ms
= m∗a∗

εLJ

lB
= F∗ εLJ

lB
. (A.21)

Thus

F∗ = F
lB

εLJ

. (A.22)
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Appendix B

Tool Command Language (TCL)

Scripts

To run a molecular dynamics (MD) simulation with ESPResSo, the ESPResSo executable

file will read the user’s commands in a TCL script. In this appendix, two main TCL

scripts for running MD simulation are given. Some codes are written (in either C++ or

TCL) for analyzing the output of the MD run. The analysis centres about calculations

to determine such parameters as the persistence length, electrostatic energy and entropy,

coordination number and harmonic stretching constant. Various approximations are used

in the calculation (e.g. the Percus-Yevick and hypernettedchain approximation). Several

equations are also utilized (e.g. Debye-Huckel-Poisson-Boltzmann, Ornstein-Zernike and

modified Grosberg equations). Those codes are not loaded in this thesis.

B.1 Equilibrium Run

The TCL script in this section is used to derive a system in equilibrium. This script

contains the system set up, particles properties, force fields assignment, interaction pa-

rameters, trajectory file generator, system checkpoint/recorder for the next run, and the

energy measurement.

The script is reproduced below:

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−



set t1 [clock second]

puts "[code_info]"

#############################PROCEDURE ###################################

# Add configuration in TXYZ (Tinker) format to the trajectoryfile "f_tinker"

# Below puts all particle including salts in trajectory file

proc conf_tinker { f_tinker } {

global box_l n_MD n_part chem_typ atom_typ

puts $f_tinker "$n_part after [setmd time] i.u., BOX: $box_l"

for {set j 0} {$j < [expr $n_MD -1]} {incr j} {

puts $f_tinker "[expr $j+1] $chem_typ($j) [part $j print pos] $atom_typ($j) [expr $j+2] "

}

for {set j [expr $n_MD-1]} {$j < $n_part} {incr j} {

puts $f_tinker "[expr $j+1] $chem_typ($j) [part $j print pos] $atom_typ($j)"

}}

# Add configuration in XMOL format to the trajectory file "f_xmol"

# Below only puts DNA Monomers and NCP in trajectory file

proc confxmol { f_xmol } {

global box_l chem_typ n_MD n_NCP

puts $f_xmol [expr int([expr $n_MD + $n_NCP])]

puts $f_xmol " after [setmd time] i.u., BOX: $box_l $box_l $box_l"

for {set j 0} {$j < [expr $n_MD + $n_NCP]} {incr j} {

puts $f_xmol " $chem_typ($j) [part $j print pos]"

}}

proc DNAToCENTER { } {

global box_l nt_MD pid_MD

# assumes the same mass for each group of particles in a molecule etc..

set xcom 0.

set ycom 0.

set zcom 0.

# set ii [expr $i + 1]

# loop over molecules

# pid_MD=0 nt_MD=total monomers, j will be the pid

for {set j $pid_MD } {$j < $nt_MD} {incr j} {

# compute center-of-mass for each molecule

set xcom [expr $xcom + [lindex [part $j print pos] 0 ] ]

set ycom [expr $ycom + [lindex [part $j print pos] 1 ] ]

set zcom [expr $zcom + [lindex [part $j print pos] 2 ] ]

}

set xcom [ expr $xcom / $nt_MD ]

set ycom [ expr $ycom / $nt_MD ]

set zcom [ expr $zcom / $nt_MD ]

# Here we already get the COM polymer.
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# Below moving all particle, where COM polymer will be in the middle of box

for {set j $pid_MD} {$j < $nt_MD} { incr j } {

set xnew [expr [lindex [part $j print pos] 0] - $xcom + 0.5*$box_l]

set ynew [expr [lindex [part $j print pos] 1] - $ycom + 0.5*$box_l]

set znew [expr [lindex [part $j print pos] 2] - $zcom + 0.5*$box_l]

part $j pos $xnew $ynew $znew

}}

#################### Length Units= Bjerrum Length ###########

set l_b 7.13

set l_unit $l_b

############################PARAMETERS#######################

set title "24type1"

#first, set polymer concentration you wish

set polymer_concentration 0.005

# bead/monomer weight and volume scale =(· · · x 10^-20) gr and ml

set bead_weight 0.61262

set polymer_weight [expr $bead_weight*360]

set v_solvent [expr ($polymer_weight*1000)/$polymer_concentration]

set box_lori [expr pow(($v_solvent/100000.),0.33333)*1000.]

puts "polymer concentration = $polymer_concentration mg/ml"

puts "box length = $box_lori Angstrom"

## Simulation Box

set shield 1.

#volume box (v_box) below later for calculating salt amount

set v_box [expr pow($box_lori,3)]

set box_l [expr $box_lori/$l_unit]

setmd box_l $box_l $box_l $box_l

## Thermostat, here use thermostat for NVT type

set gamma 1.0

set temp 1.0

integrate set nvt

thermostat langevin $temp $gamma

set time_step 0.015

set skin 0.4

setmd time_step $time_step

setmd skin $skin

setmd temp

puts " "

puts "==================================================="

puts "= 360-chain polymer ="

puts "==================================================="

puts " "
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### Particles ###

##DNA

# num of DNA

set n_D 1

# num of monomers per DNA

set n_MD 360

# total monomers

set nt_MD [expr $n_D*$n_MD]

# mass of monomers

set m_MD 160.41

# radius of monomers (l_unit*A), equal to the width o DNA double helix

set r_MD [expr 10./$l_unit]

# radius of monomers soft core (effective radii)

set r_sMD [expr 2./$l_unit]

# radius of monomers hard core radii (ineffective radii)

set r_hMD [expr $r_MD-$r_sMD]

# charge of monomers

set q_MD -12

# total charge of monomers

set q_totalMD [expr $q_MD*$n_MD*$n_D]

# bond length between two nucleus, equal to 6*3.4 A

set l_MD [expr 20.4/$l_unit]

