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1.0  Chapter 1: Introduction    
 
 
Natural polymers have attracted an increasing attention over the last few decades, mainly 

due to their abundance, environmental concerns, and anticipated depletion of petroleum 

resources. This has led to a growing interest in developing chemical and biochemical 

processes to obtain and modify natural polymers, and to utilize their useful inherent 

properties for a wide range of applications in different fields (Illum, 1998; Akbuga, 1995).  

 

Among natural polymers, chitosan occupies a special position due to its abundance, 

versatility, ease of modification and unique properties including biodegradability (Dong et 

al, 2001), biocompatibility (Shigemasa and Minami, 1995; Borchard and Junginger, 2001), 

non-toxicity (Karlsen and Skaugrud, 1991), anti-bacterial nature (Payne et al, 1992) and 

hydrophilicity (Carunchio et al, 1987). This has made chitosan very useful compound in a 

broad range of applications in medical, pharmaceutical, chemical, agricultural and 

environmental fields. 

 

To improve chitosan properties and further diversify its applications, various modification 

strategies have been adopted. This includes: 1) crosslinking (Aly, 1998; Denkbas et al, 

2000; Yamada et al, 2000), 2) graft copolymerization (Yazdani-Pedram et al, 2000; 

Borzacchiello et al, 2001; Jenkins and Hudson, 2002; Mahdavinia et al, 2004; Huacai et al, 

2006), 3) complexation (Blair et al, 1987; Pedram and Retuert, 1997; Kim et al, 2000; 

Pedram et al, 2000; Xie et al, 2002; Don et al, 2002; Sun et al, 2003), 4) chemical 

modifications (Hall and Yalpani, 1980; Yalpani and Hall, 1984) and 5) blending (Ikejima et 

al, 1999; Ikejima and Inoue, 2000; Cheung et al, 2002; Suyatma et al, 2004). In particular, 

modification of chitosan by means of blending is an attractive method that has been 
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extensively used for providing new desirable characters to chitosan (Taravel and Domard, 

1996; Chanachai et al, 2000; Smitha et al, 2003; Ma et al, 2003; Smitha et al, 2006). This 

is mainly due to its simplicity, availability of wide range of synthetic and natural polymers 

for blending and effectiveness for practical utilization. 

 

Recently, there has been a growing interest in developing natural based polymeric materials 

with good film forming capacity for various applications. Among natural polymers, 

chitosan and its blends can be found in a variey of physical forms including fibers, gel, 

sponge, beads and nanoparticles in addition to films that can be easily formed. Chitosan 

films are clear, homogeneous and flexible with good oxygen barrier, mechanical properties 

and antimicrobial properties (Hoagland and Parris, 1996; Kittur et al, 1998). Therefore, 

they have been applied for a number of applications. For example, chitosan films have been 

used as a packaging material for the quality preservation of food (Park and Zhao, 2004; 

Rhim et al, 2006; Niamsa and Baimark, 2009). Also, they are used for wound healing in 

form of bandage (Sathirakul et al, 1996), and for producing contact lenses (Olsen et al, 

1989; Yuan and Wei, 2004). 

 

1.1  Statement of the problem 

Chitosan is a natural polymer that has been in the center of research attention for the past 

five decades. This is due to its inherent favorable properties such as biodegradability, 

biocompatibility, non-toxicity and antimicrobial properties. However, it has some 

disadvantages such as relatively low degree of swelling, poor tensile strength and low 

surface wettability of its films, all of which limit the broadening of its scope of 

applications. To overcome such disadvantages, chitosan is modified by physical blending 

with natural and/or synthetic polymers. 

http://scialert.net/asci/author.php?author=N.&last=Niamsa
http://scialert.net/asci/author.php?author=Y.&last=Baimark
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Blends of chitosan with various natural polymers such as chitosan/cellulose blend and 

synthetic polymers such as chitosan/polyethylene oxide blend have been reportd in 

literature in many occations (Hosokawa et al, 1990; Khoo et al, 2003; Wiles et al, 2000). 

Nonetheless, blends of chitosan with agar (a natural polymer known for high gel forming 

ability) have not been reported in literature so far. Since chitosan is known for film forming 

ability caused by rigidity imparted by the presence of hydrogen bonding in its structure, 

blending it with agar would help to improve its water swelling properties while imparting 

mechanical strength to the agar. The similarity in the primary structures between agar and 

chitosan shown in Figure 1.1 suggests a high possibility for formation of a much needed 

homogeneous blend hydrogel films. The combination of the properties of chitosan 

including its antibacterial and biocompatibility with gel-forming agar makes the obtained 

hydrogel blend appealing for some biomedical applications. 

 

Also, blending of chitosan with poly (vinyl alcohol) is expected to form a clear 

homogeneous hydrogel blend, and therefore, improve some of the properties of chitosan 

film, such as the mechanical properties due to the specific intermolecular interactions 

between PVA and chitosan in the blends. 

 

 

 

 

 

 

 

 

http://search.conduit.com/Results.aspx?q=Nonetheless&SearchSourceOrigin=10&hl=en&SelfSearch=1&ctid=CT2233703


 4

 
 

(a) 

 
(b) 
 

(–CH2CHOH–)n 
(c) 

 

Figure 1.1: Chemical structures of (a) chitosan, (b) agar and (c) poly (vinyl alcohol). 

 

 

1.2  Objectives of the study 

The objective of the present study is to investigate the preparation of new chitosan based 

blends with agar or/and PVA at different proportions and evaluate their properties in the 

liquid phase and in the solid one represented by blended chitosan films. The objective can 

be subdivided into the following: 

 

i. To investigate the rheological properties of three types of chitosan based blended 

solutions: CS/AG, CS/PVA and CS/AG/PVA with respect to apparent viscosity and 

shear stress as a function of shear rate.    
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ii. To investigate the effect of variation of the compositions (different proportions) of 

the three types of blends on the properties of the newly obtained films using various 

analytical and material research techneques. 

 

1.3  Scope of this study 

To achieve the objectives of the present study, the following scope, which is schematized in 

Figure 1.2, is pursued: 

 

i. Preparation of CS/AG, CS/PVA and CS/AG/PVA blended solutions having 

different proportions. 

 

ii. Rheological investigation of the three blended solutions represented by apparent 

viscosity and shear stress as a function of shear rate under different condtions of 

temperature, concentration, shearing time and time. 

iii. Investigation of the chemical composition of the blended films using FTIR. 

iv. Investigation of the morphological properties of the blended films using SEM 

v. Investigation of the mechanical properties of the blended films using mechanical 

test. 

vi.  Investigation of the thermal stability of the blended films using TGA and DSC. 

vii. Investigation of the water swelling of the blended films using swelling test. 

viii. Invistigation of the surface wettability of the blended films using contact angle 

analyzer. 

 

1.4  Organisation of the thesis 

This thesis is divided into eight chapters: Introduction, Literature Review, Materials and 

Methods, Results and Discussion (four chapters) and conclusions as follows: 
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Chapter 1 is a general introduction that gives a brief idea about this work and describes the 

objectives of the research. In chapter 2, the previous literature related to chitosan and its 

blends with natural and synthetic polymers is reviewed with special attention giving to the 

methods of preparation and characterization of chitosan blended films. Chapter 3 deals with 

materials and procedures for preparing the pure and blended solutions and films of the three 

polymers used in the current study. It also describes the equipment used to conduct the 

experimental research. Chapter 4 includes the results of rheological analysis of the three 

types of polymer blended solutions (CS/AG, CS/PVA and CS/AG/PVA). It also includes 

the investigation of some parameters affecting the rheology of these mixtures. In chapter 5, 

blended films of two natural polymers, i.e., CS/AG are characterized by employing FTIR, 

SEM, thermal studies, mechanical tests, swelling test and contact angle measurements and 

the obtained results are interpreted and analyzed. In chapter 6, the results of 

characterization of blends of CS with PVA are presented and discused by using the same 

techniques mentioned in the previous chapter. Chapter 7 contains the results and discussion 

of ternary blended films of CS/AG/PVA obtained using similar techniques mentioned in 

chapter 5. General conclusions and recommendations for future research made based on the 

present study are provided in chapter 8. 
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Figure 1.2: Schematic representation of the scope of this study. 
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2.0 Chapter 2: Literature review  
 
2.1  Introduction 

Polysaccharides are a class of natural polymers that have been receiving an increasing 

attention in various fields of industrial interest including food technology, pharmaceutical 

and waste water treatment (Wood, 2001). This is because polysaccharides are renewable 

resources, abundant, nontoxic, inexpensive and biodegradable in addition to their great 

potential to replace synthetic polymers in many applications (Neto et al, 2005). Among 

polysaccharides, chitosan [Poly (1,4-β-D-glucopyranosamine)], which is usually obtained 

by alkaline deacetylation of the second most abundant naturally occurring polymer, i.e. 

chitin, possesses valuable properties (biocompatibility, biodegradability and antibacterial 

nature) promoting its use in a variety of interesting applications (Suh and Matthew, 2000; 

Molinaro et al, 2002).  Furthermore, chitosan has reactive amine side groups, which offer 

possibilities of modifications, graft reactions and ionic interactions (Yang et al, 2004). 

Therefore, pure and modified chitosan have been evaluated for numerous applications, 

including medicine, food, cosmetics and wastewater treatment (Cho et al, 1999; Pillai and 

Panchagnula, 2001; Khor and Lim, 2003; Yuan and Wei, 2004; Crini, 2006). Among all 

modification methods, blending of chitosan with other natural and synthetic polymers has 

been proposed as convenient and effective means to improve its physical properties to meet 

the requirements for practical applications. This chapter is devoted for reviewing various 

aspects of blending of chitosan with natural and synthetic polymers in liquid and solid 

phases. 
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2.2  Background and Significance 

2.2.1 Occurrence and chemical structure of chitosan 

Chitosan, 1→  4 linked 2-amino, 2–deoxy, β -D-glucan, is the deacetylated derivative of 

chitin (Muzzarelli, 1973; Bolker, 1974; Dee et al, 2001; Singla and Chawla, 2001), the 

most abundant natural polymer (polysaccharide) on earth after cellulose (No and Meyers, 

1989; Kurita, 1998; Bailey et al, 1999). The most important sources of chitin today are 

crustaceans (Sawayanagi et al, 1983; Yang and Zull, 1984; Yanga et al, 2000; Khan et al, 

2002), such as shrimps, squids and crabs. Chitin and chitosan are similar to cellulose with 

respect to their physicochemical properties and their functions due to the similarity in 

molecular structure. Figure 2.1 shows the molecular structure of chitin, chitosan and 

cellulose. As it can be seen, the only difference among the three polysaccharides is the 

acetamide group on the C-2 position of chitin and the amine group in chitosan instead of 

the hydroxyl group found in cellulose.  

 

        Figure 2.1: Molecular structures of cellulose, chitin and chitosan 
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2.2.2  Properties of chitin and chitosan 

Chitosan has become the subject of research for many research groups due to its unique 

properties and ease of modification (Mima et al, 1983; Seo et al, 1991; Mucha, 1997). The 

physical (Mima et al, 1983), chemical (Miyoshi et al, 1992) and biological properties 

(Nishimura et al, 1984; Nishimura et al, 1985) of chitin and chitosan depend on two 

parameters: degree of deacetylation (DD) and molecular weight distribution (Rabea et al, 

2003) which are dictated by the chitin sources and the method of preparation (Brine and 

Austin, 1981). In fact, the degree of deacetylation of chitosan influences not only its 

physicochemical characteristics, but also its biodegradability (Hutadilok et al, 1995; 

Nordtveit et al, 1996). In addition, the degree of deacetylation is also reported to have an 

impact on the performance of chitosan in many of its applications (Muzzarelli, 1977; 

Lower, 1984).  

 

Physical properties 

Chitosan exist in a form of white yellowish flakes which can be converted to beads or 

powder. The degree of deacetylation also plays a vital role on the molecular weight of 

chitosan. The lower the deacetylation, the higher the molecular weight and higher 

molecular weight provides higher chemical stability and mechanical strength. The average 

molecular weight of chitosan is about 1.2 ×  105 g mol-1 (Nagasawa et al, 1971).  

 

Chitin and chitosan are amorphous solids and almost insoluble in water. This is mostly due 

to the intermolecular hydrogen bonding, which can be formed in the neutral molecules of 

chitosan. The solubility of chitosan in water depends upon the balance between the 

electrostatic repulsion resulting from the protonated amine functions and the hydrogen 

bonding due to the free amino groups (Domard, 1996). 
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Chitin is insoluble in most organic solvents. It dissolves in corrosive chemicals such as N-

dimethylacetamide (DMAC) containing lithium chloride. On the contrary, chitosan can be 

dissolved in aqueous organic acid solutions, such as formic acid and acetic acid at pH 

below 6, and becomes a cationic polymer due to the protonation of the amino groups 

available in its molecular structure. However, chitosan hardly dissolves in pure acetic acid. 

In fact, concentrated acetic acid solutions at high temperatures may cause depolymerization 

of chitosan. The solubility of chitosan in dilute acids depends on the degree of 

deacetylation in the polymer chain. Consequently, this property can be used to distinguish 

between chitin and chitosan (Peter, 1995). The degree of deacetylation is to be at least 85% 

complete so that the desired solubility can be achieved. Furthermore, the properties of 

chitosan solutions depend not only on its average degree of deacetylation but also on the 

distribution of the acetyl groups along the chain (Aiba, 1991; Kubota and Eguchi, 1997), 

acid concentration and the type of acid (Kurita, 2001).  

 

Chitosan also dissolves in hydrochloric acid under certain conditions. However, it does not 

dissolve in sulfuric acid because of the formation of insoluble chitosan sulfate (Yamaguchi 

et al, 1978). Aqueous solutions of some acids such as phosphoric, citric and sebacic acids 

are not good solvents (Gross et al, 1983). Moreover, in the presence of a certain amount of 

acid, chitosan can be dissolved in some solvent mixtures such as water/methanol and 

water/acetone.  

 

Chemical properties 

Similar to most of natural polymers, chitosan has an amphiphilic character, which could 

influence its physical properties in solutions and solid states. This is attributed to the 

presence of the hydrophilic amino groups together with the hydrophobic acetyl groups in its 
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molecular structure. The presence of large number of amino groups also confers chitosan a 

strong positive charge unlike most polysaccharides. This cationic nature of chitosan makes 

it modifiable by various means including complexation, grafting, crosslinking and blending 

(Denuziere et al, 1998). 

 

Chitosan is a rigid polymer due to the presence of hydrogen bonding in its molecular 

structure. Consequently, it can be easily transformed into films with a high mechanical 

strength. Chitosan is a weak polyelectrolyte which may be regarded as a very poor anion-

exchanger. Therefore, it is likely to form films on negatively charged surfaces in addition to 

the ability to chemically bind with negatively charged fats, cholesterol, proteins and 

macromolecules (Li et al, 1992; Sandford, 1992). 

 

Biological properties 

Chitosan is a non-toxic natural product (Arai et al, 1968; Hirano et al, 1988). Therefore, it 

can be applied in the food industry for e.g., food for birds and fur-bearing animals. 

Moreover, chitosan is metabolised by certain human enzymes, especially lysozyme, and is 

considered as biodegradable (Muzzarelli, 1997; Koga, 1998). Chitosan is also 

biocompatible and therefore it can play a role in various medical applications such as 

topical ocular application (Felt et al, 1999), implantation (Patashnik et al, 1997) or injection 

(Song et al, 2001). Chitosan also has antibacterial (Liu et al, 2001) wound-healing effects 

in human (Ueno et al, 2001) and animal (Muzzarelli et al, 1988; Okamoto et al, 1992; 

Ueno et al, 1999; Mizuno et al, 2003) together with hemostatic activities (Malette et al, 

1983). It also has bioadhesive ability due to its positive charges at physiological pH. (He et 

al, 1998).  
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2.2.3  Preparation of chitosan and its mixture blends 

Preparation of chitosan from raw material 

Chitin can be completely acetylated, completely deacetylated and partially deacetylated. In 

fact, complete deacetylation is rarely achieved. Chitosan is often described in terms of the 

average molecular weight and the degree of deacetylation (DD). In general, chitin with a 

degree of deacetylation of 70% or above is considered as chitosan (Li et al, 1992).  

 

Chitosan is commercially available. The majority of its commercial samples are available 

with DD ranges between 70 to 90% and always less than 95% (Guibal, 2004). Tolaimate et 

al. (2003) have reported that chitosan with DD higher than 95% may be obtained via 

further deacetylation steps. However, this may result in partial depolymerization as well as 

increase the cost of the preparation. On the other hand, the DD can be lowered by 

reacetylation (Muzzarelli, 1973). 

 

Generally, chitosan can be produced by the extraction of chitin from the shell of shrimps, 

lobsters, prawns and crabs, followed by the deacetylation with a strong base heated in 

special vessels under certain conditions of temperature, atmosphere and time. The obtained 

chitosan is dissolved in acetic acid and then filtered to remove insoluble material resulting 

in a clear supernatant solution (Patel et al, 2006). This clear solution is neutralized with 

NaOH solution, which yields a purified sample of chitosan as a white precipitate. In order 

to obtain medical and pharmaceutical-grade chitosan, further purification might be 

necessary. Figure 2.2 shows a schematic representation of the processes of preparation of 

chitosan from raw material. 
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Figure 2.2: Preparation of chitosan (No and Meyers, 1995; No et al, 2000). 