# type of monomers

set type_MD 0

# start monomer pid, for creating id of the first monomers

set pid_MD 0

# creating DNA chem_typ for gopenmol needs

for {set i $pid_MD} {$i < [expr $pid_MD+$nt_MD]} {incr i} {set chem_typ($i) "O" ;

set atom_typ($i) "40"}

## NCP

# Num of NCP

set n_NCP 12

# mass

set m_NCP 4270.26

# radius

set r_NCP [expr 35./$l_unit]

# radius of NCP soft core (effective radii)

set r_sNCP [expr 2./$l_unit]

# radius of NCP hard core radii (ineffective radii)

set r_hNCP [expr $r_NCP-$r_sNCP]

# charge

set q_NCP 150
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# total charge of NCP

set q_totalNCP [expr $q_NCP*$n_NCP]

# type of NCP

set type_NCP 1

# start NCP pid, for creating id of the first NCP

set pid_NCP [expr $pid_MD+$nt_MD]

# creating NCP chem_typ for gopenmol needs

for {set ii $pid_NCP} {$ii < [expr $pid_NCP+$n_NCP]} {incr ii} {set chem_typ($ii)

"C" ; set atom_typ($ii) "14"}

## Calculating additional ion for neutralizing system

set q_add [expr -1*($q_totalMD+$q_totalNCP)]

if {$q_add> 0} {

set addNa $q_add

set addCl 0

} elseif {$q_add< 0} {

set addNa 0

set addCl [expr abs($q_add)]

} else {

set addNa 0

set addCl 0

}

## SALT

# Just put your desired salt concentration, in mM unit

set c_salt 0.25

set n_salt [expr int($c_salt*602e-09*$v_box)]

# (Na^+1)

set n_Na [expr $n_salt+$addNa]

set m_Na 1.

###set r_Na [expr 0.98/$l_unit]

set r_Na [expr 2./$l_unit]

set q_Na 1

set q_totalNa [expr $q_Na*$n_Na]

set type_Na 2

set pid_Na [expr $pid_NCP+$n_NCP]

# creating Na chem_typ for gopenmol needs

for {set j $pid_Na} {$j < [expr $pid_Na+$n_Na]} {incr j} {set chem_typ($j) "Na" ; set

atom_typ($j) "81"}

# (Cl^-1)

set n_Cl [expr $n_salt+$addCl]

set m_Cl 1.54

###set r_Cl [expr 1.81/$l_unit]

set r_Cl [expr 2./$l_unit]
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set q_Cl -1

set q_totalCl [expr $q_Cl*$n_Cl]

set type_Cl 3

set pid_Cl [expr $pid_Na+$n_Na]

# creating Cl chem_typ for gopenmol needs

for {set jj $pid_Cl} {$jj < [expr $pid_Cl+$n_Cl]} {incr jj} {set chem_typ($jj) "Cl" ; set

atom_typ($jj) "93"}

## particle amount

set n_part [expr $nt_MD+$n_NCP+$n_Na+$n_Cl]

### Interaction ###

## (1) Between type 0 & 0 ##

# Lennard-Jones

set lj_eps00 1.0

set lj_sig00 [expr 2*$r_sMD]

set lj_rcut00 [expr 1.122462*$lj_sig00]

set lj_cshift00 [calc_lj_shift $lj_sig00 $lj_rcut00]

set lj_roff00 [expr $r_hMD+$r_hMD]

# Harmonic stiffer bonds

set r_spring 20.3417956

set harm_r [expr $r_spring/$l_unit]

set harm_k 2500.

# Angle bending (DNA persistence length)

# Bond angle

set bend_k [expr 500./20.4]

set bend_phiO [PI]

puts $bend_phiO

## (2) Between type 0 & 1 ##

# Lennard-Jones

set lj_eps01 1.0

set lj_sig01 [expr $r_sMD+$r_sNCP]

set lj_rcut01 [expr 1.122462*$lj_sig01]

set lj_cshift01 [calc_lj_shift $lj_sig01 $lj_rcut01]

set lj_roff01 [expr $r_hMD+$r_hNCP]

## (3) Between type 0 & 2 ##

# Lennard-Jones

set lj_eps02 1.0

set lj_sig02 [expr $r_sMD+$r_Na]

set lj_rcut02 [expr 1.122462*$lj_sig02]

set lj_cshift02 [calc_lj_shift $lj_sig02 $lj_rcut02]

set lj_roff02 [expr $r_hMD+0.]

## (4) Between type 0 & 3 ##

# Lennard-Jones
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set lj_eps03 1.0

set lj_sig03 [expr $r_sMD+$r_Cl]

set lj_rcut03 [expr 1.122462*$lj_sig03]

set lj_cshift03 [calc_lj_shift $lj_sig03 $lj_rcut03]

set lj_roff03 [expr $r_hMD+0.]

## (5) Between type 1 & 1 ##

# Lennard-Jones

set lj_eps11 1.0

set lj_sig11 [expr 2*$r_sNCP]

set lj_rcut11 [expr 1.122462*$lj_sig11]

set lj_cshift11 [calc_lj_shift $lj_sig11 $lj_rcut11]

set lj_roff11 [expr $r_hNCP+$r_hNCP]

## (6) Between type 1 & 2 ##

# Lennard-Jones

set lj_eps12 1.0

set lj_sig12 [expr $r_sNCP+$r_Na]

set lj_rcut12 [expr 1.122462*$lj_sig12]

set lj_cshift12 [calc_lj_shift $lj_sig12 $lj_rcut12]

set lj_roff12 [expr $r_hNCP+0.]

## (7) Between type 1 & 3 ##

# Lennard-Jones

set lj_eps13 1.0

set lj_sig13 [expr $r_sNCP+$r_Cl]

set lj_rcut13 [expr 1.122462*$lj_sig13]

set lj_cshift13 [calc_lj_shift $lj_sig03 $lj_rcut13]

set lj_roff13 [expr $r_hNCP+0.]

## (8) Between type 2 & 2 ##

# Lennard-Jones

set lj_eps22 1.0

set lj_sig22 [expr 2*$r_Na]

set lj_rcut22 [expr 1.122462*$lj_sig22]

set lj_cshift22 [calc_lj_shift $lj_sig22 $lj_rcut22]

set lj_roff22 0.0

## (9) Between type 2 & 3 ##

# Lennard-Jones

set lj_eps23 1.0

set lj_sig23 [expr $r_Na+$r_Cl]

set lj_rcut23 [expr 1.122462*$lj_sig23]

set lj_cshift23 [calc_lj_shift $lj_sig23 $lj_rcut23]

set lj_roff23 0.0

## (10) Between type 3 & 3 ##

# Lennard-Jones
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set lj_eps33 1.0

set lj_sig33 [expr 2*$r_Cl]

set lj_rcut33 [expr 1.122462*$lj_sig33]

set lj_cshift33 [calc_lj_shift $lj_sig33 $lj_rcut33]

set lj_roff33 0.0

########################INTERACTIONS#####################################

### (1) Between 0 0 ###

# LJ

inter 0 0 lennard-jones $lj_eps00 $lj_sig00 $lj_rcut00 $lj_cshift00 $lj_roff00

# Harmonic

inter 0 harmonic $harm_k $harm_r

# Bond angle

inter 1 angle $bend_k $bend_phiO

### (2) Between 0 1 ###

inter 0 1 lennard-jones $lj_eps01 $lj_sig01 $lj_rcut01 $lj_cshift01 $lj_roff01

### (3) Between 0 2 ###

inter 0 2 lennard-jones $lj_eps02 $lj_sig02 $lj_rcut02 $lj_cshift02 $lj_roff02

### (4) Between 0 3 ###

inter 0 3 lennard-jones $lj_eps03 $lj_sig03 $lj_rcut03 $lj_cshift03 $lj_roff03

### (5) Between 1 1 ###

inter 1 1 lennard-jones $lj_eps11 $lj_sig11 $lj_rcut11 $lj_cshift11 $lj_roff11

### (6) Between 1 2 ###

inter 1 2 lennard-jones $lj_eps12 $lj_sig12 $lj_rcut12 $lj_cshift12 $lj_roff12

### (7) Between 1 3 ###

inter 1 3 lennard-jones $lj_eps13 $lj_sig13 $lj_rcut13 $lj_cshift13 $lj_roff13

### (8) Between 2 2 ###

inter 2 2 lennard-jones $lj_eps22 $lj_sig22 $lj_rcut22 $lj_cshift22 $lj_roff22

### (9) Between 2 3 ###

inter 2 3 lennard-jones $lj_eps23 $lj_sig23 $lj_rcut23 $lj_cshift23 $lj_roff23

### (10) Between 3 3 ###

inter 3 3 lennard-jones $lj_eps33 $lj_sig33 $lj_rcut33 $lj_cshift33 $lj_roff33

# Below decide whether we use the last configuration or start anew run

if { [ file exists "dna14.end" ] } {

puts "This script is not for reading the last data"

exit }

######################CREATING PARTICLES##############################

### DNA ###

puts "Generating $n_D DNA of $n_MD monomers with charge $q_MD per-monomer

(total particle=$n_part)"

polymer $n_D $n_MD $l_MD start $pid_MD mode PSAW [expr $lj_roff00*1.2] charge

$q_MD distance 1 types $type_MD $type_MD bond 0

#fill the DNA mass
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for {set m $pid_MD} {$m< [expr $pid_MD+$nt_MD]} {incr m} {

part $m mass $m_MD

}

#fill the dna angle bond

for {set m $pid_MD} {$m< [expr $pid_MD+$nt_MD-2]} {incr m} {

set m1 [expr $m+1]

set m2 [expr $m+2]

part $m1 bond 1 $m $m2

}

#move DNA to COB

DNAToCENTER

puts "Creating NCP"

### NCP ###

counterions $n_NCP start $pid_NCP mode SAW $lj_roff01 charge $q_NCP type $type_NCP

#fill the NCP mass

for {set m $pid_NCP} {$m< [expr $pid_NCP+$n_NCP]} {incr m} {

part $m mass $m_NCP

}

puts "Creating SALT"

### SALT ###

salt $n_Na $n_Cl start $pid_Na mode SAW $lj_roff02 charge $q_Na $q_Cl types $type_Na

$type_Cl

#fill the salt mass

for {set m $pid_Na} {$m< [expr $pid_Na+$n_Na]} {incr m} {

part $m mass $m_Na

}

for {set m $pid_Cl} {$m< [expr $pid_Cl+$n_Cl]} {incr m} {

part $m mass $m_Cl

}

## create initial position coord. file

set f_xmol [open init$title.xmol "w"]

confxmol $f_xmol

close $f_xmol

##################### WARMING UP #######################################

# the importance of warming up is not only for relaxing DNA polymer but also for over-

lapping molecule position inside DNA & NCP hard sphere radius

## Equilibrating use ljforcecap

set min01 0

set min02 0

set min03 0

set min11 0

set min12 0

98



set min13 0

inter 0 1 lennard-jones $lj_eps01 [expr $r_MD+$r_NCP] [expr 1.122462*[expr $r_MD+$r_NCP]]

[calc_lj_shift [expr $r_MD+$r_NCP] [expr 1.122462*[expr$r_MD+$r_NCP]]] 0.0

inter 0 2 lennard-jones $lj_eps02 [expr $r_MD+$r_Na] [expr1.122462*[expr $r_MD+$r_Na]]

[calc_lj_shift [expr $r_MD+$r_Na] [expr 1.122462*[expr $r_MD+$r_Na]]] 0.0

inter 0 3 lennard-jones $lj_eps03 [expr $r_MD+$r_Cl] [expr1.122462*[expr $r_MD+$r_Cl]]

[calc_lj_shift [expr $r_MD+$r_Cl] [expr 1.122462*[expr $r_MD+$r_Cl]]] 0.0

inter 1 1 lennard-jones $lj_eps11 [expr $r_NCP+$r_NCP] [expr 1.122462*[expr $r_NCP+$r_NCP]]

[calc_lj_shift [expr $r_NCP+$r_NCP] [expr 1.122462*[expr $r_NCP+$r_NCP]]] 0.0

inter 1 2 lennard-jones $lj_eps12 [expr $r_NCP+$r_Na] [expr 1.122462*[expr $r_NCP+$r_Na]]