 

 

2.2.4  Some applications of chitosan 

In medical and pharmaceutical field, chitosan can be used perfectly for promoting weight 

loss (Luyen and Rossbach, 1992). This is due to its capability of binding a high amount of 

fats (about 4 to 5 times its weight) compared to other fibers. In addition, chitosan has no 

caloric value as it is not digestible, which is a significant property for any weight-loss 

product (Kanauchi et al, 1995). Therefore, it is used as cholesterol reducing agent (Gordon, 
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1984). Chitosan is also used as a wound healing agent (Lioyd et al, 1998; Cho et al, 1999; 

Ueno et al, 1999; Ueno et al, 2001) in the form of a bandage (Sathirakul et al, 1996), 

dressing burns (Allan et al, 1984), drug carriers (Pillai and Panchagnula, 2001; Hejazi and 

Amiji, 2003; Khor and Lim, 2003), drug delivery system (Sawayanagi et al, 1982; Park et 

al, 2001a; Nunthanid et al, 2004), preventing heart disease, controlling high blood pressure, 

preventing constipation, reducing blood levels of uric acid and producing artificial kidneys 

(Hirano and Noishiki, 1985) due to the high mechanical strength of its membrane. In the 

eye-wear industry, chitosan has been used to produce contact lenses (Markey et al, 1988; 

Olsen et al, 1989; Yuan and Wei, 2004) more biocompatible than those made of synthetic 

polymers (Allan et al, 1984). In cosmetics and personal care (Gross et al, 1983), it is used 

in face, hands and body creams. In addition, it can be applied in bath lotion and hair 

treatment due to its cationic charge, which makes it interact easily with negatively-charged 

tissues like skin and hair (Griesbach et al, 1999). 

 

In chemical industry, chitosan is also used in the paper industry as a thickener for printing 

and in coating paper because it is capable of interacting with fibers to form some bonds 

such as ionic, covalent and Van der Waals forces bonds which enhance paper stability and 

its resistance to outer influences (Muzzarelli, 1977). In addition, owing to the smoother 

surface and resistance to moisture of the paper produced with chitosan, chitosan is used in 

the production of toilet paper, wrapping paper and cardboard.  In the photography field, 

chitosan is used for rapid development of pictures.   

 

In agriculture, chitosan is safely used for controlled agrochemical release, seed coating 

(Rawls, 1984) and making fertilizer due to its biodegradability and natural origin. In the 
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recently years, there has been some concerns over its use in biomedical applications (Li et 

al, 1992; Suh and Matthew, 2000; Risbud et al, 2002). 

  

In environmental applications, chitosan plays an important role in wastewater treatment and 

industrial toxic pollution management (Muzzarelli, 1977; Crini, 2006) as it has the ability 

to adsorb dyes, pesticides, and toxic metals from water and waster water. In addition, fibers 

of chitosan containing some enzymes are used in filters of gas masks as they detoxify 

harmful gases (Ember, 1997).  

 

2.2  Rheology of chitosan and its mixtures 

2.2.1  Introduction 

Rheology is defined as the science of the deformation and flow of matter (Scott-Blair, 

1969; Steffe, 1992; Rao, 1999). It investigates the response of materials to applied stress or 

strain (Herh et al, 2000; Hackley and Ferraris, 2001). Rheological properties describe flow 

characteristics and textural behavior of substances. In fact, the success of a wide range of 

commercial products and industrial processes depends on meeting specific flow 

requirements. Rheological behavior can be generally divided into two types (Lee et al, 

2009): (i) elastic behavior where the material restores its original shape when the external 

force is removed (ii) viscous or plastic behavior in which any deformation ceases when the 

applied force is removed, such as ideal Newtonian liquids. The fluids flow behavior is 

summarized in Figures 2.3 and 2.4. Rheology is an important tool in several fields 

including food industry, coating, personal care products and cosmetics, detergents, cement 

and medicine.  
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Figure 2.3: Fluids flow behavior. 
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Figure 2.4: The relationship between apparent viscosity and shear rate for (a) time-   
                   independent flow fluids and (b) time-dependent flow fluids. 
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2.2.2  Literature work on rheology of chitosan 

Rheology of pure chitosan solutions and gels 

The rheological behavior of chitosan solutions has been reported in the literature in various 

occasions (Berkovich et al, 1980; Kienzle-Sterzer et al, 1982; Kienzle-Sterzer et al, 1985; 

Wang and Xu, 1994; Mucha, 1997; Nyström et al, 1999; Bodek, 2000; Hwang and Shin, 

2000; Desbrieres, 2002; Anchisi et al, 2004; Martínez-Ruvalcaba et al, 2004; Fernandez et 

al, 2006; Mironov et al, 2007). For instance, Kienzle-Sterze et al. (1985) demonstrated that 

the viscosity of concentrated chitosan solutions increases with increasing chitosan 

concentration and that a shear thinning behavior is observed at polymer concentrations 

above 0.50 g dL-1. They also reported that the zero shear viscosity is independent of the 

ionic strength while it is dependent on pH of the media.  

 

Wang and Xu (1994) reported that the non-Newtonian behavior of chitosan solutions 

increases with increasing the degree of deacetylation (DD) attributed to the chains 

expanded structure and the increase of entanglements. Mucha (1997) also reported an 

increase in the shear stress and viscosity of chitosan solutions with increasing chitosan 

concentration due to the increase of the chain entanglements between the macromolecular 

chains.  

     

The rheology of two aqueous systems of chitosan, unmodified chitosan (UM-chitosan) and 

hydrophobically-modified chitosan (HM-chitosan), was studied by Nyström et al. (1999). 

Results revealed that the linear and non-linear viscoelasticity are affected by several factors 

such as pH, temperature, amount of surfactant and polymer concentration. However, the 

HM-chitosan was found to be heavily dependent on these factors. In addition, the shear 

thinning behavior was found to be pronounced at higher shear rates for both systems. 
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Hwang and Shin (2000) revealed that the shear rate dependence of viscosity of chitosan 

solutions was more remarkable at higher chitosan concentrations. 

 

Bodek (2000) studied the rheological properties of microcrystalline chitosan hydrogels 

prepared by adding a methylcellulose hydrogel to aqueous chitosan dispersions. It was 

found that depending on the kind and content of the pharmaceutical substances as well as 

the interactions between the polymer and the pharmaceutical substances, a pseudoplastic 

system can be observed.  

 

Martínez-Ruvalcaba et al. (2004) studied the influence of temperature, acid type and 

addition of salt on the steady-shear rheology of concentrated chitosan solutions. Viscosity 

and normal stress were decreased with increasing temperature and decreasing chitosan 

concentration. In addition, chitosan dissolved in hydrochloric acid solutions exhibited 

lower steady-shear viscosity and normal stress than in other acids solutions. However, salt 

addition was found to be the most effective parameter on the rheology of chitosan 

solutions.  

 
Anchisi et al. (2004) found that rheological properties of chitosan dispersions are affected 

by the molecular weight and that all chitosan dispersions showed a pseudoplastic and shear 

thinning behavior. It was also found that the presence of glycols leads to decreasing in the 

apparent viscosity compared to the corresponding base dispersions. 

 

The formation of chitosan hydrogels in the acetic acid-water-propanediol medium was 

reported by Montembaulta et al. (2005). The gelation at different conditions of the polymer 

concentration, the degree of acetylation (DA) of chitosan and the composition of the initial 
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solvent was studied by rheometry. It was found that the optimal gelation condition for 

cartilage regeneration application is DA = 40%, a water/alcohol ratio of 50/50 and a 

polymer concentration of 1.5%. 

 

The production of pH-induced monolithic hydrogels through uniform neutralization of 

slightly acidic chitosan solutions with ammonia generated from enzymatic hydrolysis of 

urea was analyzed via rheology and reported by Chenite et al. (2006). A decrease in 

gelation time with an increase in temperature from 15 to 45oC was found to be pronounced 

as a result of the synergistic influence of increased reactant diffusion and urease activity. It 

was also observed that the gelation is accelerated as the urea concentration increases up to a 

certain limit, and then a slow decrease in the gelation kinetics was noticed. This study 

indicated the possibility of using the autogelling solutions of chitosan as injectable gels for 

tissue engineering and drug delivery. 

 

Fernandez et al. (2006) investigated the rheology of chitosan gels with different molecular 

weights (MW) i.e., low MW and medium MW. Non-Newtonian flow independent of the 

time was observed for the two gels, with a pseudoplastic behavior for the low MW chitosan 

and plastic behavior for the medium MW one. Mironov et al. (2007) reported a decrease in 

the dynamic viscosity of chitosan solutions in acetic acid during storage due to polymer 

degradation. 

      

Rheology of crosslinked chitosan  

Argüelles-Monal et al. (1998) reported an apparent yield stress at very low frequencies for 

chitosan dissolved in acetic acid solution. As the chemical cross-linkages were taking place, 

the weak self-associated network of chitosan was gradually replaced by a permanent 



 22 

covalent network as the molar ratio of aldehyde/amine groups, R, is increased. They also 

reported that a strong permanent gel was formed at higher cross-linking levels. 

 

Moura et al. (2007) reported the rheology of chitosan solutions crosslinked with a natural 

crosslinker, genipin at various concentrations. Results showed that stronger elastic gels of 

the crosslinked solutions were obtained under physiological conditions compared to those 

of the pure component. They also reported that the values of the gelation time obtained 

from the crossover of G" (loss modulus) and G' (storage modulus) and that recorded by the 

Winter–Chambon criterion were in excellent agreement.  

 
Rheology of chitosan mixture solutions and gels 

The rheological characteristics of mixture solutions of chitosan and polyoxyethylene (POE) 

with various MWs were reported (Nikolova et al, 1998). Pseudoplastic non-Newtonian 

behavior was observed for each of the pure polymer solutions as well as for their mixture 

solutions. It was assumed that the rheological behavior of the CS/POE mixtures is dictated 

by the content of CS in the mixture. 

   

The rheological properties of a semi-interpenetrating chitosan–PEO network were reported 

by Khalid et al. (1999). Results showed the elastic properties were increased by the semi-

interpenetration due to the presence of the polyethylene oxide physical network. 

 

Jiang et al. (1999) investigated the phase transition behavior with variation in temperature 

and frequency of water within the chitosan hydrogels using oscillatory shear rheology. The 

results showed that the water phase transition, which occurred with a decrease in 

temperature, had a significant influence on all the measured viscoelastic properties (shear 
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storage modulus, shear loss modulus and shear loss tangent). The changes of the 

viscoelastic properties were found to be related to the mobility of water within the gels.  

 

The preparation of neutralizing highly deacetylated chitosan solutions (at physicological 

pH) with β-glycerol phosphate was reported by Chenite et al. (2001). Rheological 

measurements demonstrated that the hydrogel formation with a subsequent heating of these 

solutions was quickly obtained. The results also showed a pH-sensitivity and a 

temperature–dependence for the sol/gel transition temperature and gelling time 

respectively. Based upon the observations obtained, multiple interactions between chitosan, 

glycerol phosphate and water were suggested for the molecular mechanism of the gelation. 

 

Salomé Machado et al. (2002) reported the preparation and characterization of collagen: 

chitosan blends in 1:1 ratio by rheological studies. Results showed that a decrease of 

storage modulus, viscous loss modulus and apparent viscosity (as a function of frequency) 

was observed with the addition of chitosan. It was also found that collagen/chitosan blends 

present a more fluid-like viscoelastic behavior than solid-like one. 

 

The rheological properties of kaolin/chitosan aqueous dispersions were characterized by 

Bezerril et al. (2006). The kaolin/chitosan dispersions showed a pseudoplastic behavior, 

which was increased at lower shear rate. The authors related the increase in 

pseudoplasticity to a higher occurrence of particle-polymer-particle interactions due to the 

adsorption of chitosan macromolecules on the surface of kaolin particles. However, the 

rheological behavior of these dispersions could not be described by a simple power law.  
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The rheological properties of chitosan and xanthan hydrogel have been studied by 

Martìnez-Ruvalcaba et al. (2007). Results show that chitosan/xanthan hydrogels behave 

like weak gels. Almost linear increase in the shear modulus was observed with a frequency 

in the range between 0.1 and 65 s-1. It was also found that factors, such as hydrogel 

concentration and nature of dispersion, play a significant role in the final structure and  

properties of the hydrogels. The viscoelastic properties of chitosan/PVA blend hydrogel 

were investigated rheologically by Tang et al. (2007). Results indicated good mechanical 

strength of the gel. 

 

The rheological properties of a mixture of lecithin/chitosan vesicles by means of shear 

stress against shear rate measurements were investigated by Madrigal-Carballo et al. 

(2008). The results showed that chitosan can promote the transition of planar sheets into 

closed structures, such as vesicles. It was also found that this system suggests a thixotropic 

behavior. 

 

Chitosan and glycerol-2-phosphate (b-GP) mixtures were prepared and analyzed by Kempe 

et al. (2008). The rheological properties were studied using the oscillating rheology for 

characterizing the macroviscosities of the sol and gel systems. It was found that an amount 

of 6% b-GP was necessary to induce the gel formation and that neither the gelation process 

nor the chitosan/b-GP proportions had an effect on the pH to a significant amount. 

 

Wanchoo et al. (2008) investigated the miscibility of chitosan blends with hydrophilic 

polymers; chitosan/PVA chitosan/poly vinylpyrollidone (CS/PVP) and chitosan/poly 

(ethylene oxide) (CS/PEO). Viscosity and Rheological measurements showed that 
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rheograms of all the blends were found to lie between the rheograms of pure components 

over the entire compositional range indicating that the miscibility of the blends may occur.  

 

The rheological study of chitosan/gelatin composite has been already investigated by Wang 

et al. (2009). Results showed that the formation of complex between chitosan and gelatin 

was mainly through hydrogen bond and that a close relation between the interactions 

between the two polymers in solution and the mechanical properties of the formed films is 

found. The authors concluded the possibility of designing films with desired mechanical 

properties through the combination of different polymers at optimum weight ratios. 

 

The preparation of chitosan ferro-gels was reported by Herandez et al. (2009). The method 

used was the simultaneous co-precipitation of iron ions in alkali media and chitosan 

gelation. As far as the viscoelastic modulus measurements are concerned, the reinforcement 

of the chitosan ferrogels was achieved in the presence of magnetite nanoparticles, which 

was observed by the increase of the viscoelastic modulus. 

 

2.3  Blends of chitosan 

2.3.1  Introduction 

Polymer blending is a method that is commonly used for providing desirable polymeric 

materials with combined properties for particular applications (Taravel and Domard, 1996). 

Recently, blends of natural polymers have been becoming considerably important due to 

their strong potential in replacing synthetic polymers in many applications (Wood, 2001) in 

addition of being renewable resources, nontoxic, inexpensive and leave biodegradable 

waste (Neto et al, 2005). Among natural polymers, chitosan and its blends occupies a 

special position due its versatility and suitability of large number of applications as 
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discussed earlier. Investigation of blends of chitosan with synthetic and naturally occurring 

macromolecules has attracted much attention in the recently years in various occasions 

(Mucha, 1998; Srinivasa et al, 2003; Shanmugasundaram et al, 2001; Chen et al, 2002; 

Sionkowska et al, 2004).  

 

Like other polymer blends, the properties of chitosan blends depends upon the miscibility 

of its components at the molecular scale, which is attributed to specific interactions 

between polymeric components. The most common interactions in the chitosan blends are: 

hydrogen bonding, ionic and dipole, π-electrons and charge-transfer complexes. Various 

techniques such as thermal analysis (Cabanelas et al, 2005), electron microscopy (Olabisi et 

al, 1979), viscometric measurements (Jiang and Han, 1998) and dynamic mechanical 

studies (Lewandowska, 2005), have been used to investigate the polymer–polymer 

miscibility in solution or in solid state. 

 

The purposes of chitosan blending vary depending upon the application demands. This 

includes : 1) to enhance hydrophilicity (Kweon and Kang, 1999; Zhang et al, 2002) 2) to 

enhance mechanical properties (Arvanitoyannis et al, 1998; Isogai and Atalla, 1992; Lee et 

al, 1999; Park et al, 1999; Ratto et al, 1996), 3) to improve blood compatibility (Amiji, 

1995; Chandy and Sharma, 1992; Ishihara et al, 2002) and to enhance antibacterial 

properties (Wu et al, 2004). In blood contact applications, chitosan promotes surface-

induced thrombosis and embolization (Amiji, 1995; Chandy and Sharma, 1992; Ishihara et 

al, 2002). 

 

The selection of the polymers to be blended with the chitosan depends on the property to be 

conferred or boosted. For example the hydrophilic property of chitosan is modified by 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TWW-4NDVHBG-1&_user=167669&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000013278&_version=1&_urlVersion=0&_userid=167669&md5=8436afc911e4883e57c98214b9dffaa2#bib3#bib3
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TWW-4NDVHBG-1&_user=167669&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000013278&_version=1&_urlVersion=0&_userid=167669&md5=8436afc911e4883e57c98214b9dffaa2#bib4#bib4
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TWW-4NDVHBG-1&_user=167669&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000013278&_version=1&_urlVersion=0&_userid=167669&md5=8436afc911e4883e57c98214b9dffaa2#bib4#bib4
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFD-4CS4KPW-1&_user=167669&_coverDate=09%2F22%2F2004&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000013278&_version=1&_urlVersion=0&_userid=167669&md5=0ed8f65c14c26259443bdbb55f484330#bib12#bib12
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFD-4CS4KPW-1&_user=167669&_coverDate=09%2F22%2F2004&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000013278&_version=1&_urlVersion=0&_userid=167669&md5=0ed8f65c14c26259443bdbb55f484330#bib24#bib24
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFD-4CS4KPW-1&_user=167669&_coverDate=09%2F22%2F2004&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000013278&_version=1&_urlVersion=0&_userid=167669&md5=0ed8f65c14c26259443bdbb55f484330#bib1#bib1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFD-4CS4KPW-1&_user=167669&_coverDate=09%2F22%2F2004&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000013278&_version=1&_urlVersion=0&_userid=167669&md5=0ed8f65c14c26259443bdbb55f484330#bib9#bib9
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFD-4CS4KPW-1&_user=167669&_coverDate=09%2F22%2F2004&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000013278&_version=1&_urlVersion=0&_userid=167669&md5=0ed8f65c14c26259443bdbb55f484330#bib13#bib13
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFD-4CS4KPW-1&_user=167669&_coverDate=09%2F22%2F2004&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000013278&_version=1&_urlVersion=0&_userid=167669&md5=0ed8f65c14c26259443bdbb55f484330#bib13#bib13
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFD-4CS4KPW-1&_user=167669&_coverDate=09%2F22%2F2004&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000013278&_version=1&_urlVersion=0&_userid=167669&md5=0ed8f65c14c26259443bdbb55f484330#bib17#bib17
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFD-4CS4KPW-1&_user=167669&_coverDate=09%2F22%2F2004&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000013278&_version=1&_urlVersion=0&_userid=167669&md5=0ed8f65c14c26259443bdbb55f484330#bib18#bib18
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFD-4H6PKNX-3&_user=167669&_coverDate=03%2F03%2F2006&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000013278&_version=1&_urlVersion=0&_userid=167669&md5=5e9cd4bfafed46f450619f9925350245#bib1#bib1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFD-4H6PKNX-3&_user=167669&_coverDate=03%2F03%2F2006&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000013278&_version=1&_urlVersion=0&_userid=167669&md5=5e9cd4bfafed46f450619f9925350245#bib1#bib1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFD-4H6PKNX-3&_user=167669&_coverDate=03%2F03%2F2006&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000013278&_version=1&_urlVersion=0&_userid=167669&md5=5e9cd4bfafed46f450619f9925350245#bib17#bib17
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFD-4H6PKNX-3&_user=167669&_coverDate=03%2F03%2F2006&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000013278&_version=1&_urlVersion=0&_userid=167669&md5=5e9cd4bfafed46f450619f9925350245#bib1#bib1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFD-4H6PKNX-3&_user=167669&_coverDate=03%2F03%2F2006&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000013278&_version=1&_urlVersion=0&_userid=167669&md5=5e9cd4bfafed46f450619f9925350245#bib17#bib17
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blending with polymers such as PEG and PVA (Kweon and Kang, 1999; Zhang et al, 

2002). Chitosan was also blended with several polymers such as polyamides, poly (acrylic 

acid), gelatin, silk fibroin and cellulose to enhance mechanical properties (Arvanitoyannis 

et al, 1998; Isogai and Atalla, 1992; Lee et al, 1999; Park et al, 1999; Ratto et al, 1996). To 

enhance antibacterial properties, chitosan is blended with cellulose (Wu et al, 2004).  

 

2.3.2. Preparation of chitosan blended solutions and films 

Generally, there are two main methods that are commonly used in blending of chitosan: 1) 

dissolving in a solvent followed by evaporation (solution blending) (Singh and Roy, 1997; 

Yoshikawa et al, 1998) and 2) mixing under fusion conditions (melt blending) (Correlo et 

al, 2005). However, according to the literature, solution blending is the most applied 

method for preparing chitosan blends due to its simplicity and suitability for producing 

various forms of blends (beads, microspheres, films and fibers). Figure 2.5 shows a 

schematic representation of types of chitosan blends and methods of blending.  
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Figure 2.5: Schematic representation of methods of preparation of chitosan blends and their 
types. 

 

 

In solution blending, chitosan is dissolved in an appropriate solvent (usually diluted acetic 

acid) with continuous stirring at room temperature. This is followed by mixing a desired 

amount of another polymer after being dissolved in a solvent under continuous stirring 

conditions. The blend solution of chitosan is often crosslinked by addition of acrosslinking 

agent to improve mechanical properties. Subsequently, the blend solution is filtered and 

then cast on a glass plate or a petri dish and left to dry under room or oven temperature. 

Eventually, the blend is washed with NaOH solution to remove the excess acetic acid. 

Table 2.1 presents a summary of the preparation of some chitosan blends using the casting 

method. 

 

Blends of chitosan 

Methods of blending Types of chitosan blends 

Blends with 
Synthetic 
polymers 

Blends with 
natural 

polymers 

Solution 
blending 

Melt 
blending 
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Table 2.1: Summary of the preparation of chitosan blend films by the casting technique 
suggested by some authors. 
 

Chitosan 
source /(DD) 

Solvent 
used 

Blend Crosslinker Plasticizer Film 
thickness 

Ref. 

Shrimp/85% 
 
 

1%(v/v) 
acetic acid 

CS/glycerol 
CS/sorbitol                                                    

CS/PEG                                                                        
CS/tween60                                                      
CS/tween 80 

 

_ _ 2.82-
3.95×10-2 

(Miranda et al, 
2004) 

91% 1%(w/v) 
acetic acid 

CS/gelatin _ 
 

_ _ (Yuan and Wei, 
2004) 

_ 2.0 wt% 
acetic acid 

CS/cellulose _ _ _ (Wu et al, 2004) 

Crab/80-85% 
 

1% acetic 
acid 

CS/PLA _ _ _ (Suyatma et al, 
2004) 

Shrimp/80% 
 

2% acetic 
acid 

PA/CS Glutaraldehyd
e 

_ _ (Thanpitcha et al, 
2006) 

Crab/> 85% 
 

1% acetic 
acid 

CS/gelatin _ _ _ (Cheng et al, 
2003) 

56% 5% acetic 
acid+1% 

HCl           
(catalyzer) 

 

HPC/CS Glyoxal and 
glutaraldehyde 

 

_ 20-30µm (Suto and Ui, 
1996) 

96% 
 

(PG) 
 

Lactic 
acid 

CS/corn 
starch 

CS/dextran 

glutaraldehyde 
 

Propylene 
glycol 
(PG) 

_ (Wittaya-areekul 
and Prahsarn, 

2006) 

60% 
 

(0.2 M 
sodium  

acetate        
+0.1 N 
acetic 
acid) 

 

CS/gelatin _ _ _ (Basavaraju et al, 
2006) 

95.7% 1% acetic 
acid 

CS/CE _ _ _ (Yin et al, 2006) 

90% 
 

1% (v/v) 
lactic acid 

CS/starch _ Glycerin ~ 2.54 µm (Xu et al, 2005) 

_ 2% acetic 
acid 

CS/PVA _ Sorbitol 
and 

sucrose 

 (Arvanitoyannis et 
al, 1997) 

91% 2% acetic 
acid 

CS/PVP 
CS/PEG 

_ _ 40-60 µm (Zeng et al, 2004) 

85% 0.5M 
acetic acid 

CS/ collagen _ _ _ (Ye et al, 2007) 

~ 84% trifluoroac
etic 
acid 

(TFA) 
 

CS/nylon 11 _ _ _ (Kuo et al, 2006) 

85, 87 and 
93% 

4 wt% 
acetic acid 

(PNV2P)/CS _ _ 40-50 µm (Caykara et al, 
2006) 

84% Formic 
acid 

CS/nylon 66 
 

sulfuric acid 
 

_ _ (Smitha et al, 
2006) 
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~ 85% o.5M 
acetic acid 

CS/ PCA _ _ 50–60 µm 
when dry 

and 90–120 
µm 

(Sarasam and 
Madihally, 2005) 

_ 88 wt% 
formic 
acid 

chitosan/ 
NMN6 

1M H2SO4 _ 20–40µm (Shieh and Huang, 
1998) 

 
 
There are several factors that can influence the properties of chitosan blend films among 

which are the chitosan source and the film thickness which are usually neglected in the 

literature as can be seen in Table 2.1. 

 

 2. 3.3  Blends of chitosan with synthetic polymers 

Blending of chitosan with synthetic polymers is a convenient method for preparation of 

synthetic biodegradable polymers having versatile properties such as good water 

absorbance and enhanced mechanical properties (e.g. synthetic biodegradable polymers 

used as biomaterials range in tensile strength from 16 to 50 MPa and modulus from 400 to 

3000 MPa) while maintaining biodegradability (Engleberg and Kohn, 1991). Because of 

the large applications of chitosan in various fields, blends with synthetic polymers having 

wide range of physicochemical properties have been prepared in various occasions with 

solution blending investigated by many workers. 

 

Polyvinyl alcohol and polyethylene are among synthetic polymers that have been 

frequently blended with chitosan (Blair et al, 1987; Suto and Ui, 1996; Mucha, 1998; 

Srinivasa et al, 2003). These blends represent new materials possessing better 

hydrophilicity, mechanical properties and biocompatibility than the characteristics of single 

components (Cascone, 1997; Xiao et al, 2000). The physico-chemical properties of 

chitosan/poly (vinyl alcohol) (PVA) blends using sorbitol and sucrose as plasticizers were 

investigated by Arvanitoyannis et al. (1997). Melting point and heat of fusion showed a 
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decreasing trend with increasing the plasticizer content. However, the percentage of 

elongation together with CO2 and water vapor permeability of the blends showed an 

increase with increasing the plasticizer content coupled with a proportional decrease in the 

tensile strength and the modulus were observed. 

 

Graft copolymerization of chitosan with acrylonitrile, methylmethacrylate (MMA), 

methacrylic acid, 2-hydroxyethylmethacrylate (HEMA), and acryl-amide has been reported 

in the literature. Similarly, styrene, vinyl acetate, acrylamide, MMA, and HEMA, have also 

been grafted on chitosan. Grafting of chitosan with N,N′-dimethylaminoethylmethacrylate 

(DMAEMA) has also been reported (Singh and  Roy, 1997; Singh and Roy, 1994; Blair et 

al, 1987; Lagos and Reyes, 1988; Shigeno et al, 1982). Blends of chitosan with 

polyurethane were prepared using solvent casting method and their mechanical properties 

were evaluated (Gong et al, 1998). Poor phase properties were reported.  

 

Hybrid materials of chitosan with polynosic (viscose rayon) were generated by a 

mechanical blending method. Chitin and chitosan were reacted with 1,6-

diisocyanatohexane (poly-urea (urethanes)) in DMA-LiCl solutions and their properties 

evaluated (Muzzarelli et al, 1994).  

 

Biodegradable films of chitosan blend containing polyethylene glycol (PEG) or polyvinyl 

alcohol (PVA) were prepared by mixing PEG or PVA with a solution of chitosan acetate, 

and films were prepared by the casting method (Engleberg and Kohn, 1991; Chandy and  

Sharma, 1992). Homogenous films with increased value of initial temperature of thermal 

degradation were produced. 

 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TXD-4GJK8C8-1&_user=167669&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000013278&_version=1&_urlVersion=0&_userid=167669&md5=d73e498f61247d70ad39a7261f043675#bib2#bib2
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Chitosan blended films containing glycerol (0.25% and 0.5%) were prepared by Butler et 

al. (1996). Oxygen and ethylene permeability remained constant during the storage period, 

but percent elongation decreased.  

 

Shieh and Huang (1998) have reported the preparation and characterization of chitosan/ N-

methylol nylon 6 blends in form of membranes for the separation of ethanol-water mixtures 

by pervaporation. The obtained blend membranes were treated with H2SO4 to enhance their 

separation performance. The blend composition was found to play a significant role in 

affecting the performance of the membranes. 

 

Wiles et al. (2000) investigated the mechanical properties of chitosan and polyethylene 

glycol (PEG) films. It was revealed that the obtained blend films containing PEG of 0.25% 

and 0.5% resulted in an increased percent of elongation, but tensile strength (TS) and water 

vapor transmission rate (WVTR) were decreased.  

 

The mechanical properties of chitosan films prepared by blending with polyols (glycerol, 

sorbitol and polyethylene glycol and fatty acids, stearic and palmitic acids) were studied by 

Srinivasa et al. (2003). Investigations of the mechanical properties showed a decrease in the 

tensile strength with the addition of polyols and fatty acids, while the percent of elongation 

was increased in polyol blend films. However, fatty blend films didn’t show any significant 

difference. 

 

Attempts to prepare film blends of chitosan with poly (lactic acid) (PLA) were reported by 

Nugraha et al. (2004). The thermal and mechanical properties of the obtained films 
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revealed that chitosan/PLA blends are incompatible, i.e. there was no interaction between 

the two polymers. 

 

Chitosan blends with polyvinyl pyrrolidone (PVP) and polyethylene glycol (PEG) were 

reported by Zeng et al. (2004). The compatibility of the blends was proved by FTIR, wide 

angle x-ray diffraction (WAXD) and differential scanning calorimeter (DSC) analysis. The 

chitosan/PVP blend showed no porosity unlike chitosan/PEG blend, which showed high 

porosity. The former and latter are attributed to the strong and weak interactions in the 

blends, respectively. 

 

Sandoval et al. (2005) studied the compatibility of two chitosan blends with (vinyl alcohol) 

(PVA) and poly (2-hydroxyethyl methacrylate) (P2HEM) through molecular dynamic 

simulations. The aim of this study was to find out which of the two functional groups, (–

CH2OH) and (–CH2OH), of chitosan is responsible of the interaction. It was concluded that 

the interaction occurs predominantly with the hydroxymethyl groups of chitosan at low 

composition of P2HEM and PVA while the interaction with the amine groups increases 

with the increase in the composition of the two polymers. 

 

Sarasam and Madihally (2005) have reported the preparation and characterization of 

chitosan/polycaproactone (PCA) blends at different ratios, temperatures, and humidities, for 

tissue engineering applications. According to the thermograms (using Flory–Huggins 

theory), the two polymers were successfully blended. Measurements of differential 

scanning calorimetry (DSC) also indicated that there is an interaction between the two 

components when the results were analyzed using Nishi–Wang equation. However, no 

remarkable alterations relative to chitosan were obtained by tensile properties 
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measurements while significant improvements were observed after solvent annealing. In 

addition, significant improvement in mechanical properties was achieved when a 50:50 

ratio blend dried at 55oC was used. It was concluded that such a blend has a potential for 

various applications in tissue engineering. 

 

Chitosan was melt blended with poly- -caprolactone (PCL), poly (butylene succinate) 

(PBS), poly (lactic acid) (PLA), poly (butylene terephthalate adipate) (PBTA), and poly 

(butylene succinate adipate) (PBSA) (Correlo et al, 2005). For the chitosan/PBS blend, the 

amount of chitosan was varied from 25% to 70% by weight. The remaining polyesters had 

50% of chitosan by weight. Addition of chitosan to PBS or PBSA tends to depress the 

melting temperature of the polyester. The crystallinity of the polyesters (PCL, PBS, PBSA) 

containing 50% chitosan decreased. Adding chitosan to the blends decreased the tensile 

strength but increased the tensile modulus. Chitosan displayed intermediate adhesion to the 

polyester matrix. Microscopic results indicated that the skin layer is polyester rich, while 

the core is a blend of chitosan and polyester. Fractured surface of chitosan blended with a 

high Tg polymer, such as PLA, displayed a brittle fracture. Blends of chitosan with PCL, 

PBTA, or PBSA display fibrous appearances at the fractured surface due to the stretching 

of the polymer threads. Increasing the amount of chitosan in the blends also reduced the 

ductility of the fractured surface. The chitosan phase agglomerated into spherical domains 

was clustered into sheaths. Pull-out of chitosan particles is evident in tensile-fractured 

surfaces for blends of chitosan with ductile polymers but absent in the blends with PLA. 

PBS displays a less lamellar orientation when compared to PCL or PBSA. The orientation 

of the polyesters (PCL, PBSA) does not seem to be affected by the addition of chitosan 
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Chitosan/nylon 11 blends at different ratios were prepared and characterized by FTIR, 

scanning electron microscopy (SEM) and x-ray (Kuo et al, 2006). Biodegradability was 

also investigated. Results revealed that physical properties of nylon 11 were greatly 

affected by the addition of chitosan in the blended films and that good biodegradability of 

the resulting blends was observed. 

 

Smitha et al. (2006) have reported the preparation and characterization of the crosslinked 

blends of chitosan/nylon 66 at different weight compositions. The crosslinking and thermal 

stability of the blends after crosslinking were confirmed by FTIR and TGA, respectively. 

The obtained results showed good indication for dehydration of dioxane and moderate 

water sorption (50–90%) of the blends with no significant effects on mechanical stability of 

the blends.  Increasing water concentration in feed brought about an improved membrane 

swelling and thereby improved flux at reduced selectivity. Varying thickness resulted in a 

remarkable lowering of the flux with some improvement in selectivity. Higher permeate 

pressures caused a reduction in both the flux and selectivity. 

 

Various proportions of three chitosan portions having different molecular weights were 

blended with poly (N-vinyl-2-pyrrolidone) (PNV2P) (Caykara et al, 2006). The surface 

properties of the films were studied by scanning electron microscopy (SEM) and contact-

angle measurements. It was revealed that the blend surfaces were enriched in low surface 

free energy component, i.e., chitosan. 

 

Other studies on chitosan blends and composites were reported in the literature. For 

example, chitosan/polyethylene glycol (Mucha et al, 1999), chitosan/polyethylene oxide 
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(Khoo et al, 2003), chitosan/polyvinylpyrrolidone (Abou-Aiad et al, 2006), 

chitosan/PVA/gelatin (Chen et al, 2008b) and chitosan/PVA/pectin (Tripathi et al, 2010). 

 

2.3.4  Blending of chitosan with natural polymers 

Blending of chitosan with other natural polymers has been proposed as an interesting 

method to bring about new bio-materials of improved properties to meet the requirements 

of specific applications. Reports on blending of chitosan with natural polymer have been 

published in various occasion. For example, a number of publications have been reported 

blending of chitosan with collagen (Thacharodi and Rao, 1995; Thacharodi and Rao, 1996; 

Hirano et al, 2000; Shanmugasundaram et al, 2001; Chen et al, 2002; Sionkowska et al, 

2004). The effect of chitosan on the properties of collagen has also been investigated 

(Taravel and Domard, 1993; Taravel and Domard, 1996; Salome Machado et al, 2002). 

These studies have shown that chitosan has the ability to modify the mechanical properties 

of collagen. 

 

Arvanitoyannis et al. (1998) developed films of chitosan and gelatin by casting from their 

combined aqueous solutions (pH 4.0) at 60°C and evaporating at 22 or 60°C (low- and 

high-temperature methods, respectively). The thermal, mechanical and gas/water 

permeation properties of these composite films, plasticized with water or polyols, were 

investigated. An increase in the total plasticizer content resulted in a considerable decrease 

of elasticity modulus and tensile strength, whereas the percentage of elongation increased. 