[calc_lj_shift [expr $r_NCP+$r_Na] [expr 1.122462*[expr$r_NCP+$r_Na]]] 0.0

inter 1 3 lennard-jones $lj_eps13 [expr $r_NCP+$r_Cl] [expr 1.122462*[expr $r_NCP+$r_Cl]]

[calc_lj_shift [expr $r_NCP+$r_Cl] [expr 1.122462*[expr$r_NCP+$r_Cl]]] 0.0

set min01 [analyze mindist 0 1]

set min02 [analyze mindist 0 2]

set min03 [analyze mindist 0 3]

set min11 [analyze mindist 1 1]

set min12 [analyze mindist 1 2]

set min13 [analyze mindist 1 3]

puts "Minimum distance before warm up: min01= $min01; min02= $min02; min03=

$min03; min11= $min11; min12= $min12; min13= $min13"

set F_max 2000

while { $min01< [expr ($r_MD+$r_NCP)*0.9]|| $min02< [expr ($r_MD+$r_Na)*0.9]

|| $min03< [expr ($r_MD+$r_Cl)*0.9]|| $min11< [expr ($r_NCP+$r_NCP)*0.9]||

$min12< [expr ($r_NCP+$r_Na)*0.9]|| $min13< [expr ($r_NCP+$r_Cl)*0.9] } {

# setting ljforcecap

inter ljforcecap $F_max

#integrate a number of steps, e.g. 20

integrate 2000

#check the system status

set min01 [analyze mindist 0 1]

set min02 [analyze mindist 0 2]

set min03 [analyze mindist 0 3]

set min11 [analyze mindist 1 1]

set min12 [analyze mindist 1 2]

set min13 [analyze mindist 1 3]

puts "F_max in warming = $F_max, minimum distance: min01= $min01; min02= $min02;

min03= $min03; min11= $min11; min12= $min12; min13= $min13"

incr F_max 2000

# confxmol $f_xmol

flush stdout

}

99



#close $f_xmol

puts "Warm up finished. Minimal Distance now: min01= $min01;min02= $min02;

min03= $min03; min11= $min11; min12= $min12; min13= $min13"

# turn off the ljforcecap

inter ljforcecap 0

puts "return the truth LJ interaction"

inter 0 0 lennard-jones $lj_eps00 $lj_sig00 $lj_rcut00 $lj_cshift00 $lj_roff00

inter 0 1 lennard-jones $lj_eps01 $lj_sig01 $lj_rcut01 $lj_cshift01 $lj_roff01

inter 0 2 lennard-jones $lj_eps02 $lj_sig02 $lj_rcut02 $lj_cshift02 $lj_roff02

inter 0 3 lennard-jones $lj_eps03 $lj_sig03 $lj_rcut03 $lj_cshift03 $lj_roff03

inter 1 1 lennard-jones $lj_eps11 $lj_sig11 $lj_rcut11 $lj_cshift11 $lj_roff11

inter 1 2 lennard-jones $lj_eps12 $lj_sig12 $lj_rcut12 $lj_cshift12 $lj_roff12

inter 1 3 lennard-jones $lj_eps13 $lj_sig13 $lj_rcut13 $lj_cshift13 $lj_roff13

inter 2 2 lennard-jones $lj_eps22 $lj_sig22 $lj_rcut22 $lj_cshift22 $lj_roff22

inter 2 3 lennard-jones $lj_eps23 $lj_sig23 $lj_rcut23 $lj_cshift23 $lj_roff23

inter 3 3 lennard-jones $lj_eps33 $lj_sig33 $lj_rcut33 $lj_cshift33 $lj_roff33

# bonus integration

integrate 2000

########################### TESTING ################################

puts ""

puts "Below to test the truth of the system:"

puts ""

puts "box_length original = $box_lori A"

puts "salt concentration = $c_salt mM"

puts "harmonic constant and r_spring = $harm_k & $r_spring"

puts "angle constant and theta_0 = $bend_k & $bend_phiO"

puts "time step= $time_step"

puts "total monomer = $nt_MD"

puts "total NCP = $n_NCP"

puts "total Na = $n_Na"

puts "total Cl = $n_Cl"

puts "total particle = $n_part"

puts "addNa = $addNa"

puts "addCl = $addCl"

puts "DNA mass = $m_MD"

puts "NCP mass = $m_NCP"

puts "Na mass = $m_Na"

puts "Cl mass = $m_Cl"

#paticle id

puts "the last particle id = [expr $pid_Cl+$n_Cl-1] must thesame with [expr $n_part-1]"

# total charge of particles

puts "charge of particle: $q_totalMD+$q_totalNCP+$q_totalNa+$q_totalCl= [expr $q_totalMD+
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$q_totalNCP+$q_totalNa+$q_totalCl]"

puts [inter]

##################### Tuning P3M #################################3##

puts "here I tune P3M with Bjerrum length = 1 and accuracy 1.e-02"

inter coulomb 1 p3m tune accuracy 1.e-02

puts "[inter coulomb 1 p3m tune accuracy 1.e-02]"

################# Set Up Observable Files ######################

####### Temperature and Energy ###########

set energyinp [open "energy.dat" "a+"]

puts $energyinp "Time Temperature Energy_Total Energy_Kinetic Energy_Potential"

######################### INTEGRATION ###################################

puts "Integration"

## create trajectory coord. file

set f_xmol [open traj$title.xmol "a+"]

set t_half [clock second]

## simulation

set n_cycle 1000

set n_steps 10000

set i 0

set t_loop [clock second]

while { $i<$n_cycle } {

integrate $n_steps

########### TEMPERATURE AND ENERGY #############

set ek [analyze energy kinetic]

set etot [analyze energy total]

set ep [expr $etot-$ek]

set temperature [expr $ek/(([degrees_of_freedom]/2.0)*$n_part)]

#write in file

puts $energyinp "[setmd time] $temperature $etot $ek $ep"

#show in screen

puts -nonewline "Temp = $temperature Etot = $etot"; puts " Ek= $ek Ep = $ep"

flush stdout

### checkpoint each 200,000 step ###

if { [expr (($i+1)*$n_steps)%200000] == 0 } {

checkpoint_set $title.[expr ($i+1)*$n_steps].cpt

}

########## CONFIGURATION ######################

#take configuration each 100.000 step

if { [expr (($i+1)*$n_steps)%100000] == 0 } {

confxmol $f_xmol

}

incr i
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puts "$i"

flush stdout

}

close $f_xmol

################### AFTER INTEGRATION ###########################

##### Record the last configuration ########

set varinp [open "variable.dat" w]

blockfile $varinp write variable all

checkpoint_set end$title.cpt

set f_tinker [open end$title.txyz "w"]

conf_tinker $f_tinker

############################ ENDING ###############################

close $f_tinker

close $energyinp

close $varinp

puts "FINISH"

set t2 [clock second]

set time [expr $t2-$t1]

set time_setup [expr $t_half-$t1]

puts "time_setup = $time_setup"

puts "total time = $time second"

################### END OF PROGRAM ####################

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

B.2 Production Run

The TCL script which follows is used to sample properties of the system in equilibrium.