It was also found that the low-temperature preparation method led to a higher percentage of 

renaturation (crystallinity) of gelatin, therefore a decrease, by 1-2 orders of magnitude, of 

CO2 and O2 permeability in the chitosan/gelatin blends was observed. An increase in the 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TX2-4K48N7T-1&_user=152948&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000012678&_version=1&_urlVersion=0&_userid=152948&md5=6ee1d652b1e1610723dd5bc6bcafee05#bbib14
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFD-3VF34SP-M&_user=152948&_coverDate=12%2F31%2F1998&_fmt=full&_orig=search&_cdi=5224&view=c&_acct=C000012678&_version=1&_urlVersion=0&_userid=152948&md5=7c4513a9add4c83408e5d00c3782a120&ref=full
http://www.sciencedirect.com/science?_ob=MiamiImageURL&_imagekey=B6TFD-3VF34SP-M-T&_cdi=5224&_user=152948&_check=y&_orig=search&_coverDate=12%2F31%2F1998&view=c&wchp=dGLbVtb-zSkzV&md5=3127a27d155621b4856897fe828ee41e&ie=/sdarticle.pdf
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=655&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Frecord.url%3Feid%3D2-s2.0-0032297376%26partnerID%3D10%26rel%3DR3.0.0%26md5%3D44dcbfaf2a5bc2e37848fecb4ddd9183&_acct=C000012678&_version=1&_userid=152948&md5=fcaffd016b3f4b2c27d72d2a73f74dcb
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=656&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fcitedby.url%3Feid%3D2-s2.0-0032297376%26partnerID%3D10%26rel%3DR3.0.0%26md5%3D44dcbfaf2a5bc2e37848fecb4ddd9183&_acct=C000012678&_version=1&_userid=152948&md5=3dd06e0f7cbfbcdba8f104d3652c16f4
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total plasticizer content (water or polyols) of these blends was found to be proportional to 

an increase in their gas permeability. 

 

Ikejima et al. (1999) reported the development of blended films of microbial poly (3-

hydroxybutyric acid) (PHB) with chitin and chitosan as completely biodegradable 

polyester/polysaccharide composites. DSC measurements revealed that crystallization of 

PHB in these blends was suppressed when the proportion of polysaccharide increased. The 

same tendency was evident from the FTIR band intensity of the carbonyl stretching 

absorption originated from PHB. Chitosan was found to have a stronger ability to suppress 

the crystallization of PHB than with chitin. PHB in the blends was found (by 13C NMR 

spectroscopy) to be trapped in the ‘glassy’ environment of the polysaccharide. Upon 

blending with PHB, the chitosan resonances were significantly broadened as compared to 

the chitin resonances. It was suggested that hydrogen bonds may be formed between the 

carbonyl groups of PHB and the amide -NH groups of chitin and chitosan. The 

crystallization behavior and environmental biodegradability were also investigated for the 

films of poly (3-hydroxybutyric acid) (PHB) blends with chitin and chitosan (Ikejima and 

Inoue, 2000). The blend films showed XRD peaks that arose from PHB crystalline 

component. It was suggested that the lamellar thickness of the PHB crystalline component 

in the blends was large enough to show detectable XRD peaks, but was too small to show 

an observable melting endotherm in the DSC thermogram and a crystalline band absorption 

in the FTIR spectrum. In the PHB/chitin and PHB/chitosan blends, thermal transition 

temperatures of PHB amorphous regions observed by dynamic mechanical thermal analysis 

were almost the same as that of neat PHB for both PHB/chitin and PHB/chitosan blends. It 

was also observed that both blended films tend to biodegrade in an environmental medium.  

 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TX2-4K48N7T-1&_user=152948&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000012678&_version=1&_urlVersion=0&_userid=152948&md5=6ee1d652b1e1610723dd5bc6bcafee05#bib98#bib98
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Preparation of chitosan/κ-carrageenan blends in form of films has been studied. The effect 

of type of solvent system (acetic, lactic, citric, maltic and ascorbic acids) on the mechanical 

properties on the obtained films was investigated (Park et al, 2001b). Ascorbic acid was 

found to increase the tensile strength and the percent of elongation of the films compared to 

other diluting acids. Results showed that there are interactions among the organic acids and 

κ-carrageenan and chitosan.  

 

Other kinds of aqueous blends based on chitosan were also reported. Kweon et al. (2001) 

reported the preparation of aqueous blends of chitosan with protein. Antheraea pernyi silk 

fibroin (SF)/chitosan blended films were prepared by mixing aqueous solution of A. pernyi 

SF and acetic acid solution of chitosan. The conformation of A. pernyi SF in blended films 

was revealed to be a β-sheet structure, mainly due to the effect of using acetic acid as a 

mixing solvent. Blending with A. pernyi SF can enhance the thermal decomposition 

stability of chitosan.  

 

The phase structure of poly (R)-(3-hydroxybutyrate) (PHB)/chitosan and poly (R)-(3-

hydroxybutyrate-co-3-hydroxyvalerate) (P(HB-co-HV))/chitosan blends using 1H 

CRAMPS (combined rotation and multiple pulse spectroscopy) was investigated by 

Cheung et al. (2002). A modified BR24 sequence that yielded an intensity decay to zero 

mode rather than the traditional inversion-recovery mode was used to measure 1H T1. 

Single exponential T1 decay is observed for the β-hydrogen of PHB or P (HB-co-HV) at 

5.4 ppm and for the chitosan at 3.7 ppm. T1 values of the blends are either faster than or 

intermediate to those of the plain polymers. The T1ρ decay of β-hydrogen is bi-exponential. 

The slow T1ρ decay component is interpreted in terms of the crystalline phase of PHB or P 

(HB-co-HV). The degree of crystallinity decreases with increasing wt% of chitosan in the 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TX2-4K48N7T-1&_user=152948&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000012678&_version=1&_urlVersion=0&_userid=152948&md5=6ee1d652b1e1610723dd5bc6bcafee05#bib100#bib100
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blend. The fast T1ρ of β-hydrogen and the T1ρ of chitosan in the blends either follow the 

same trend as or are faster than the weight-averaged values based on the T1ρ of the plain 

polymers. Depending on the observation obtained by DSC of a melting point depression 

and one effective Tg in the blends, it was strongly suggested that chitosan is miscible with 

either PHB or P(HB-co-HV) at all compositions. 

 

Lazaridou and Biliaderis (2002) studied the thermo-mechanical properties of aqueous 

solution/cast films of chitosan, starch/chitosan and pullulan/chitosan using dynamic 

mechanical thermal analysis (DMTA) and large deformation tensile testing. Incorporation 

of sorbitol (10% and 30% d.b.) and/or adsorption of moisture by the films resulted in 

substantial depression of the glass transition (Tg) of the polysaccharide matrix due to 

plasticization. For the composite films there was no clear evidence of separate phase 

transitions of the individual polymeric constituents or a separate polyol phase; a rather 

broad but single drop of elastic modulus, E′, and a single tan δ peak were observed. Tensile 

testing of films adjusted at various levels of moisture indicated large drops in Young's 

modulus and tensile strength (σmax) with increasing levels of polyol and moisture; the 

sensitivity of the films to plasticization was in the order of 

starch/chitosan>pullulan/chitosan>chitosan. Modeling of the modulus data with Fermi's 

equation allowed comparison among samples for the fall in modulus around the glass 

transition zone as a function of moisture content under isothermal conditions.  

 

A series of chitosan/gelatin blended films has been reported in various occasions (Cheng et 

al, 2003). Good compatibility and an increase in the water uptake of chitosan films were 

observed. The chitosan/gelatin blend showed higher percentage of elongation–at-break 

together with a lower Young’s modulus. In addition, the average water contact angles of the 
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obtained films were found to be 60o. The investigation of chitosan/gelatin films for oxygen 

permeability, optical transmittance, water absorptivity and mechanical properties was also 

reported by Yuan and Wei (2004). The obtained results showed an increase in water 

absorption and improvement in oxygen and solute permeability of the composite film of 

chitosan. The chitosan/gelatin films were found to be more transparent, flexible and 

biocompatible. 

 

Zhai et al. (2004) reported the preparation of antibacterial chitosan/starch blended films. 

The chitosan/starch-blended films were prepared by irradiation of compression-molded 

starch-based mixtures in physical gel state with an electron beam at room temperature. 

After the incorporation of 20% chitosan into the starch film, the tensile strength and the 

flexibility of the starch film were significantly improved. In addition, an interaction and 

microphase separation between the starch and chitosan molecules was observed by the X-

ray diffraction (XRD) and SEM analyses of the blended films. Furthermore, the 

starch/chitosan blended films were irradiated to produce a kind of antibacterial films. After 

irradiation, there was almost no change in the structure of the starch/chitosan blended films. 

However, antibacterial activity was induced even when the content of chitosan was only 

5%, due to the degradation of chitosan in blend films under the action of irradiation. 

 

Wu et al. (2004) studied the preparation and characterization of membranes of chitosan and 

cellulose blends using trifluoroacetic acid as a solvent. As far as the mechanical and 

dynamic mechanical thermal analyses are concerned, the cellulose/chitosan blends are 

almost incompatible. In addition, results obtained from water vapor transpiration rate and 

antibacterial measurements suggested the possibility of using the membranes of chitosan 

and cellulose as a wound dressing with antibacterial properties.  
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Suyatma et al. (2004) reported preparation of biodegradable blended films of chitosan with 

polylactic acid by solution mixing and film casting. The incorporation of polylactic acid 

with chitosan improved the water barrier properties and decreased the water sensitivity of 

the chitosan films. However, the tensile strength and elastic modulus of chitosan decreased 

with the addition of polylactic acid. Measurements of mechanical and thermal properties 

revealed that chitosan and polylactic acid blends are incompatible. This was found to be 

consistent with the results of FTIR analysis that showed the absence of specific interaction 

between chitosan and polylactic acid. 

 

Mucha and Pawiak. (2005) have reported that films made from chitosan blends with 

hydroxylpropyl cellulose (HPC) resulted in good miscibility of components with better 

optical transparency and mechanical properties. The phase separation of the components 

occured more drastically after water removal due to the active compatibilization behavior 

of the water molecules in this system, which lead to the formation of additional hydrogen 

bonds. 

 

Chitosan and starch blended films were prepared and characterized by Xu et al. (2005). The 

obtained films showed a decrease in the water vapor transmission rates and an increase in 

the tensile strength and the elongation-at-break with increasing starch ratio in the blend. 

FTIR spectroscopy and x-ray diffraction have suggested the existence of interaction and 

compatibility of the two film-forming components. 

 

Wittaya-areekul and Prahsarn. (2006) have investigated the possibility of incorporation of 

corn starch and dextran with chitosan using glutaraldehyde a crosslinker for use in wound 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TX2-4K48N7T-1&_user=152948&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000012678&_version=1&_urlVersion=0&_userid=152948&md5=6ee1d652b1e1610723dd5bc6bcafee05#bib97#bib97
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dressing application. The effect of adding polypropylene glycol (as a plasticizer) on the 

chitosan blends was also reported. Results showed that corn starch and dextran can be 

incorporated into chitosan film to improve the physical strength, i.e., vapor penetration, 

water uptake, and oxygen penetration properties. The addition of propylene glycol was 

found to improve the film elasticity and all other properties mentioned already with 

exception of bio-adhesive properties. 

 

Yin et al. (2006) have examined the miscibility of chitosan blends with two cellulose 

ethers, hydroxypropylmethylcellulose and methylcellulose by infrared spectroscopy, 

thermal gravimetric analysis, wide-angle X-ray diffraction and scanning electron 

microscopy. It was concluded that full miscibility cannot be achieved if the hydrogen 

bonding between the polymers is weak. 

 

The miscibility of chitosan/gelatin blend in a buffer solution (0.2 M sodium acetate and 0.1 

N acetic acid) has been assessed by means of viscosity, ultrasonic and refractive index 

method at 30 and 50oC (Basavaraju et al, 2006). The obtained data indicated that the blend 

is immiscible in all proportions and that the variation of temperature has no influence on 

miscibility of the blend. 

 

The compatibility of chitosan/collagen blends has been evaluated by dilute solution 

viscometry (Ye et al, 2007). The obtained data showed that collagen/chitosan blends are 

miscible at any ratio in acetic acid solutions at 25oC. As far as the “memory effect’’ is 

concerned, the blends are also miscible in the solid state. 

 

 



 43 

2.3.5  Physical forms of chitosan blends 

Chitosan blends exist in various physical forms including resins, microsphers, hydrogels, 

membranes and fibers. The selection of one particular physical form depends mainly on the 

system configuration to be used for particular applications. The process of shaping chitosan 

blends into desired physical form starts from mixing the blend components in the liquid 

form and applying the appropriate shaping method. 

 

Resins (beads)/microspheres 

Chitosan beads have been prepared by various methods, including solvent evaporation, 

coacervation and emulsion methods (Peniche et al, 2003; Genta et al, 1997). However, 

smaller and uniform beads can be obtained by the emulsion technique (Lim et al, 1997). 

Chitosan and its blends beads have been widely researched (Huguet et al, 1994, Polk et al, 

1994; Liu et al, 1997; Dumitriu and Chornet, 1998, Murata et al, 1999; Tomoaki et al, 

2000; Gonz´alez-Rodr´ıguez et al, 2002; Murata et al, 2002). The chitosan/alginate 

microparticles (Kim and Rha, 1989a,b), chitosan/xanthan microspheres (Chellat et al, 

2000a) and chitosan/gelatin microspheres (Yao et al, 1996; Yuji et al, 1996) have also been 

reported. 

 

A novel natural polymer chitosan/cellulose blend beads were prepared via homogeneous 

dissolution of chitosan and cellulose in methylmorpholine-N-oxide. The blend 

microspheres were prepared by spray-drying process have a spherical geometry and a 

smooth surface morphology (Twu et al, 2003). 

 

 

 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFD-49PYNPG-8&_user=10&_coverDate=12%2F01%2F2003&_rdoc=1&_fmt=full&_orig=search&_cdi=5224&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=b2acbb9cd1a4ab36122b5139cda31859#m4.cor*
mailto:poly2001@mail.dyu.edu.tw
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Hydrogels 

Hydrogels of biopolymer is a significant class of polymeric materials due to their 

interesting properties for potential application in various fields such as biomedical, 

pharmaceutical and environmental industries. Chitosan Hydrogels can be easily prepared 

from concentrated solution by re-precipitation under mild alkaline condition. In the recent 

years, interest has been increased on modification of chitosan and its blends by crosslinking 

to improve the hydrogel stability. Non-covalent cross-linked chitosan hydrgel blends have 

been reported in the literature, such as chitosan/alginate (Takka and Acarturk, 1999), 

chitosan/carboxymethyl-cellulose (Arguelles-Monal et al, 1993; Fukuda, 1980), 

chitosan/dextran sulfate (Sakiyama et al, 2001), chitosan/carboxymethyl-dextran (Fukuda 

and Kikuchi, 1978), chitosan/heparin (Kikuchi and Noda, 1976; Kratz et al, 1998), 

chitosan/carrageenan (Sakiyama et al, 1993), chitosan/pectin (Chang and Lin, 2000; 

Mireles et al, 1992), chitosan/collagen (Zhang et al, 1997), and chitosan/xanthan (Chelat et 

al, 2000b; Chu et al, 1995; Dumitriu and Chornet, 1996; 1998, 2000; Dumitriu et al, 1994; 

Ikeda et al, 1995). Crosslinking of chitosan hydrogel (Singh et al, 2006) and chitosan/PVA 

hydrogel membranes with formaldehyde (Yang et al, 2004) was also reported. 

 

Films/membranes 

It is well known that chitosan can be easily filmablized, especially, by a casting technique 

(Kanke et al, 1989; Bonvin and de Bertorell, 1993), which makes it useful for many 

applications including skin care, cosmetics, contact lenses, membranes and separators in 

various other technologies. Chitosan film properties have been reported by numerous 

authors (Butler et al, 1996; Chen and Hwa, 1996; Singh and Ray, 1998; Bégin and Van 

Calsteren, 1999). Chitosan films are clear, homogeneous and flexible with good oxygen 

barrier and mechanical properties (Hoagland and Parris, 1996; Kittur et al, 1998), but with 
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relatively low water vapor barrier characteristics (Butler et al, 1996). In addition, chitosan 

films are dense and do not possess pores (Muzzarelli, 1977; Hirano and Tokura, 1982). 

Since chitosan degrades before melting, it is necessary to dissolve it in an appropriate 

solvent prior to casting into films.  

 

The properties of chitosan films depend on their morphology, which is affected by the 

molecular weight (Butler et al, 1996; Chen and Hwa, 1996), source of chitosan, degree of 

deacetylation, method of film preparation, free amine regenerating mechanism and most 

importantly by the type of dissolving solvent (Samuels, 1981; Blair et al, 1987; Lim and 

Wan, 1995). Acetic acid has been often used as a standard solvent for dissolving chitosan 

for film or membrane making. For example, Austin (1982) reported chitosan films making 

from 5% w/v chitosan solution dissolved in 4% v/v aqueous acetic acid followed by 

coagulatation in aqueous base solution. Averbach (1975) also reported casting chitosan 

films from 10% aqueous acetic acid solutions on stainless steel plates and drying them at 

125oC. Casting chitosan from other acid solutions such lactic acid yielded are softer and 

more pliable and bioadhesive films compared with those prepared from acetic acid (Khan et 

al, 2000). 

 

Chitosan membranes prepared with various degrees of deacetylation of 75%, 87% and 96% 

(same molecular weight) were reported by Trung et al. (2006). Membranes obtained from 

chitosan of higher degree of deacetylation exhibited higher tensile strength and higher 

elongation at break. In addition, membranes casted from chitosan with 75% degree of 

deacetylation displayed higher permeability and higher water absorption. 
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Similar studies on chitosan membranes prepared from higher molecular weight chitosan 

showed has also higher tensile strength and percent elongation compared those obtained 

from low molecular weight ones (Chen and Hwa, 1996; Blair et al, 1987).  

 

Preparation of blend or composite chitosan films associated with other bipolymers has been 

repeatedly reported in literature. Blend films such as chitosan/pectin laminated films 

(Hoagland and Parris, 1996), chitosan/cellulose (Hosokawa et al, 1990; Hasegawa et al, 

1992b) and chitosan/methylcellulose films (Kittur et al, 1998) were investigated and 

improved properties compared to those of their pure components.  