This script contains the commands for sampling the energies, radial distribution function,

end-to-end distance, radii of gyration, contour length, average bond length, average bend-

ing angle, particles trajectory, and activating the systemcheckpoint/recorder for the next

run.

The script run as follows:

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

set t1 [clock second]

puts "[code_info]"

#############################PROCEDURE ###################################

# Add configuration in TXYZ (Tinker) format to the trajectoryfile "f_tinker"
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# Below puts all particle including salts in trajectory file

proc conf_tinker { f_tinker } {

global box_l n_MD n_part chem_typ atom_typ

puts $f_tinker "$n_part after [setmd time] i.u., BOX: $box_l"

for {set j 0} {$j < [expr $n_MD -1]} {incr j} {

puts $f_tinker "[expr $j+1] $chem_typ($j) [part $j print folded_position] $atom_typ($j)

[expr $j+2] "

}

for {set j [expr $n_MD-1]} {$j < $n_part} {incr j} {

puts $f_tinker "[expr $j+1] $chem_typ($j) [part $j print pos] $atom_typ($j)"

}}

# Add configuration in XMOL format to the trajectory file "f_xmol"

# Below only puts DNA Monomers and NCP in trajectory file

proc confxmol { f_xmol } {

global box_l chem_typ n_MD n_NCP

puts $f_xmol [expr int([expr $n_MD + $n_NCP])]

puts $f_xmol " after [setmd time] i.u., BOX: $box_l $box_l $box_l"

for {set j 0} {$j < [expr $n_MD + $n_NCP]} {incr j} {

puts $f_xmol " $chem_typ($j) [part $j print pos] "

}}

# procedure to get sqrt of a double/real number. Since tcl cannot sqrt a real/long format

proc NewSqrt { n } {

return [expr {exp(log($n)/2)}]

}

puts " "

puts "==================================================="

puts "= Taking the Last Polymer Data Run ="

puts "==================================================="

puts " "

set rlast [open "dna14.end" r]

while { [blockfile $rlast read auto] != "eof" } {}

close $rlast

setmd time_step $time_step

# creating DNA, NCP, Na, Cl chem_typ for gopenmol needs

for {set i $pid_MD} {$i < [expr $pid_MD+$nt_MD]} {incr i} {set chem_typ($i) "O"

;set atom_typ($i) "40"}

for {set ii $pid_NCP} {$ii < [expr $pid_NCP+$n_NCP]} {incr ii} {set chem_typ($ii)

"C" ; set atom_typ($ii) "14"}

for {set j $pid_Na} {$j < [expr $pid_Na+$n_Na]} {incr j} {set chem_typ($j) "Na" ; set

atom_typ($j) "81"}

for {set jj $pid_Cl} {$jj < [expr $pid_Cl+$n_Cl]} {incr jj} {set chem_typ($jj) "Cl" ; set

atom_typ($jj) "93"}
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## create initial position coord. file

set f_xmol [open init$title.xmol "w"]

confxmol $f_xmol

close $f_xmol

########################### TESTING ################################

puts ""

puts "Below for to test the truth of the system:"

puts ""

puts "box_length original = $box_lori A"

puts "salt concentration = $c_salt mM"

puts "harmonic constant= $harm_k"

puts "angle constant= $bend_k"

puts "time step= $time_step"

puts "total monomer = $nt_MD"

puts "total NCP = $n_NCP"

puts "total Na = $n_Na"

puts "total Cl = $n_Cl"

puts "total particle = $n_part"

puts "addNa = $addNa"

puts "addCl = $addCl"

#paticle id

puts "the last particle id = [expr $pid_Cl+$n_Cl-1] must thesame with [expr $n_part-1]"

# total charge of particles

puts "charge of particle: $q_totalMD+$q_totalNCP+$q_totalNa+$q_totalCl= [expr $q_totalMD+

$q_totalNCP+$q_totalNa+$q_totalCl]"

################# Set Up Observable Files ######################

####### Energy ###########

set energyinp [open "energy.dat" "w"]

puts $energyinp "Temperature Energy_Kinetic Ek_stddev Energy_Potential Ep_stddev

Energy_Total Etot_stddev Energy_Coulomb Ecol_stddev"

set dump_ek 0.

set dump_ep 0.

set dump_etot 0.

set dump_ecoulomb 0.

# later $avg_xx2 will be standard deviation sigma. But I onlycount std dev for energy, re

and rg, not for rdf. since rdf is a list and for simplicity

set avg_ek 0.

set avg_ek2 0.

set avg_ep 0.

set avg_ep2 0.

set avg_etot 0.

set avg_etot2 0.
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set avg_ecoulomb 0.

set avg_ecoulomb2 0.

########## RDF ###########################

set rdfinp [open "rdf.dat" "w"]

puts $rdfinp "rlist rdf00 rdf01 rdf02 rdf03 rdf11 rdf12 rdf13rdf22 rdf23 rdf33"

set rdf_bin 5000

set rdf_fac 1.

set rdf_min 0.

set rdf_count 0

#below is the initial setting of avg_rdfxx containing a listof number, not only a single

number

#later it will be an accumulation of each rdf value sampled, which then averaged after

total amount of rdf sampled = $dump

set dump_rdf00 ""

set dump_rdf01 ""

set dump_rdf02 ""

set dump_rdf03 ""

set dump_rdf11 ""

set dump_rdf12 ""

set dump_rdf13 ""

set dump_rdf22 ""

set dump_rdf23 ""

set dump_rdf33 ""

for {set ii 0} {$ii < $rdf_bin} {incr ii} {

set dump_rdf00 [concat $dump_rdf00 0]

set dump_rdf01 [concat $dump_rdf01 0]

set dump_rdf02 [concat $dump_rdf02 0]

set dump_rdf03 [concat $dump_rdf03 0]

set dump_rdf11 [concat $dump_rdf11 0]

set dump_rdf12 [concat $dump_rdf12 0]

set dump_rdf13 [concat $dump_rdf13 0]

set dump_rdf22 [concat $dump_rdf22 0]

set dump_rdf23 [concat $dump_rdf23 0]

set dump_rdf33 [concat $dump_rdf33 0]

}

#below is the initial setting of avg_rdfxx containing a listof number, not only a single

number

#later it will be an accumulation of averaged rdf value from each dump, which then aver-

aged after total amount of dumping = $total_dump

set avg_rdf00 ""

set avg_rdf01 ""

set avg_rdf02 ""
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set avg_rdf03 ""

set avg_rdf11 ""

set avg_rdf12 ""

set avg_rdf13 ""

set avg_rdf22 ""

set avg_rdf23 ""

set avg_rdf33 ""

for {set ii 0} {$ii < $rdf_bin} {incr ii} {

set avg_rdf00 [concat $avg_rdf00 0]

set avg_rdf01 [concat $avg_rdf01 0]

set avg_rdf02 [concat $avg_rdf02 0]

set avg_rdf03 [concat $avg_rdf03 0]

set avg_rdf11 [concat $avg_rdf11 0]

set avg_rdf12 [concat $avg_rdf12 0]

set avg_rdf13 [concat $avg_rdf13 0]

set avg_rdf22 [concat $avg_rdf22 0]

set avg_rdf23 [concat $avg_rdf23 0]

set avg_rdf33 [concat $avg_rdf33 0]

}

#below is only for taking rlist, rdf02 is only a means for recording rlist. It lists the distance

containing the particle density. clearly will be x variableon RDF plot

set rlist ""

set rdf02 [analyze rdf 0 2 $rdf_min [expr $box_l/$rdf_fac] $rdf_bin]

foreach value [lindex $rdf02 1] {

lappend rlist [expr [lindex $value 0]*$l_unit]

}

################### TOPOLOGY ############################################

set topoinp [open "topology.dat" w]

puts $topoinp "re redev re2 rg rgdev rg2"

## setting below have the same idea with rdf above. but below only contain a value, not a

list of value like rdf

set dump_re 0.

set dump_re2 0.

set dump_rg 0.

set dump_rg2 0.

set avg_re 0.

set avg_re2 0.

set avg_redev 0.

set avg_rg 0.

set avg_rg2 0.

set avg_rgdev 0.

################# CONTOUR LENGTH #######################################
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set contourinp [open "contour.dat" w]

puts $contourinp "contour_length stddev_cont_length average_bond_length average_bond_angle

dev_bond_angle"

set tmp_contour 0.

set avg_contour 0.

set dev_contour 0.

set tmp_angle 0.

set avg_angle 0.

set dev_angle 0.

set n_contour 0

### INTEGRATION ###

puts "Integration"

## create trajectory coord. file

set f_xmol [open traj$title.xmol "a+"]

set t_half [clock second]

set n_cycle 200

set n_steps 10000

set dump 10

set total_dump [expr $n_cycle/$dump]

set i 0

set t_loop [clock second]

while { $i<$n_cycle } {

integrate $n_steps

################## ENERGY ########3############

#set energylist [analyze energy]

set etot [analyze energy total]

set ek [analyze energy kinetic]

set ep [expr $etot-$ek]

set ecoulomb [analyze energy coulomb]

set temperature [expr $ek/(([degrees_of_freedom]/2.0)*$n_part)]

set dump_ek [expr $dump_ek+$ek]

set dump_ep [expr $dump_ep+$ep]

set dump_etot [expr $dump_etot+$etot]

set dump_ecoulomb [expr $dump_ecoulomb+$ecoulomb]

#show in screen

#puts "E = $energy list"

puts -nonewline "Temp = $temperature Etot = $etot"; puts " Ek= $ek Ep = $ep"

################## rdf ##############################

#it must zero for putting a RENEWED list, that will be added toavg_rdf

set rdflist00 ""

set rdflist01 ""

set rdflist02 ""
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set rdflist03 ""

set rdflist11 ""

set rdflist12 ""

set rdflist13 ""

set rdflist22 ""

set rdflist23 ""

set rdflist33 ""

set rdf00 [analyze rdf 0 0 $rdf_min [expr $box_l/$rdf_fac] $rdf_bin]

set rdf01 [analyze rdf 0 1 $rdf_min [expr $box_l/$rdf_fac] $rdf_bin]

set rdf02 [analyze rdf 0 2 $rdf_min [expr $box_l/$rdf_fac] $rdf_bin]

set rdf03 [analyze rdf 0 3 $rdf_min [expr $box_l/$rdf_fac] $rdf_bin]

set rdf11 [analyze rdf 1 1 $rdf_min [expr $box_l/$rdf_fac] $rdf_bin]

set rdf12 [analyze rdf 1 2 $rdf_min [expr $box_l/$rdf_fac] $rdf_bin]

set rdf13 [analyze rdf 1 3 $rdf_min [expr $box_l/$rdf_fac] $rdf_bin]

set rdf22 [analyze rdf 2 2 $rdf_min [expr $box_l/$rdf_fac] $rdf_bin]

set rdf23 [analyze rdf 2 3 $rdf_min [expr $box_l/$rdf_fac] $rdf_bin]

set rdf33 [analyze rdf 3 3 $rdf_min [expr $box_l/$rdf_fac] $rdf_bin]

foreach value00 [lindex $rdf00 1] value01 [lindex $rdf01 1]value02 [lindex $rdf02 1]

value03 [lindex $rdf03 1] value11 [lindex $rdf11 1] value12[lindex $rdf12 1] value13