 

Similar films and membranes using blends of chitosan and synthetic polymers to improve 

the biocompatibility and expanded use as biomaterials were also reported in various 

occasions. For example, membranes prepared from blends of chitosan and polyvinyl 

alcohol (PVA) were investigated. The obtained membranes were found to be clear and 

homogeneous and have mechanical resistance is greater than that of the pure components 

(Miya et al, 1983; Miya and Iwamoto, 1984). Such membranes were capable of transport 

of halogenated ions and diffusion of cattle serum albumin (Uragami et al, 1983) and 

vitamin B12 (Nakatsuka et al, 1992) when crosslinked.   

 

Fibers 

Fiber is another physical form of chitosan, which was first reported as early as 1926 

(Kunike, 1926). It possesses many advantages such as superior mechanical properties 

compared with the same material in bulk form. However, due to the high production cost, it 

was necessary for researchers to look into blends or composites of this polymer with other 

yarns. Fibers of chitosan blends have been frequently reported in literature. For instance, 
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fibers of chistosan blends with collagen (Chen et al, 2006, 2007; Chen et al, 2008a), starch 

(Wang et al, 2007), poly (ethylene oxide) (Bhattarai et al, 2005), poly (vinyl alcohol) (Jia et 

al, 2007; Zhou et al, 2006), silk fibroin (Park et al, 2004) and alginate (Liao et al, 2005) 

have been reported. 

 

Sponge  

Chitosan sponge is of high interest in drug carrier systems.  This is due to chitosan 

biodegradability, biocompatibility, antibacterial activity and non-toxicity of chitosan 

together with film forming capability. However, chitosan solutions cannot be foamed alone. 

Therefore, it is often combined with another good foaming polymer such as gelatin, which 

is also a cheap biodegradable polymer with good foaming properties (Poole, 1989). When 

blended with chitosan, gelatin makes a good contact with chitosan and forms polyionic 

complexes of slower rate of dissolution than chitosan at the appropriate pH value 

(Thacharodi and Rao, 1995). Such property could be utilized in drug release to a wound 

while the spongy form absorbs the wound fluid (Oungbho and Müller, 1997). The release 

profile and biodegradability of both polymers can be effectively controlled by crosslinking 

(Tabata and Ikada, 1989; Jameela et al, 1998).  

 

Similar sponges based on alginate and chitosan were also studied in various occasion 

(Shapiro and Cohen, 1997; Kofuji et al, 2001; Kataoka et al, 2001; Singla and Chawla, 

2001; Kumar, 2000; Coppi et al, 2002; Lai et al, 2003). For example, chitosan and sodium 

alginate blended sponge incorporating silver sulfadizine was reported by Kim et al. (1999) 

for wound dressing application. Yang et al. (2001) also prepared hepatocyte-loaded 

alginate/galactosylated chitosan sponges for the growth of liver tissue. 

 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T7W-3YMW350-B&_user=167669&_coverDate=01%2F25%2F2000&_fmt=full&_orig=search&_cdi=5069&view=c&_acct=C000013278&_version=1&_urlVersion=0&_userid=167669&md5=6a0ff27456cc682cb6bd451c3cd52e76&ref=full#bib20#bib20
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T7W-3YMW350-B&_user=167669&_coverDate=01%2F25%2F2000&_fmt=full&_orig=search&_cdi=5069&view=c&_acct=C000013278&_version=1&_urlVersion=0&_userid=167669&md5=6a0ff27456cc682cb6bd451c3cd52e76&ref=full#bib24#bib24
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T7W-3YMW350-B&_user=167669&_coverDate=01%2F25%2F2000&_fmt=full&_orig=search&_cdi=5069&view=c&_acct=C000013278&_version=1&_urlVersion=0&_userid=167669&md5=6a0ff27456cc682cb6bd451c3cd52e76&ref=full#bib19#bib19
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T7W-3YMW350-B&_user=167669&_coverDate=01%2F25%2F2000&_fmt=full&_orig=search&_cdi=5069&view=c&_acct=C000013278&_version=1&_urlVersion=0&_userid=167669&md5=6a0ff27456cc682cb6bd451c3cd52e76&ref=full#bib10#bib10
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2.3.6  Some applications of chitosan blends  

According to the literature, most of the applications of chitosan blends are in the 

pharmaceutical and biomedical fields. For example, chitosan has been receiving increasing 

interest in drug delivery applications due to its capacity to enhance transport of hydrophilic 

drugs. It has also reported to be useful in colon- or nasal delivery. Chitosan is also of 

current interest as a carrier in gene delivery. Several chitosan nanocomposites were 

evaluated based on the ionotropic gelation, or numerous chitosan/DNA nanoparticles were 

framed from the complexation of the cationic polymer with DNA plasmid. Ionically 

interaction and modification only of chitosan as cationic polymer and anions result in these 

particles. 

 

In the area of drug delivery systems, chitosan blends have been widely used for control 

release of drugs because of their advantageous properties such as non-toxicity, 

biocompatibility, biodegradability and availability of terminal functional groups (Chandy 

and Sharma, 1990). Various physical forms of chitosan blends such as microparticles 

(Berthold et al, 1996), tablets (Adusumilli and Bolton, 1991), films (Kanke et al, 1989), 

beads (Aral and Akbuga, 1998), gels (Kristl et al, 1993) were proposed various drug release 

applications and as an absorption enhancer for nasal and oral drug delivery (Illum et al, 

1994).  For example, various blends of collagen and chitosan were used for architecture of 

membranes for controlled release (Thacharodi and Rao, 1995; Thacharodi and Rao, 1996; 

Leffler and Müller, 2000). This also included proposing chitosan as a useful excipient for 

obtaining sustained release of water-soluble drugs and for enhancing the bioavailability of 

poorly water-soluble compounds. Moreover, chitosan has also been presented as a useful 

polymer for colon-specific and oral administered drug delivery (Tozaki et al, 1997). This 

has derived huge research efforts that led to publication of immense number of studies for a 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFD-4H68NPD-1&_user=167669&_coverDate=11%2F10%2F2005&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000013278&_version=1&_urlVersion=0&_userid=167669&md5=e90f5c56684bfd2f1fe4908818a190a1#SECX8#SECX8
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T7W-3YMW350-B&_user=167669&_coverDate=01%2F25%2F2000&_fmt=full&_orig=search&_cdi=5069&view=c&_acct=C000013278&_version=1&_urlVersion=0&_userid=167669&md5=6a0ff27456cc682cb6bd451c3cd52e76&ref=full#bib4#bib4
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T7W-3YMW350-B&_user=167669&_coverDate=01%2F25%2F2000&_fmt=full&_orig=search&_cdi=5069&view=c&_acct=C000013278&_version=1&_urlVersion=0&_userid=167669&md5=6a0ff27456cc682cb6bd451c3cd52e76&ref=full#bib3#bib3
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T7W-3YMW350-B&_user=167669&_coverDate=01%2F25%2F2000&_fmt=full&_orig=search&_cdi=5069&view=c&_acct=C000013278&_version=1&_urlVersion=0&_userid=167669&md5=6a0ff27456cc682cb6bd451c3cd52e76&ref=full#bib1#bib1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T7W-3YMW350-B&_user=167669&_coverDate=01%2F25%2F2000&_fmt=full&_orig=search&_cdi=5069&view=c&_acct=C000013278&_version=1&_urlVersion=0&_userid=167669&md5=6a0ff27456cc682cb6bd451c3cd52e76&ref=full#bib11#bib11
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T7W-3YMW350-B&_user=167669&_coverDate=01%2F25%2F2000&_fmt=full&_orig=search&_cdi=5069&view=c&_acct=C000013278&_version=1&_urlVersion=0&_userid=167669&md5=6a0ff27456cc682cb6bd451c3cd52e76&ref=full#bib2#bib2
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T7W-3YMW350-B&_user=167669&_coverDate=01%2F25%2F2000&_fmt=full&_orig=search&_cdi=5069&view=c&_acct=C000013278&_version=1&_urlVersion=0&_userid=167669&md5=6a0ff27456cc682cb6bd451c3cd52e76&ref=full#bib12#bib12
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T7W-3YMW350-B&_user=167669&_coverDate=01%2F25%2F2000&_fmt=full&_orig=search&_cdi=5069&view=c&_acct=C000013278&_version=1&_urlVersion=0&_userid=167669&md5=6a0ff27456cc682cb6bd451c3cd52e76&ref=full#bib9#bib9
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wide variety of applications in the field of controlled release (over 2000 papers in the last 

15 years), which makes it impossible to be reviewed here. 

 

Tissues engineering field is another biomedical field where chitosan blends and other forms 

have found growing interest. Chitosan-based materials have been reported for tissue 

engineering in different physical forms, including porous scaffolds and gels (Madihally and 

Matthew, 1999; Suh and Matthew, 2000; Chung et al, 2002; Gutowska et al, 2001). For 

example, blends of collagen and chitosan have been used for the design of polymeric 

scaffolds for in vitro culture of human cells, tissue engineering skin and implant fibers 

(Shanmugasundaram et al, 2001; Ramay et al, 2005).  

 

As an anti-microbial agent, chitosan is a biopolymer that has been well known as being able 

to accelerate the healing of wounds in human (Kojima et al, 1998). It was reported that 

chitosan stimulated the migration of polymorphonuclear (PMN) as well as mononuclear 

cells and accelerated the re-epithelialization and normal skin regeneration (Usami et al, 

1994). The antimicrobial activity of chitosan is well known against a variety of bacteria and 

fungi coming from its polycationic nature (Roberts, 1992). The interaction between 

positively charged chitosan and negatively charged microbial cell wall leads to the leakage 

of intracellular constituents. The binding of chitosan with DNA and inhibition of mRNA 

synthesis occur via the penetration of chitosan into the nuclei of the microorganisms and 

interfering with the synthesis of mRNA and proteins. Furthermore, chitosan is a biomaterial 

widely used for effective delivery of many pharmaceuticals (Lorenzo-Lamosa et al, 1998). 

Accordingly, chitosan may be suitable for incorporating other antipyrotic for the 

preparation of long-acting antibacterial wound dressing.  

 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFD-4HR72GX-3&_user=167669&_coverDate=04%2F19%2F2006&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000013278&_version=1&_urlVersion=0&_userid=167669&md5=fc710ad2ae6464d6c4f16e70e15abc19#bib12#bib12
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFD-4HR72GX-3&_user=167669&_coverDate=04%2F19%2F2006&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000013278&_version=1&_urlVersion=0&_userid=167669&md5=fc710ad2ae6464d6c4f16e70e15abc19#bib26#bib26
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFD-4HR72GX-3&_user=167669&_coverDate=04%2F19%2F2006&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000013278&_version=1&_urlVersion=0&_userid=167669&md5=fc710ad2ae6464d6c4f16e70e15abc19#bib26#bib26
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFD-4HR72GX-3&_user=167669&_coverDate=04%2F19%2F2006&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000013278&_version=1&_urlVersion=0&_userid=167669&md5=fc710ad2ae6464d6c4f16e70e15abc19#bib22#bib22
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFD-4HR72GX-3&_user=167669&_coverDate=04%2F19%2F2006&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000013278&_version=1&_urlVersion=0&_userid=167669&md5=fc710ad2ae6464d6c4f16e70e15abc19#bib16#bib16
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In environmental applications, due to its powerful chelating ability, chitosan was found to 

be among the most powerful heavy metal ion binders (Krajewska, 2005). This is performed 

mainly with use of chitosan-based powders, flakes, gel beads, composite membrane or 

others (Kaminski and Modrzejewska, 1997; Taha et al, 1996; Genc et al, 2002). In general, 

the affinity of chitosan to heavy metal ions is as follows: 

Pd>Au>Hg>Pt>Cu>Ni>Zn>Mn>Pb>Co>Cr>Cd>Ag (Koshijima et al, 1973; Peter, 1995; 

Krajewska, 2001). Chitosan blends can be also applied for dehydration of solvents. For 

instance, it has been reported that chitosan/N-methylol nylon 6 blend membranes can be 

used for the separation of ethanol-water mixtures in terms of acid (H2SO4) post-treatment, 

feed concentration, blend ratio and temperature (Shieh and Huang, 1998).   

 

2.3.7  Contribution of the present study 

Based on the previous studies on chitosan blends with natural and synthetic polymers, 

reports on chitosan binary blends with agar and ternary blends of chitosan with both of agar 

and PVA in the solid and liquid phases have not been revealed. Accordinly, the pesent 

work is to study three types of blends, i.e chitosan/agar, chitosan/PVA and 

citosan/agar/PVA with the aim to establish relationships between the proportions of the 

blend components on the rheological behavior in the liquid phase of the blends and the 

impact of that on the component miscibility. The properties of the obtained three chitosan 

based blends were investigated to elucidate the impact of the variation of the blends 

composition on their compatibility in the solid phase represented by blended films. A study 

of such kind can help in optimising the preparation conditions towards obtaining chitosan 

based blended films with improved properties to promote further applications. It also helps 

in estabishing and understanding composition-property correlations in the blended films. 
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3.0  Chapter 3: Experimental 

3.1  Materials 

Chitosan of a degree of deacetylation (DD) of 88.1% determined by UV method 

(Muzzarelli and Rochetti, 1985) was provided by the chitin-chitosan laboratory of 

Universiti Kebangsaan Malaysia (UKM) (Table 3.1). The agar was purchased from Sigma-

Aldrich. PVA Fluka (56-98) with an average molecular weight of 195 x 103 g mol-1 was 

also used in this work. Acetic acid (glacial 100%, pro-analysi) was purchased from Merck 

(Darmstadt, Germany). Ultra pure water (Maxima Ultra Pure Water, Elga-Prima Corp, UK) 

with a resistivity greater than 18MΩ/cm was used to prepare all solutions. All chemicals 

were used without further purification and freshly prepared solutions were used in all 

experiments. 

 

 
Table 3. 1: Specifications of chitosan used in this work. 
 

Property  
Physical form Flakes 

Color White 
Ash content 0.30% 

Water content 10-13% 
Degree of deacetylation 88.1% 

pH of water extract 7.63 
Solubility in 1% acetic acid Very soluble 

 
 
 
3.2  Procedures 

3.2.1  Preparation of the solutions 

The chitosan was dried in an oven until a constant weight was observed. A 10 g L-1 solution 

of chitosan was prepared by dissolving 5 g of chitosan in 500 mL acetic acid (0.1M) 

followed by continous stirring and heating at 60oC for 16 h. The solution was filtered to 
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remove dust and other impurities. Air bubbles were eliminated by keeping the solutions at 

room temperature for 2 h. 

 

A similar 10 g L-1 solution of agar and PVA were prepared by dissolving 5 g in 500 mL 

preheated ultrapure water. The solutions was then stirred and kept at about 90oC for 3 h. 

 

3.2.2  Preparation of the blended films  

The preparation of blend films of chitosan and agar or PVA was carried out at various 

proportions. The aqueous agar or PVA solution was added drop by drop to the chitosan 

solution, under continuous stirring at 90oC in various proportions by volume. The range of 

the added agar or PVA to chitosan solution varied from 0-50 vol%. Stirring was allowed to 

continue for 30 minutes after mixing. Films of the resulting homogeneous solutions were 

obtained by casting prescribed amounts of the solution onto polystyrene petri dishes 

followed by drying at 60oC for 48 h. The films were carefully peeled off and kept under 

evacuated desiccator over fresh silica gel until use. All films obtained were transparent, 

uniform and free of air bubbles.  

 

Similar films from pure chitosan, pure agar and pure PVA were prepared using the same 

casting procedure and used as references.  

 

3.2.3  Film thickness 

The film thickness was measured with a digital micrometer (Mitutoyo, Japan) with 

0.001mm resolution. Several thickness measurements were taken at various positions on 

each specimen and the average value was determined. 
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3.3  Methods and equipments 

3.3.1  Molecular weight measurements 

The molecular weight of chitosan was 5.5 �105 g mol-1 determined by gel permeation 

chromatography (GPC) equipped with a Waters 1515 HPLC Pump and a Waters 2414 

Refractive Index Detector. The column used was PL aquagel-OH 30 (8 µm, 300 × 7.5 mm) 

and the solvent used was 1% acetic acid. The molecular weight of agar was about 1.3 �104 

g mol-1 using the same method. 

 

3.3.2  Viscosity measurements 

The rheological measurements were performed on a Brookfield digital viscometer, model 

DV-II + Pro, with an attached UL adapter. The viscosity was determined in 20 mL of the 

sample and the shearing time was 15 seconds. For the storage time measurements, solutions 

were kept at room temperature in glass bottles in a dark place until analysis. Each 

measurement was recorded as an average value of five readings when a constant shear rate 

(6.15 s-1) was applied. 

 

3.3.3  FTIR measurements 

The FTIR measurements of blended films (10 µm thick) were performed on a spectrometer 

(Perkin Elmer, model 2000). The spectra were obtained at a frequency range of 4000-400 

cm-1 with a resolution of 4 cm-1 and 8-times scanning. 
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3.3.4  Scanning electron microscopy (SEM) measurements 

The SEM measurements were carried out to study the surface morphology and to study the 

compatibility of the blended films. In this work, the surface morphology was investigated 

by a FEI Quanta 200F field emission scanning electron microscope (FESEM) (FEI, USA) 

controlled by a 32 bit computer system using Microsoft Windows 2000 as an operating 

system. 

 

3.3.5  Mechanical properties 

Mechanical studies were carried out to study the tensile strength and elongation of the 

blended films. Mechanical testing plays an important role in evaluating fundamental 

properties of materials, developing new materials and controlling the quality of materials.  

 

The mechanical properties of the films were measured by a universal mechanical tester 

(Instron, Model 5566, USA) according to the ASTM Standard Method D 882-91 (ASTM, 

1995). Dumbbell-shaped specimens of 50 mm long with a neck of 28 and 4 mm wide  

(Figure 3.1) were used. The measurements were carried out at 23oC and 50% relative 

humidity. The crosshead speed was fixed at 50 mm/min. A minimum of five specimens 

were tested for each sample and the average was obtained. 

 

 

 

 

 

Figure 3.1. A schematic diagram of a specimen 

4 mm 

20 mm 

28 mm 

50 mm 
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3.3.6  Thermal studies 

Thermal analysis provides valuable information regarding toughness, stability and 

miscibility in blends. In this work, two techniques have been employed as follows: 

  

Thermogravimetric measurements (TGA) 

In this work, TGA was used to evaluate the thermal stability and to determine the 

decomposition temperature of chitosan and its blends. Thermogravimetric measurements 

were performed using a Mettler-Toledo thermogravimetric analyzer model 

TGA/SDTA851e. TGA runs were carried out in a temperature range of 30-500oC, under 

nitrogen atmosphere, and with a constant heating rate of 10oC per minute in all the 

experiments. The sample size of 4-10 mg was weighed and the mass of the sample pan was 

continuously recorded as a function of temperature. 

 

Differential scanning calorimetry measurements (DSC) 

DSC studies were performed using a DSC Mettler Toledo (model. DSC822e). The samples 

were scanned under a nitrogen atmosphere at a constant rate of 10oC/min. The experiment 

consisted of two runs. The first run was performed in heating range of 40oC to 500oC and 

the second one was from 40oC to 350oC, after heating up to 200oC and cooling to 40oC to 

eliminate the effect of moisture. 

 

3.3.7  Degree of swelling 

The swelling behavior of the films was measured by immersing the blend films in distilled 

water at room temperature for 10 h. The excess water on the surface of the films was 

removed by blotting the surface with tissue paper, and the weight was then recorded. This 
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process was repeated at least three times for each sample. The degree of swelling was 

calculated using the following equation: 

 

Degree of swelling (%) = [(W2-W1)/ W1 ]x 100 

 

Where, W1 is the weight of completely dried sample and W2 is the weight of swelled 

sample. 

 

3.3.8  Contact angle measurements 

The static water contact angles of the films were measured at room temperature by the drop 

method using an optical contact angle meter CAM 200 (KSV Instruments Ltd, Helsinki, 

Finland) to examine the surface wettability of the films. The substrates used for the 

experiments were glass microscope slides (25.4 × 76.2 mm, 1-1.2 mm thick). Each slide 

was cleaned before use by soaking in ethanol overnight. 7 µ L of distilled water was 

carefully injected on the film surface before measuring and the measurement time was 24 

second. The contact angles were measured on both sides of the drop and averaged. Each 

reported contact angle was the mean value of at least 10 measurements. 
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4.0  Chapter 4: Results and discussion (rheology of the blended solutions)  
 
4.1  General introduction 

The results and discussion is divided into four chapters: (i) Chapter 4 deals with the 

rheology of the three types of polymer blended solutions (CS/AG, CS/PVA and 

CS/AG/PVA). It also includes the investigation of some parameters affecting the rheology 

of these blended solutions and the calculation of the viscous flow activation energies for the 

blend concentration to study the compatibility of the polymers (ii) Chapter 5: The blended 

films of CS/AG are characterized by employing FTIR, SEM, thermal studies, mechanical 

tests, swelling test together with the contact angle measurements and the obtained results 

are interpreted and analyzed (iii) Chapter 6 which includes the characterization of blending 

of natural and synthetic polymers (CS/PVA) using the same techniques mentioned in 

chapter 5 and (iv) Chapter 7 in which the ternary blended films of the three polymers 

(CS/AG/ PVA) with various blend ratios are characterized by employing the same 

techniques mentioned in chapter 5 and 6.  

 
 
4.2  Rheological study of chitosan blended solutions 
 
 
4.2.1  Rheological study of chitosan/agar blended solutions 
 
The effect of temperature on the shear viscosity of chitosan/agar blended solutions. 
 
In this study, the shear rate-dependent viscosity of CS/AG blended solutions as a function 

of shear rate at various temperatures in the range of 45 to 55oC is shown in Figure 4.1(a-g). 

Higher temperatures were not applied in order to avoid thermal degradation of the polymers 

and solvent evaporation while lower temperatures could not be applied due to the gel 

formation in some CS/AG blended solutions. The behavior of the viscosity–temperature 

interrelationship for these blends showed a decrease in the viscosity with an increase in the 
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temperature, which is consistent with many polymer solutions. Also, a Newtonian behavior 

(in which the relation between the shear stress or apparent viscosity and the shear rate is 

linear) was observed at all temperatures for the ratios 100/0, 90/10, 80/20 and 70/30. 

However, the increase in shearing viscosity and the appearance of shear thinning behavior 

were clearly noticed for the ratios of 60/40 and 50/50. It is expected that the increase in 

viscosity for CS/AG blends and the appearance of a clear shear thinning behavior is 

attributed to the formation of hydrogen bonding due to the interaction among the functional 

groups of CS and AG (–OH and –NH2 groups in CS and –OH groups in AG). 

 

Figure 4.1 also show the effect of temperature on the shear stress of CS/AG blended 

solutions as a function of shear rate. Shear stress increased with increasing shear rate for all 

ratios. At the same shear rate, shear stresses were higher at lower temperatures. In addition, 

the increases in shear stress with increasing shear rate were found to be more remarkable at 

lower temperatures. From the graph it is clear that only the ratios 60/40 and 50/50 exhibit 

pseudoplastic non-Newtonian behavior (where the rate of shear is not proportional to the 

corresponding shear stress or apparent viscosity). The results of pure CS solution obtained 

are in good agreement with previous studies (Desbrieres, 2002). In addition, these figures 

indicate that the temperature has more effect on the solutions at lower shear rate values, i.e., 

the viscosity increase associated with temperature is less important at high shear rates. 

Similar behavior was also reported in the literature for pure CS solutions (Delben et al, 

1990). 
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Figure 4.1: The apparent viscosity and shear stress versus shear rate at various temperatures  
of: (a) pure CS, (g) pure AG and their blended solutions with various proportions: (b) 
(90/10), (c) 80/20, (d) 70/30, (e) 60/40 and (f) 50/50. 
 
. 
 

The relationship between apparent viscosity (determined at a constant shear rate) and 

temperature for CS/AG blends and the pure components is demonstrated in Figure 4.2.  

Linear relationships can be observed (Table 4.1) whereby the viscosity of the blended 

solutions decreases with increasing temperature, i.e., it is a strong function of temperature. 

It can also be noted that the most effected solution by temperature is the pure agar solution 

followed by the ratio of 50/50. Detailed equations of the viscosity-temperature correlations 

are given in the appendix.   

 

The viscosity values obtained at a constant shear rate can be correlated with temperature 

according to the Arrhenius equation:  

 

                                                                           η = A . e-Ea/RT                                                                (4.1) 
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where A is a constant related to molecular motion, Ea is the activation energy for viscous 

flow at a constant shear rate, R is the gas constant and T is the absolute temperature in K. A 

plot of ln viscosity versus reciprocal of temperature (1/T) should produce a straight line and 

from its slope the Ea was calculated. Knowing the activation energy is important in 

deducing the sensitivity of a process towards temperature (Turhan and Gunasekaran, 2002). 

The higher the activation energy, the more sensitive is the process to temperature. The 

activation energy is also useful for signifying the minimum amount of energy required for 

the reactants to start a reaction (Fogler, 1999). The lower the activation energy, the faster 

the reaction will proceed. Figure 4.3 shows the Arrhenius plots for various proportions of 

CS/AG blended solutions. Linear relationships can be observed. The values of the apparent 

activation energy are presented in Table 4.2. 

 

The value of the activation energy of pure CS is in accordance with the reported values. For 

example, Wang and Xu (1994) reported that the activation energy varies from 25 kJ mol-1 

when DD is 91% to 15 kJ mol-1 when DD is 75% for a chitosan concentration of 20 g L-1 

(in 0.2 M AcOH/0.1 M AcONa). Desbrieres (2002) reported values of activation energy at 

zero shear rate vary from about 15 to 37 kJ mol-1 for a chitosan concentration in the range 0 

- 40 g L-1 (solvent, 0.3 M AcOH/0.05 M AcONa).  
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Figure 4.2: The relationship between the apparent viscosity and the temperature of the pure  
                   CS, pure AG and their blended solutions having various ratios at a constant  
                   shear rate.  
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              Figure 4.3: The Arrhenius plot of ln η versus 1/T for the pure CS, pure AG and  
                                 their blended solutions having various ratios. 
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Table 4.1: Relationship between the R2 and the blend concentration. 
 

Blend ratio (CS/AG) R2 
100/0 0.9821 
90/10 0.9869 
80/20 0.9796 
70/30 0.9567 
60/40 0.9934 
50/50 0.9972 
0/100 0.9398 

 
 
 

Table 4.2: The values of the activation energy of CS, AG and their blended solutions at 
different ratios. 

 
Blend ratio 

CS/AG 
Viscous flow activation 
energy, Ea (kJ mol-1) at 

6.15 s-1 
100/0 16.79 
90/10 13.30 
80/20 12.30 
70/30 12.97 
60/40 28.27 
50/50 17.29 
0/100 35.41 

 
 
 
 
 
The effects of shearing and storage time on the apparent viscosity of CS/AG blended 
solutions. 
 
Viscosity measurements were performed as a function of shear rate for time intervals of 15, 

30, 45, 60 and 75 seconds at 40oC to study the shearing time effect as shown in Figure 4.4 

(a-g) (it was difficult to study the effect of shearing time for the pure AG due to its random 

behavior at this temperature). At all shearing times, CS/AG blended solutions exhibited 

similar behavior and no significant change was observed with the exception of the ratio 

50/50 and the pure AG solution whereby increasing in shearing time led to a decrease in the 

shearing viscosity and shear stress in general. In addition, different behaviors were 
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observed for the blended solutions when the period of storage was extended to three weeks 

at a constant shear rate (Figure 4.5). Pure CS showed gradual increase in the viscosity while 

a drop in viscosity from about 130 to 35 cP was recorded within the first week for pure 

agar, after which it decreased gradually. However, all CS/AG blended solutions recorded a 

big increase in viscosity within the first and second weeks while a different trend was 

observed in the third week. The rapid increase in viscosity with time may indicate that 

some strong interactions have taken place among the chains of the two polymers. 
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Figure 4.4: The apparent viscosity and shear stress versus shear rate at various shearing 
times of: (a) pure CS and CS/AG blended solutions with various proportions: (b) (90/10), 
(c) 80/20, (d) 70/30, (e) 60/40 and (f) 50/50 at 40oC. 
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Figure 4.5: The effect of storage time on the apparent viscosity (determined at a  
                   constant shear rate) of  pure CS, pure AG and their blended solutions (SD is  
                   very small). 
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4.2.2   Rheological study of chitosan/PVA blended solutions 
 
The effect of temperature on the shear viscosity of chitosan/PVA blended solutions. 
 
The shear rate-dependent viscosity of CS/PVA blended solutions as a function of the shear 

rate at a temperature range of 45 to 55oC is presented in Figure 4.6 (a-g). Similar to that of 

CS/AG blended solutions, the behavior of the viscosity–temperature interrelationship for 

these mixtures show a decrease in the viscosity with the increase in the temperature. 

However, the Newtonian behavior was observed at all temperatures studied for all ratios. 

These results do not suggest any kind of interaction between the two components. Figure 

4.6 also shows the effect of temperature on the shear stress of CS/PVA blended solutions as 

a function of shear rate. The shear stress increased with increasing shear rate for all ratios. 

At the same shear rate, shear stresses were higher at lower temperatures. In addition, an 

increase in shear stress with increasing shear rate was found to be more significant with the 

gradual decrease in the temperature within the investigated range. From the graph it is clear 

that all of the solutions exhibit Newtonian behavior at the mentioned range of temperature. 

This figure also indicates that the temperature effect is more profound in the solutions at 

lower shear rate values. 
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Figure 4.6: The apparent viscosity and shear stress versus shear rate at various temperatures  
of: (a) pure CS, (g) pure PVA and their blended solutions with various proportions: (b) 
(90/10), (c) 80/20, (d) 70/30, (e) 60/40 and (f) 50/50. 
 
 

 

The relationship between shear viscosity (determined at a constant shear rate) and 

temperature for CS/PVA blended solutions and their pure components is demonstrated in 

Figure 4.7. This plot shows linear relationships (Table 4.3) whereby the viscosity of the 

blended solutions decreases with increasing temperature, i.e., it is a strong function of 

temperature. It can also be noted that the most affected solution by the temperature, with 

respect to viscosity, is the pure CS solution while the lowest affected one is the pure PVA 

solution. This indicates that increasing PVA concentration mostly reduces the sensitivity of 

the obtained blended solutions towards temperature.  

 

The viscosity values of the CS/PVA blended solutions obtained at a constant shear rate can 

be also correlated with temperature according to the Arrhenius equation. Figure 4.8 shows 

the Arrhenius plot for various proportions of CS/PVA blended solutions. This graph also 
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shows linear relationships between η and 1/T. The values of the apparent activation energy 

are shown in Table 4.4. As it can be seen in Table 4.4, all the blended solutions have lower 

values of Ea comparing to the pure components, which reflects high possibility of 

compatibility between the two polymers.  

 

0

2

4

6

8

10

12

14

16

35 40 45 50 55 60

Temperature/oC

A
pp

ar
en

t 
vi

sc
os

ity
/c

P

pure CS
90/10
80/20
70/30

60/40
50/50
pure PVA

 
 
Figure 4.7: The relationship between the apparent viscosity and the temperature of the  
                   pure CS, pure PVA and their blended solutions at various ratios at a constant  
                   shear rate. 
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Figure 4.8: The Arrhenius plot of ln η versus 1/T for the pure CS, pure PVA and their  
                   blended solutions having various ratios. 
 
 
 

Table 4.3: Relationship between the R2 and the blend concentration. 
 

Blend ratio (CS/PVA) R2 
100/0 0.9821 
90/10 0.9966 
80/20 0.9973 
70/30 0.9973 
60/40 0.9615 
50/50 0.9818 
0/100 0.8824 

 
 
Table 4.4: Values of the activation energy of chitosan, PVA and their blended solutions at 

different ratios. 
 

Blend ratio 
(CS/PVA) 

Viscous flow 
activation energy, Ea 
(kJ mol-1) at 6.15 s-1 

100/0 16.80 
90/10 16.30 
80/20 15.63 
70/30 15.63 
60/40 16.63 
50/50 14.13 
0/100 19.29 



 71 

The effects of shearing and storage time on the apparent viscosity of CS/PVA blended 
solutions. 
 
The viscosity measurements were performed as a function of shear rate for 15, 30, 45, 60 

and 75 seconds at 40oC to study the shearing time effect (Figure 4.9). At all shearing times, 

CS/PVA blended solutions exhibit similar behavior and no significant change was 

observed. In addition, when the period of storage was extended to three weeks at a constant 

shear rate, a general decrease in viscosity was observed as the PVA content increases 

(Figure 4.10). Pure chitosan showed gradual increase in the viscosity as a function of time 

while almost a constant value of viscosity was recorded for pure PVA. However, all 

CS/PVA blended solutions recorded a decrease in the viscosity as the period of time was 

extended to three weeks in general. These results suggest the absence of any interaction 

between the two polymers in the mixtures. This could be due to the chitosan dominating the 

blends with PVA making them to behave similar to pure chitosan. This is attributed to the 

bulk molecular structure with high viscosity of CS compared to the unbranched linear 

structure with low viscosity of PVA.  
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Figure 4.9: The apparent viscosity and shear stress versus shear rate at various shearing        
times of: (a) pure CS, (g) pure PVA and their blended solutions with various proportions: 
(b) (90/10), (c) 80/20, (d) 70/30, (e) 60/40 and (f) 50/50 at 40oC. 
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               Figure 4.10: The effect of storage time on the shearing viscosity (determined  
                                    at a constant shear rate) of pure CS, pure PVA and their blended  
                                    solutions (SD is very small). 
 
 
 
 
 
 
 
4.2.3   Rheological study of chitosan/agar/ polyvinyl alcohol ternary blended solutions 
 
The effects of temperature on the shear viscosity of CS/AG/PVA ternary blended 
solutions. 
 

The shear rate-dependent viscosity of CS/AG/PVA blended solutions as a function of shear 

rate at a temperature range of 45oC to 55oC is presented in Figure 4.11. The Newtonian 

behavior is observed at all temperatures for the ratios 90/05/05 and 80/10/10. However, the 

increase in shearing viscosity and the appearance of shear thinning behavior begin to 

appear at the ratio 70/15/15 and it is more clearly at higher compositions of agar and PVA. 

It is expected that the increase in viscosity for CS/AG/PVA blends is attributed to the 

formation of hydrogen bonding due to the interaction among the functional groups of CS, 

AG and PVA (–OH and –NH2 groups in CS, –OH groups in AG and –OH groups in PVA). 
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The effect of temperature on the shear stress of CS/AG/PVA blend solutions as a function 

of shear rate is also shown in Figure 4.11. There is an increase in shear stress with 

increasing shear rate for all ratios. At the same shear rate, shear stresses were higher at 

lower temperatures. In addition, it is clear from the graph that only the proportions 

70/15/15, 60/20/20 and 50/25/25 exhibit pseudoplastic non-Newtonian behavior. 
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Figure 4.11: The apparent viscosity and shear stress versus shear rate at various 
temperatures  of: (a) pure CS and its blended solutions with AG and PVA at various 
proportions: (b) (90/05/05), (c) 80/10/10, (d) 70/15/15, (e) 60/20/20 and (f) 50/25/25. 
 

 

The relationship between the shearing viscosity (determined at a constant shear rate) and 

temperature for CS/AG/PVA ternary blended solutions is demonstrated in Figure 4.12. This 

graph shows a nearly linear relationship (Table 4.5) whereby viscosity of the blended 

solutions decreases with increasing temperature, i.e., it is a strong function of temperature. 

It can also be noted that the most effected ratios by temperature are 6/20/20 and 50/25/25. 