[lindex $rdf13 1] value22 [lindex $rdf22 1] value23 [lindex$rdf23 1] value33 [lindex

$rdf33 1] {

set rdflist00 [concat $rdflist00 [lindex $value00 1]]

set rdflist01 [concat $rdflist01 [lindex $value01 1]]

set rdflist02 [concat $rdflist02 [lindex $value02 1]]

set rdflist03 [concat $rdflist03 [lindex $value03 1]]

set rdflist11 [concat $rdflist11 [lindex $value11 1]]

set rdflist12 [concat $rdflist12 [lindex $value12 1]]

set rdflist13 [concat $rdflist13 [lindex $value13 1]]

set rdflist22 [concat $rdflist22 [lindex $value22 1]]

set rdflist23 [concat $rdflist23 [lindex $value23 1]]

set rdflist33 [concat $rdflist33 [lindex $value33 1]]

}

set dump_rdf00 [vecadd $dump_rdf00 $rdflist00]

set dump_rdf01 [vecadd $dump_rdf01 $rdflist01]

set dump_rdf02 [vecadd $dump_rdf02 $rdflist02]

set dump_rdf03 [vecadd $dump_rdf03 $rdflist03]

set dump_rdf11 [vecadd $dump_rdf11 $rdflist11]

set dump_rdf12 [vecadd $dump_rdf12 $rdflist12]

set dump_rdf13 [vecadd $dump_rdf13 $rdflist13]

set dump_rdf22 [vecadd $dump_rdf22 $rdflist22]

set dump_rdf23 [vecadd $dump_rdf23 $rdflist23]

set dump_rdf33 [vecadd $dump_rdf33 $rdflist33]
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##################### TOPOLOGY #######################################

analyze set chains 0 1 $n_MD

set dump_re [expr $dump_re+[lindex [analyze re] 0]]

set dump_re2 [expr $dump_re2+[lindex [analyze re] 2]]

set dump_rg [expr $dump_rg+[lindex [analyze rg] 0]]

set dump_rg2 [expr $dump_rg2+[lindex [analyze rg] 2]]

#############################################################

### DUMPING ###

#############################################################

if { [expr ($i+1)%$dump]==0 } {

### ENERGY

# below we average values of one dump then accumulate to avg_exx

set avg_ek [expr $avg_ek+[expr $dump_ek/$dump]]

set avg_ek2 [expr $avg_ek2+[expr pow(($dump_ek/$dump),2)]]

set avg_ep [expr $avg_ep+[expr $dump_ep/$dump]]

set avg_ep2 [expr $avg_ep2+[expr pow(($dump_ep/$dump),2)]]

set avg_etot [expr $avg_etot+[expr $dump_etot/$dump]]

set avg_etot2 [expr $avg_etot2+[expr pow(($dump_etot/$dump),2)]]

set avg_ecoulomb [expr $avg_ecoulomb+[expr $dump_ecoulomb/$dump]]

set avg_ecoulomb2 [expr $avg_ecoulomb2+[expr pow(($dump_ecoulomb/$dump),2)]]

#after this we must make the value of $dump_exx become zero again, since we will start

a new dump

set dump_ek 0.

set dump_ep 0.

set dump_etot 0.

set dump_ecoulomb 0.

### RDF

#here we dumping $dump_rdfxxx, containing each rdf data sampled, after each $dump

step, then average over in each dump

set avg_rdf00 [vecadd $avg_rdf00 [vecscale [expr 1.0/$dump] $dump_rdf00]]

set avg_rdf01 [vecadd $avg_rdf01 [vecscale [expr 1.0/$dump] $dump_rdf01]]

set avg_rdf02 [vecadd $avg_rdf02 [vecscale [expr 1.0/$dump] $dump_rdf02]]

set avg_rdf03 [vecadd $avg_rdf03 [vecscale [expr 1.0/$dump] $dump_rdf03]]

set avg_rdf11 [vecadd $avg_rdf11 [vecscale [expr 1.0/$dump] $dump_rdf11]]

set avg_rdf12 [vecadd $avg_rdf12 [vecscale [expr 1.0/$dump] $dump_rdf12]]

set avg_rdf13 [vecadd $avg_rdf13 [vecscale [expr 1.0/$dump] $dump_rdf13]]

set avg_rdf22 [vecadd $avg_rdf22 [vecscale [expr 1.0/$dump] $dump_rdf22]]

set avg_rdf23 [vecadd $avg_rdf23 [vecscale [expr 1.0/$dump] $dump_rdf23]]

set avg_rdf33 [vecadd $avg_rdf33 [vecscale [expr 1.0/$dump] $dump_rdf33]]

set dump_rdf00 ""

set dump_rdf01 ""

set dump_rdf02 ""
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set dump_rdf03 ""

set dump_rdf11 ""

set dump_rdf12 ""

set dump_rdf13 ""

set dump_rdf22 ""

set dump_rdf23 ""

set dump_rdf33 ""

for {set ii 0} {$ii < $rdf_bin} {incr ii} {

set dump_rdf00 [concat $dump_rdf00 0]

set dump_rdf01 [concat $dump_rdf01 0]

set dump_rdf02 [concat $dump_rdf02 0]

set dump_rdf03 [concat $dump_rdf03 0]

set dump_rdf11 [concat $dump_rdf11 0]

set dump_rdf12 [concat $dump_rdf12 0]

set dump_rdf13 [concat $dump_rdf13 0]

set dump_rdf22 [concat $dump_rdf22 0]

set dump_rdf23 [concat $dump_rdf23 0]

set dump_rdf33 [concat $dump_rdf33 0]

}

### TOPOLOGY

set avg_re [expr $avg_re+[expr $dump_re/$dump]]

set avg_re2 [expr $avg_re2+[expr $dump_re2/$dump]]

set avg_redev [expr $avg_redev+[expr pow(($dump_re/$dump),2)]]

set avg_rg [expr $avg_rg+[expr $dump_rg/$dump]]

set avg_rg2 [expr $avg_rg2+[expr $dump_rg2/$dump]]

set avg_rgdev [expr $avg_rgdev+[expr pow(($dump_rg/$dump),2)]]