 

The variation of viscosity dependent on temperature at a constant shear rate can be 

evaluated according to the Arrhenius equation. Figure 4.13 presents the Arrhenius plot for 

various proportions of CS/AG/PVA solution mixtures. This graph also shows linear 

relationships. The values of the apparent activation energy are shown in Table 4.6. As the 

concentrations of agar and PVA were increased, the activation energy was decreasing until 

the ratio of 70/15/15, after which the activation energy started increasing to reach 20.8 kJ 

mol-1 for the ratio 50/25/25.  
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Figure 4.12: The relationship between the apparent viscosity and the temperature of  
                           Pure CS and CS/AG/PVA ternary blended solutions having various ratios  
                           at a constant shear rate.  
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             Figure 4.13: The Arrhenius plot of ln η versus 1/T for pure CS and CS/AG/PVA 
                                  ternary blended solutions having various ratios. 
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Table 4.5: The relationship between the relation coefficient (R2) and the blend 
concentration. 

 
Blend ratio 

CS/AG/PVA R2 

100/0/0 0.9821 
90/05/05 0.9964 
80/10/10 0.9553 
70/15/15 0.9912 
60/20/20 0.9873 
50/25/25 0.8648 

 
 

Table 4.6: The values of the activation energy of chitosan and its blended solutions at 
different ratios. 

 
Blend ratio 

(CS/AG/PVA) 
Viscous flow activation energy, Ea (kJ 

mol-1) at 6.15 s-1 
100/0/0 16.80 

90/05/05 16.13 
80/10/10 11.31 
70/15/15 9.15 
60/20/20 16.13 
50/25/25 20.80 

 
 
 
 
The effects of shearing and storage time on the apparent viscosity of CS/AG/PVA ternary 
blended solutions. 
 
The effect of shearing time on the apparent viscosity was studied using various amounts of 

the components for 15, 30, 45, 60 and 75 seconds at 40oC in order to study the shearing 

time effect (Figure 4.14). For the ratios 90/05/05 and 80/10/10, no significant changes were 

observed and the apparent viscosity remained almost constant at all shearing times applied. 

However, the ratios 70/15/15 and 60/20/20 exhibited increasing in the apparent viscosity 

with increasing shearing time in general, and the solutions became pseudoplastic. This 

behavior is more obvious for the proportion 50/25/25. Fluids that exhibit increasing in the 

apparent viscosity with increasing shearing time at a constant shear rate are known as 

rheopectic (Al-Asheh et al, 2002). In addition, different behaviors were observed for the 
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ternary blended solutions when the period of storage was extended to three weeks at a 

constant shear rate (Figure 4.15). The pure CS solution showed gradual increase in 

viscosity with time while the proportions 90/05/05 80/10/10, 70/15/15 and 60/20/20 

recorded a drastically increase in viscosity within the first week and different in the second 

and third weeks. However, the blended ratio 50/25/25 recorded the highest value of 

viscosity (132cP) within the first week, after which the viscosity dropped into about 45cP. 

This may suggest that the solutions should be used within the first week before starting 

losing their viscosity. The rapid increase in viscosity with time may indicate that some 

strong interactions have taken place among the chains of the three polymers. 
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Figure 4.14: The apparent viscosity and shear stress versus shear rate at various shearing  
times of: (a) pure CS and its blended solutions with AG and PVA at various proportions: 
(b) (90/05/05), (c) 80/10/10, (d) 70/15/15, (e) 60/20/20 and (f) 50/25/25 at 40oC. 
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 Figure 4.15: The effect of storage time on the apparent viscosity (determined at a   
                      constant shear rate) of pure CS and CS/AG/PVA ternary blended solutions. 
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5.0  Chapter 5: Characterizations of chitosan/agar (CS/AG) blended films 
 

5.1  FTIR Analysis 

5.1.1  FTIR Analysis of the pure components 

Figure 5.1 shows a typical spectrum of pure CS film. The broad band at 3367 cm-1 is due to 

the OH stretching. The band at 1561 cm-1 is assigned for the NH bending (amide II) (NH2) 

while the small peak at 1647 cm-1 is attributed to the C=O stretching (amide I) O=C-NHR. 

The bands at 2927, 2884, 1411, 1321 and 1260 cm-1 are assigned to CH2 bending due to 

pyranose ring (Pawlak and Mucha, 2003). The band at 1380 cm-1 is due to CH3 wagging. 

The characteristic features of chitosan spectrum in this study are similar to previous reports 

(Nunthanid et al, 2001; Ritthidej et al, 2002; Xu et al, 2005). 

 

The FTIR spectrum of AG film is shown in Figure 5.2. The absorption band at about 3400 

cm-1 is associated with O-H stretching (Tako et al, 1999) while the peak at 2900 cm-1 is 

attributed to methoxyl groups (Armisen and Galatas, 1987). The band at around 1643 cm-1 

is due to the stretching of the conjugated peptide bond formed by amine (NH) and acetone 

(CO) groups (Cristiaen and Bodard, 1983). The peak at 1373 cm-1 is assigned to ester 

sulfate (Armisen and Galatas, 1987) and the bands at 1070 and 930 cm-1 are associated with 

the 3,6-anhydro-galactose bridges (Chirapart et al, 1995). 
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     Figure 5.1: Typical FTIR spectrum of pure CS film. 
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       Figure 5.2: Typical FTIR spectrum of pure AG film. 
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5.1.2  FTIR Analysis of CS/AG blended films        

Figure 5.3 shows the FTIR spectra of CS and AG blended films containing various AG 

proportions and their corresponding pure films. Typical features of CS and AG according to 

the summary of characteristic bands presented in Table 5.1 can be observed. The increase 

in the AG concentration in the blended films caused a decrease in the intensity of the band 

arising from the NH bending (amide II) at 1561 cm-1 of CS. This was coupled with a 

similar decrease in the absorbance band at 1411cm-1 and an increase in the band absorbance 

at 1380 cm-1. Furthermore, the spectra of blended films were marked by the disappearance 

of the intensive band at 1033 cm-1 that was obviously observed the pure CS film and 

CS/AG blends containing AG concentration of 10%. This is due to the fact that mixing of 

two or more polymers brings about changes in characteristic spectra peaks caused by the 

reflection of the physical blends and chemical interactions (Guan et al, 1998; Yin et al, 

1999). These observations indicate the existence of good miscibility between chitosan and 

agar and this is most likely due to the formation of hydrogen bonds between the amino and 

hydroxyl groups in CS and the hydroxyl groups in AG.  
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Figure 5.3: Typical FTIR spectra of pure chitosan and pure agar together with their blended  
                  films having various proportions  
 
 
 
 

Table 5.1: FTIR characteristic bands (cm-1) of chitosan/agar blended films with different 
proportions and their pure components. 

 
CS/AG 
       (%) OH                                                 C=O 

(amide I) 
    NH 
(amide II) 

   CH 
(amide II) C-C C-O 

100/0 3368 1647 1561 1411 1380 1033 
90/10 3368 1647 1559 1412 1379 1035 
80/20 3371 1651 1558 1411 1379 - 
70/30 3368 1646 1559 1411 1379 - 
60/40 3371 1647 1560 1412 1378 - 
50/50 3379 1647 1559 1417 1376 - 
0/100 3400 1643 - 1409 1373 - 
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5.2  SEM measurements 

Figure 5.4 shows the SEM micrographs of surfaces of CS/AG blended films containing 

different proportions with the corresponding pure components. As can be seen, chitosan 

film shows smooth and homogeneous surface with some parallel straps unlike that of pure 

agar which exhibits rougher surface. The surfaces of the blended CS and AG films seem to 

have no interface layer and more homogeneous than that of pure CS and AG ones. This 

confirms that CS and AG are highly compatible. The formation of homogeneous blends of 

CS and AG was mostly caused by the formation of hydrogen bonds between the functional 

groups of the blend component (–OH and –NH2 groups in CS and –OH groups in AG). 

 

 

 
                                      (a)           (b) 

 
 (c)                                                           (d) 
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                                       (e)                                                            (f) 

 
                                                                       (g) 
Figure 5.4: The scanning electron micrographs of: (a) pure CS and (b) pure AG films  
                   together with their blended films with various proportions: (c) 90/10, (d) 80/20,  
                   (e) 70/30, (f) 60/40 and (g) 50/50. 
 
 
 
 
5.3  Tensile strength and elongation % at break 
 
The variation of tensile strength and the elongation % at break of the CS/AG blended films 

with different agar proportions are shown in Figures 5.5 and 5.6. It was found that pure CS 

film recorded the highest value of tensile strength, i.e., 25.0 MPa as expected. As the 

amount of AG increased, the tensile strength decreased substantially until agar content 

reached 30% in the blended film wherein it remains almost constant. The elongation % 

dropped from 52.5% for pure CS film to 24.3% for 80/20 CS/AG blended film after which 

it remains nearly constant despite increasing the AG content. This indicates that the blended 

films were found to be more brittle than pure CS film. However, the reduction in both 
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tensile strength and elongation% at break in the blended films is considered to be 

acceptable taking into consideration the nature of the two blended polysaccharide polymers. 

The reduction in both mechanical properties investigated in this work is most likely caused 

by the disruption in the crystallinity of the CS accompanied the intermolecular interactions 

of AG with chitosan with increasing AG content. The absence of significant changes in the 

mechanical properties when more than 30% of AG was blended with CS suggests the 

presence of possible crystalline structure dilution without considerable disruption in CS 

crystallinity. Similar behavior was reported in the literature for CS associated with other 

polymers such as polyethylene oxide (PEO). For example, Zivanovic et al. (2007) reported 

a general decrease in tensile strength and elongation % for CS/PEO blends as the PEO 

concentration increased. Costa-Junior et al. (2009) reported that CS/PVA blends exhibited 

intermediate mechanical properties between the pure components. 
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              Figure 5.5: Tensile strength of chitosan/agar blended films versus agar content (0%  
                                  = pure CS and 100% = pure AG) (pure agar and chitosan films are  
                                  included as references). 
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             Figure 5.6: Elongation % of chitosan/agar blended films versus agar content (0% =  
                                pure CS and 100% = pure AG) .  
 

 

 

5.4  TGA measurements 

5.4.1  TGA of pure components 

Figure 5.7 shows the results of thermogravimetric analysis of pure chitosan film. Two 

weight loss transitions are observed in the TGA curve of pure CS. The first transition is in 

the range of 40 - 130ºC and shows about 6% loss in weight. This is thought to be due to the 

moisture vaporization. The second weight loss begins at about 150oC and the corresponding 

weight loss of about 52%, is attributed to the decomposition of chitosan polymer chanes. 

The total weight loss of the sample at about 500oC is 58%. The remaining residue of the 

film which equals 42% is mostly due to the formation of inorganic complex containing C, 

N and O. Similar behavior of chitosan film was reported in the literature (Liu et al, 2002; 

Britto and Campana-Filho, 2004; Chen et al, 2008b). 
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The TGA curve of AG film showed two distinct zones within the range of investigated 

temperatures (Figure 5.8). The initial slight loss in the weight (about 5% and continue up to 

130oC) is attributed to the loss of water. This followed by a rather sharp break at around 

210oC indicates the onset of a decomposition process involving a rapid loss in weight 

(around 61% at 500oC). These results are also in agreement with previous studies reported 

in literature (Athawale et al, 1999; Kurose et al, 2004). 
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                  Figure 5.7: TGA curve of pure chitosan film. 
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                  Figure 5.8: TGA curve of pure agar film. 
 
 
 
 
5.4.2 TGA of CS/AG blended films 

Figure 5.9 shows the results of thermogravimetric analysis of CS/AG blended films and 

their pure components and the data of the TGA of all films are summarized in Table 5.2. 

From the table, it is clear that the blended film with ratio 80/20 showed the lowest amount 

of water content unlike films containing higher ratios, which showed higher water content 

compared to their pure components. This trend indicates that an increase in the 

hydrophilicity of the blended films took place, which might be caused by a slight 

deterioration in crystallinity of CS. It can also be noted that the ratio of 80/20 has the lowest 

weight loss almost at all temperatures studied indicating better thermostability. The 

continuous degradation observed in TGA curves of blended films together with the absence 

of any phase separation confirms that CS and AG form highly compatible blends. This is 
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highly associated with the interactions between AG and CS through hydrogen bonding 

formation between their functional groups (–OH and –NH2 groups in CS and –OH groups 

in AG) (Wu et al, 2008). 
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Figure 5.9: TGA curves of chitosan/agar blended films and their pure components. 
 
 
 
 
 

Table 5.2: The weight loss (%) of the pure chitosan and agar films together with their 
blended ones having various ratios at different temperatures. 

 
Temperature 

(oC) Pure CS 90/10 80/20 70/30 60/40 50/50 Pure AG 

100 5.7 6.5 3.6 6.7 5.3 7.4 4.4 
200 7.9 8.7 6.9 10.6 8.5 10.7 5.5 
300 30.4 31.8 29.7 35.5 34.8 37.6 37.1 
400 53.5 52.2 49.6 54.8 53.5 57.4 55.6 
500 58.3 57.2 55.1 61.0 59.0 64.4 60.8 
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5.5  DSC measurements 

Figure 5.10 shows the DSC curves obtained from the first run of the pure CS and pure AG 

films together with their blended films having various ratios. The DSC curve of CS film 

shows a broad endothermic peak at around 79oC while AG film shows a smaller 

endothermic peak at about 75oC. All compositions exhibited a broad endothermic peak at 

different positions ranging from about 75 to 84oC (Table 5.3). Some endothermic peaks 

were reported in the literature for CS film. For example, Lima et al. (2006) and Wang et al. 

(2003) reported an endothermic peak of CS film at 60.75 and 83oC for fully deacetylated 

CS and 85% deacetylated one respectively. As for pure AG, Eldridge and Ferry (1954) 

demonstrated that AG film exhibits an endothermic peak at around 90oC while Lyons et al. 

(2009) found that the AG film shows an endothermic peak at 110oC, which is higher than 

the usual reported value. Also, Suzuki et al. (2001) reported endothermic peaks of three 

kinds of AG gel at different temperatures ranging from 75 to 90°C. According to some 

reports, this endothermic peak is related to the melting temperature (Nugraha et al, 2004). 

However, it is often termed as dehydration temperature (TD), which is attributed to the 

evaporation of water associated with the hydrophilic groups of the polymers  (Gonzalez et 

al, 2000, Cheung et al, 2002) and reflects the strength of water–polymer interaction 

(Sakurai et al, 2000, Kittur et al, 2002). This suggests that some bound water was still not 

removed from the samples when dried in the desiccator. These endothermic peaks were 

absent in the second run curve (Figure 5.11) which confirmed that this peak is attributed to 

the water associated with the polymer function through hydrogen bonding. A closer look of 

Figure 5.10 reveals that there is a difference in the endothermic peak area for the films, i.e., 

they vary in their water-holding capacity, showing that the blended films have higher water 

content in general than the pure components. This could be due to the formation of new 

hydrophilic centers (Neto et al, 2005). Another point to be noted is that all films with 
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various ratios have values of TD close to that of the pure polymers except for the ratio 

60/40, which shows a higher value. The shift in the peak position to a higher temperature 

indicates a stronger interaction with water. It is believed that this variation on the position 

and peak area is due to the physical and molecular changes caused by blending of the two 

poymers. These results suggest that the presence of an interaction between CS and AG may 

occur to form films with better thermostability.  

 

With respect to the glass transition temperature (Tg) of CS, various values were reported in 

literature ranging from -23 to 220oC (Ogura et al, 1980, Pizzoli et al, 1991; Ratto et al, 

1995; Sakurai et al, 2000; Nugraha et al, 2004; Lazaridou and Biliaderis, 2005) as shown in 

Table 5.4. The variations in the values of Tg of CS is probably due to the difficulty in 

identifying it due to the presence of large amount of water (Chen et al, 2008b) that are 

involved in intra-and intermolecular hydrogen bonds in polymer chain (Cai and Kim, 

2008). In addition, being a natural polysaccharide, the source and the method of preparation 

of CS can influence its Tg (Neto et al, 2005). In this work, the Tg of CS and its blends could 

not be detected. 
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 Figure 5.10: The DSC first - run curves of the pure chitosan and pure agar films together  
                     with their blended films. 
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              Figure 5.11: The DSC second - run curves of the pure chitosan and pure agar films 
                                   together with their blended films. 
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Table 5.3: The thermal properties of the pure chitosan and pure agar films together with 
their blended films with different agar contents. 

 
Blend composition 

CS/AG 100/0 90/10 80/20 70/30 60/40 50/50 0/100 

TD (oC) 79.0 78.4 77.4 75.7 83.8 74.8 75.3 

∆H (J/g) 227.6 235.9 260.6 336.6 362.5 325.3 240.5 

 
 
 
 
 

Table 5.4: The values of Tg of the pure chitosan reported in the literature. 
 
Tg  (oC) 194 150 ~220 30 from -23 to 

67 
203 

Ref (Cheung et 
al, 2002) 

(Gonzalez 
et al, 2000) 

(Kittur et al, 
2002) 

(Sakurai et 
al, 2000) 

(Neto et al, 
2005) 

(Suzuki et 
al, 2001) 

 

 

5.6  Swelling behavior 

Figure 5.12 shows the degree of swelling of pure and blended films versus the AG content. 

As can be seen, all blended films showed higher degrees of swelling compared to pure CS 

film, indicating higher hydrophilicity. The swelling degrees of the blended films range from 

386 to 457 % while the swelling degrees of the pure CS and pure AG films are 89 and 

620%, respectively. This is because AG is a water-soluble polymer and the blending of CS 

with AG tends to increase the water uptake due to the increasing of hydrophilic groups (-

OH) in the blends and the associated high amorphous content. Similar behavior was 

reported for CS blended with the synthetic water-soluble polymer, PVA (Bahrami et al, 

2003; Wang and Gunasekaran, 2006) in which the water uptake was similarly found to 

increase with increase in PVA content. 
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        Figure 5.12: The degree of swelling of chitosan/agar blended films versus agar  
                             content (0% = pure CS and 100% = pure AG).  
 