#return the $dump_rx value to zero

set dump_re 0.

set dump_re2 0.

set dump_rg 0.

set dump_rg2 0.

flush stdout

}

#### DUMPING FINISHED ######

### checkpoint each 200,000 step ###

if { [expr (($i+1)*$n_steps)%200000] == 0 } {

checkpoint_set $title.[expr ($i+1)*$n_steps].cpt

}

### trajectory and take contour length data each 100000 step###

if { [expr (($i+1)*$n_steps)%100000] == 0 } {

confxmol $f_xmol

### contour_length data ####
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for {set k $pid_MD} {$k < [expr $pid_MD+$n_MD-1]} {incr k} {

set tmp_contour [expr $tmp_contour+ [bond_length $k [expr$k+1]]]

if {$k > $pid_MD} {

set tmp_angle [expr $tmp_angle+ [bond_angle [expr $k-1] $k[expr $k+1] d]]

}}

set avg_contour [expr $avg_contour + $tmp_contour]

set dev_contour [expr $dev_contour+ pow($tmp_contour,2)]

set tmp_contour 0.

set avg_angle [expr $avg_angle+ ($tmp_angle/($n_MD-2))]

set dev_angle [expr $dev_angle+pow(($tmp_angle/($n_MD-2)),2)]

set tmp_angle 0.

incr n_contour

}

flush stdout

incr i

puts "$i"

}

close $f_xmol

### AFTER INTEGRATION ###

######## energy data ###########3

set avg_ek [expr $avg_ek/$total_dump]

set avg_ek2 [NewSqrt [expr ($avg_ek2/$total_dump)-pow($avg_ek,2)]]

set avg_ep [expr $avg_ep/$total_dump]

set avg_ep2 [NewSqrt [expr ($avg_ep2/$total_dump)-pow($avg_ep,2)]]

set avg_etot [expr $avg_etot/$total_dump]

set avg_etot2 [NewSqrt [expr ($avg_etot2/$total_dump)-pow($avg_etot,2)]]

set avg_ecoulomb [expr $avg_ecoulomb/$total_dump]

set avg_ecoulomb2 [NewSqrt [expr ($avg_ecoulomb2/$total_dump)-pow($avg_ecoulomb,2)]]

puts $energyinp "$temperature $avg_ek $avg_ek2 $avg_ep $avg_ep2 $avg_etot $avg_etot2

$avg_ecoulomb $avg_ecoulomb2"

######### rdf data ##########

set avg_rdf00 [vecscale [expr 1.0/$total_dump] $avg_rdf00]

set avg_rdf01 [vecscale [expr 1.0/$total_dump] $avg_rdf01]

set avg_rdf02 [vecscale [expr 1.0/$total_dump] $avg_rdf02]

set avg_rdf03 [vecscale [expr 1.0/$total_dump] $avg_rdf03]

set avg_rdf11 [vecscale [expr 1.0/$total_dump] $avg_rdf11]

set avg_rdf12 [vecscale [expr 1.0/$total_dump] $avg_rdf12]

set avg_rdf13 [vecscale [expr 1.0/$total_dump] $avg_rdf13]

set avg_rdf22 [vecscale [expr 1.0/$total_dump] $avg_rdf22]

set avg_rdf23 [vecscale [expr 1.0/$total_dump] $avg_rdf23]

set avg_rdf33 [vecscale [expr 1.0/$total_dump] $avg_rdf33]

foreach x_rdf $rlist y_rdf00 $avg_rdf00 y_rdf01 $avg_rdf01 y_rdf02 $avg_rdf02 y_rdf03
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$avg_rdf03 y_rdf11 $avg_rdf11 y_rdf12 $avg_rdf12 y_rdf13$avg_rdf13 y_rdf22 $avg_rdf22

y_rdf23 $avg_rdf23 y_rdf33 $avg_rdf33 {

puts $rdfinp "$x_rdf $y_rdf00 $y_rdf01 $y_rdf02 $y_rdf03 $y_rdf11 $y_rdf12 $y_rdf13

$y_rdf22 $y_rdf23 $y_rdf33" }

######## topology data ###########

set avg_re [expr $avg_re/$total_dump]

set avg_re2 [expr $avg_re2/$total_dump]

set avg_redev [NewSqrt [expr ($avg_redev/$total_dump)-pow($avg_re,2)]]

set avg_rg [expr $avg_rg/$total_dump]

set avg_rg2 [expr $avg_rg2/$total_dump]

set avg_rgdev [NewSqrt [expr ($avg_rgdev/$total_dump)-pow($avg_rg,2)]]

# puts in real unit

puts $topoinp "[expr $avg_re*$l_unit] [expr $avg_redev*$l_unit] [expr $avg_re2*(pow($l_unit,2))]

[expr $avg_rg*$l_unit] [expr $avg_rgdev*$l_unit] [expr $avg_rg2*(pow($l_unit,2))]"

##### Record the last configuration ########

set varinp [open "variable.dat" w]

blockfile $varinp write variable all

checkpoint_set end$title.cpt

set f_tinker [open end$title.txyz "w"]

conf_tinker $f_tinker

####### CONTOUR LENGTH DATA ############

set avg_contour [expr $avg_contour/$n_contour]

set dev_contour [NewSqrt [expr ($dev_contour/$n_contour)-pow($avg_contour,2)]]

set avg_angle [expr $avg_angle/$n_contour]

set dev_angle [NewSqrt [expr ($dev_angle/$n_contour)-pow($avg_angle,2)]]

# puts in file in real unit (angstrom)

puts $contourinp "[expr $avg_contour*$l_unit] [expr $dev_contour*$l_unit]

[expr ($avg_contour*$l_unit)/[expr $pid_MD+$n_MD-1]] $avg_angle $dev_angle"

############################ ENDING ###############################

close $f_tinker

close $energyinp

close $topoinp

close $rdfinp

close $varinp

close $contourinp

puts "FINISH"

set t2 [clock second]

set time [expr $t2-$t1]

set time_setup [expr $t_half-$t1]

puts "time_setup = $time_setup"

puts "total time = $time second"

#################### END OF PROGRAM ########################
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