 
 

 

5.7  Contact angle measurements (surface hydrophilicity) 

Figure 5.13 shows the relationship between the static water contact angle and the AG 

content for blended CS/AG films having various proportions. The plot shows that there is a 

general decrease in the static water contact angle with increasing the AG content in the 

blend i.e., the surface becomes more hydrophilic when the concentration of AG increases in 

the blend. The contact angle of pure CS was 88.12o±1.91, which in agreement with the 

literature (Tangpasuthadol et al, 2003; De Britto and Assis, 2007) while the contact angle 

of the blended films ranged from 88.41± 2.90 to 72.03o± 0.52. In general, the contact 

angles for all the blended films were less than 90o, indicating good hydrophilicity of the 

surfaces. 
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         Figure 5.13: The relationship between the water-contact angle and the agar content for     
                             chitosan/agar blended films having various proportions (0% = pure CS  
                             and 100% = pure AG).   
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6.0  Chapter 6: Characterizations of chitosan/poly (vinyl alcohol) 
(CS/PVA) blended films 
 

6.1 FTIR Analysis 

6.1.1  FTIR Analysis of the pure PVA film 

Figure 6.1 shows a typical FTIR spectrum of pure PVA film. As can be seen, there is an 

absorption peak at around 3368 cm−1, which refers to the intermolecular hydrogen bonding 

and –OH stretch vibration (Ahmad and Ooi, 2005). The vibrational band observed at 2941 

cm-1 is associated with the C-H stretching from alkyl groups. The absorption corresponding 

to the -C-O stretching occurs at 1096 cm-1. 
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Figure 6.1: Typical FTIR spectrum of pure PVA film. 
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6.1.2  FTIR Analysis of CS/PVA blended films 

Figure 6.2 shows the FTIR spectra of pure CS and pure PVA together with their blended 

films containing various PVA proportions. A summary of characteristic bands of chitosan 

and PVA blended films is also presented in table 6.1.  As can be seen, the increase in the 

PVA concentration in the blend films caused a decrease in the intensity of the band arising 

from the NH bending (amide II) at 1561 cm-1 of chitosan. Also, an increase in the intensity 

of CH group at around 2928 cm-1 was observed as the PVA content increases. In addition, 

there was a remarkable shift for the peak at 1077 cm-1 to a higher wave number with the 

increase of PVA content in the blend. Furthermore, the band at 850 cm-1 disappeared in the 

spectra of the pure chitosan film and the chitosan/PVA blend film containing PVA 

concentration of 10%. However, the intensity of this band was increasing for the other 

ratios as the content of PVA increased. This is attributed to the changes in characteristic 

spectra peaks, which occur after blending due to the reflection of the physical blends and 

chemical interactions (Guan et al, 1998; Yin et al, 1999). These observations indicate the 

existence of good miscibility between chitosan and PVA due to the formation of 

intermolecular hydrogen bonds between the amino and hydroxyl groups in chitosan and the 

hydroxyl groups in PVA. Similar observations were obtained for the CS/AG blend films 

mentioned in the previous chapter. 
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Figure 6.2: Typical FTIR spectra of pure chitosan and pure PVA together with their  
                   blended films having various proportions.  
 
 
 
 

Table 6.1: FTIR characteristic bands (cm-1) of chitosan/PVA blended films with different 
proportions and their pure components. 

 
CS/PVA 
    (%) C-C C-O C-O 

stretch CH NH 
amide II 

C=O 
(amide I)  CH OH 

100/0   - 1033 1077 1380 1561 1647   - 2928 3368 
90/10   - 1035 1077 1386 1559 1647 2360 2927 3367 
80/20 850 1035 1078 1379 1559 1647 2360 2935 3367 
70/30 851 1036 1079 1379 1559 1647 2360 2937 3367 
60/40 850 1039 1082 1380 1559 1647 2361 2939 3367 
50/50 851 1037 1087 1379 1559 1647 2360 2940 3367 
0/100 852    - 1096 1375    -     - 2360 2941 3368 
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6.2  SEM measurements  

The SEM images of the top surfaces of pure CS, pure PVA and CS/PVA blended films at 

different proportions are shown in Figure 6.3. As can be seen, CS film shows smooth and 

homogeneous surface with some straps on the top surface unlike that of pure PVA where 

no straps is seen. The surfaces of the blends of CS and PVA are homogeneous with no 

pores (Peng et al, 2007) and have no interface layer. However, the blended films also 

exhibit little flat smooth surfaces in general indicating the uniform distribution of CS and 

PVA molecules throughout the films. The formation of homogeneous blends of CS and 

PVA was mostly caused by the interactions of hydrogen bonds between the functional 

groups of the blended components. Similar observations were obtained for CS/AG blended 

films in the previous chapter. 

 
 
 

 
(a) (b) 

 
(c)                                                           (d) 
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                                       (e)                                                            (f) 

 
(g) 

 
Figure 6.3: The scanning electron micrographs of: (a) pure CS film and (b) pure PVA film  
                   together with their blended films with various proportions: (c) 90/10, (d) 80/20,  
                  (e) 70/30, (f)  60/40 and (g) 50/50 
 
 
 
 
 
6.3  Tensile strength and elongation % at break 

The tensile strength and the elongation % at break of the CS/PVA blended films with 

different PVA proportions are shown in Figures 6.4 and 6.5. It was found that almost all the 

CS/PVA blended film recorded higher values than the pure components. The blend 90/10 

recorded the highest value of tensile strength, i.e., 58.7 MPa, after, which the tensile 

strength decreased gradually as the amount of PVA increased. This shows that blending 

improves strength that increases with increasing PVA content up to 40%. This 

improvement in tensile strength is due to the interaction between –OH and –NH2 groups of 

CS and –OH groups of PVA (Kim et al, 1992). It was also found that the pure PVA 
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recorded the highest percentage of elongation and that all the blended films recorded lower 

percentage of elongation than the pure components. This indicates that the blended films 

were more brittle and less flexible than the pure components. Similar behavior was reported 

in the literature for CS associated with PVA. For example, Park et al. (2001c) reported that 

PVA/CS blended film cast from acetic acid recorded higher values of TS and lower % 

elongation than the pure polymers. Hyder and Chen (2009) and Bahrami et al. (2003) also 

reported similar behavior of PVA/CS blended films with respect to tensile strength. 

However, different trend was observed for CS/AG blended films in the previous chapter in 

which there was a decrease in the TS and  the elongation % with increasing AG content.  
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            Figure 6.4: Tensile strength of chitosan/PVA blended films versus PVA content  
                              (0%  = pure CS and 100% = pure PVA) 
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             Figure 6.5: Elongation % of chitosan/PVA blended films versus PVA content  
                               (0%  = pure CS and 100% = pure PVA) 
 

 

6.4  TGA measurements 

6.4.1  TGA of the pure PVA film 

Figure 6.6 showes the TGA curve of the pure PVA film. As it can be seen, the pure PVA 

film exhibits a three-step degradation pattern. The first step began around 40oC up to 79oC 

with a weight loss up to 3%. The second and the major mass loss is between around 260oC 

to 430oC with a weight loss of about 73%. This was followed by a further smaller mass loss 

(around 17%) in the third step (from about 430oC to 480oC). The first step of weight loss 

could be attributed to the evaporation of loosely bound water. The second step is 

predominantly caused by the heat decomposition of the polymer structure. With further 

heating, the polymer backbone is broken down. It was reported that the third weight loss of 

PVA is related to the production of degradation products generated by PVA during the 
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TGA thermal degradation process (Holland and Hay, 2001). Similar observations have 

been reported in literature (Shi et al, 2008; Zhou et al, 2009).  
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                    Figure 6.6: TGA curve of pure PVA film. 
 

 

 

6.4.2  TGA of CS/PVA blended films 

The representative TGA curves for the pure CS and pure PVA films together with their 

blended films at different ratios are shown in Figure 6.7. The weight loss data obtained 

from TGA for pure components and their blends are summarized in Table 6.2. It can be 

clearly seen that the blended film having CS/PVA ratio of 50/50 shows the lowest amount 

of water content unlike blended films containing other ratios, which show higher water 

content compared to the pure CS film. It can also be observed from figure 6.7 that all 

blends have only one onset indicating that interaction may take place between the two 
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components in each blend attributed to the formation of hydrogen bonding between the 

functional groups of the blended components. These observations show reasonable 

agreement with the CS/AG blended films. 
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Figure 6.7: TGA curves of chitosan/PVA blended films and their pure components. 
 
 
 
 
 

Table 6.2: The weight loss (%) of the pure chitosan and PVA films together with their 
blended ones having various ratios at different temperatures. 

 
Temperature 

(oC) Pure CS 90/10 80/20 70/30 60/40 50/50 Pure 
PVA 

100 5.7 6.1 6.9 6.3 6.2 3.9 3.1 
200 7.9 8.7 10.3 11.5 12.3 7.0 3.1 
300 30.4 32.7 35.6 39.0 38.7 31.0 7.1 
400 53.5 56.6 60.9 69.7 77.2 65.6 68.6 
500 58.3 61.3 67.1 76.8 6.3 74.9 92.8 
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6.5  DSC measurements 

Figure 6.8 shows the DSC curves obtained from the first run of the pure CS and pure PVA 

films together with their blended films having various ratios. The DSC curve of CS film 

shows a broad endothermic peak at around 79oC while PVA film shows a smaller 

endothermic peak at 89oC. All compositions exhibited a broad endothermic peak at lower 

position than the pure components ranging from about 70.3 to 77.3oC (Table 6.3). Taking a 

closer look at figure 6.8 reveals that there is a variation in their water-holding capacity, 

showing that the pure CS film has the highest water content while the pure PVA has the 

lowest water content. Another point to be noted is that all ratios have lower values of TD 

than the pure polymers. This variation on the position and peak area might be due to the 

physical and molecular changes caused by blending. These results suggest that the 

interaction between CS and PVA may occur to form more stable blend.  

 

Since polysaccharides are apt to absorb moisture, a second heating run of the DSC, after 

heating to 150oC, hold for a minute and then cooling to 40oC, was done to eliminate the 

effect of moisture (Figure 6.9). The first point to note is the disappearance of the 

endothermic peak, confirmed that this peak is attributed to the water content in the sample. 

Also, pure PVA film exhibited a sharp endothermic melting transition at 222°C while pure 

chitosan film did not show any melting transition due to the fact that most polysaccharides 

do not melt but degrade upon heating above a certain temperature. The melting point of 

PVA is close to the values reported in the literature. For example, Yang et al. (2004) 

reported a melting endothermic peak at 223oC which is very close to our value (222°C) 

while Shi et al. (2008) demonstrated that pure PVA film exhibits a melting temperature at 

230oC. Also Yang et al. (2008) reported a melting point of PVA hydrogel at 228.3oC. In 

addition, smaller peaks of melting transition at different temperatures appeared in the DSC 
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curves of CS/PVA blend films with various blend ratios from 90/10 to 50/50 ranging from 

215 to 217.3°C. This shows that there is a little shift of the endothermic melting transition 

to lower temperature with increasing chitosan content in the blends. This is because 

increasing the CS content in the blend reduces the PVA crystallinity, and therefore 

decreases the melting point of PVA. As a consequence, the melting depression in CS/PVA 

blends may indicate that the blends are miscible. The decrease in the melting point with 

increase in CS content in the CS/PVA blend has been reported in the literature (Khoo et al, 

2003; Lewandowska, 2005; Chen et al, 2007; Jia et al, 2007). 

 

These observations are in agreement with the results obtained from CS/AG blended films 

concerning the results obtained from the first run curves of DSC. However, no Tm for the 

CS/AG blended films could be obtained from the second heating run, which could be due 

to the fact that polysaccharides degrade but do not melt. 
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                    Figure 6.8: The DSC first - run curves of the pure chitosan and pure PVA films  
                                       together with their blended films. 
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        Figure 6.9: The DSC second - run curves of the pure chitosan and pure PVA films 
                           together with their blended films. 
 
 

 
 

Table 6.3: The thermal properties of the pure chitosan and pure PVA films together with 
their blended films with different PVA contents. 

 
Blend composition 

CS/PVA 100/0 90/10 80/20 70/30 60/40 50/50 0/100 

TD (first run) 79.0 
 75.0 77.3 70.3 70.3 72.6 89.0 

∆H (J/g) (first run) 227.6 369.4 389.6 326.2 297.1 223.4 ND 

Tm (second run) ND 
 214.9 214.9 217.3 217.3 217.3 221.9 

   ND = not detected 
 

 

6.6  Swelling behavior 

Figure 6.10 shows the degree of swelling of pure CS and pure PVA films together with 

their blended films at various ratios. All the blended films showed much higher degree of 

swelling comparing with the pure CS film, indicating their higher hydrophilicity. The 

degree of swelling for the blended films ranging from 1047 to 2117% while the degrees of 
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swelling for the pure CS and pure PVA films are 89% and 674%, respectively, which 

indicates that the swelling behavior is greatly influenced by the PVA content in the blend. 

This is because PVA is a water-soluble polymer and the blending of CS with PVA tends to 

increase the water uptake due to the increasing of hydrophilic groups (-OH) in the blends. 

Also, the PVA chains are physically entangled with the CS chains leading to the formation 

of a hydrogel network (Costa-Júnior et al, 2009). It was reported that the blending of CS 

with the synthetic water-soluble polymer, PVA (Bahrami et al, 2003; Wang and 

Gunasekaran, 2006) leads to an increase in the water uptake with increasing PVA content. 

These values are greater than those obtained from CS/AG blended films. 
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         Figure 6.10: The degree of swelling of chitosan/PVA blended films versus the PVA  

                              content (0% = pure CS and 100% = pure PVA).  
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6.7  Contact angle measurements  

Figure 6.11 shows the static water contact angle versus the PVA content. A general 

decrease in the static water contact angle with increasing the PVA content in the blend is 

observed i.e., there is an increase in the wettability with increasing the PVA concentration 

in the blend. The contact angle of the blended films ranged from about 70.47± 0.96 to 

80.02o± 2.27. In general, the contact angles for all the blended films were less than 90o, 

indicating good hydrophilicity of the surfaces. These observations are similar to that of the 

CS/AG blended films. 
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Figure 6.11: The relationship between the water-contact angle and the PVA content for     
                         chitosan/PVA blended films having various proportions (0% = pure CS  
                         and 100% = pure PVA).   
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7.0  Chapter 7: Characterizations of chitosan/agar/poly vinyl alcohol 

(CS/AG/PVA) ternary blended films 

 

7.1  FTIR analysis 

 The FTIR spectra of pure CS and CS/AG/PVA blended films at different proportions are 

shown in Figure 7.1. A summary of characteristic bands of pure CS and its blended films 

with AG and PVA is presented in Table 7.1. As can be seen, the FTIR spectra of the 

blended films contain the characteristics of the three components. The increase in the AG 

and PVA concentrations in the blended films caused a little decrease in the intensity of the 

band arising from the NH bending (amide II) at 1561 cm-1 of CS. Also, an increase in the 

intensity (with little shift to a higher wave number) of CH group at around 2928 cm-1 was 

observed as the AG and PVA contents increase. In addition, the band at about 933cm-1, 

which is attributed to the 3,6-anhydro-galactose bridges in agar (Chirapart et al, 1995), was 

disappeared in the spectra of the pure CS film and the CS/AG/PVA blended film containing 

AG and PVA concentrations of 10% each. However, the intensity of this band was 

increasing for the other ratios as the contents of AG and PVA increased. These 

observations indicate the existence of compatability among CS, AG and PVA, which is 

attributed to the formation of intermolecular hydrogen bonds between the amino and 

hydroxyl groups in CS and the hydroxyl groups in AG and PVA.  
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Figure 7.1: Typical FTIR spectra of pure chitosan and CS/AG/PVA blended films having  
                   various proportions.  
        
 
 
 

Table 7.1: FTIR characteristic bands (cm-1) of pure CS film and CS/AG/PVA ternary 
blended films having different proportions 

 

CS/AG/PVA 
(%) 

3,6-anhydro-
galactose 
bridges 

C-O C-O 
stretch 

NH 
amide 

II 

C=O 
(amide 

I) 
CH OH 

100/0 - 1033 1077 1561 1647 2928 3368 
90/05/05 - 1033 1077 1559 1647 2931 3367 
80/10/10 934 1033 1077 1559 1647 2935 3368 
70/15/15 934 1033 1077 1559 1647 2936 3368 
60/20/20 934 - 1077 1559 1648 2940 3368 
50/25/25 933 - 1076 1559 1648 2940 3368 
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7.2  SEM measurements  

The SEM micrographs of the pure CS film and the CS/AG/PVA blended films at different 

ratios are shown in Figure 7.2. All blended films displayed clear and homogenous surfaces 

with almost no pores nor interface layer. However, the ratio 50/25/25 showed a little 

rougher surface indicating more hydrophilic top surface than the other blended films. 

According to Chen et al. (2008b), such a rough surface could be due to the reorientation of 

polar functional groups toward the top surface of the ternary blended films. Based on these 

observations it can be concluded that all blended films were compatible at all ratios. 

Recently, the preparation and characterization of a ternary film of chitosan/poly (vinyl 

alcohol)/pectin have been reported by Tripathi et al. (2010). SEM micrographs showed that 

the surface of this ternary film is rough and heterogeneous with some immiscibility. Also, 

Chen et al. (2008b) reported the characterization of chitosan/poly (vinyl alcohol)/gelatin 

ternary blended films. SEM results showed that the top surface of the ternary blend film is 

hydrophilic with a slight roughness. Similar observations were obtained from CS/AG and 

CS/PVA blended films in the previous chapters. 
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(a)                                                             (b) 

 

 
(c)    (d) 

                                                             

                                       (e)                                                              (f) 
 
 
Figure 7.2: The scanning electron micrographs of of: (a) pure CS film together with its 
                   blended films at various proportions: (b) 90/05/05, (c) 80/10/10, (d) 70/15/15,  
                   (e) 60/20/20 and (f) 50/25/25. 
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7.3  Tensile strength and elongation % at break 

Figures 6.4 and 6.5 show the tensile strength and the elongation % at break of the pure CS 

film and its ternary blended films with AG and PVA at different proportions. As it can be 

seen, all the CS/AG/PVA ternary blended films recorded higher values of tensile strength 

than the pure CS. The tensile strength increased gradually as the amounts of AG and PVA 

increased until the ratio 60/20/20, which recorded the highest value of TS, i.e., 50.8 MPa, 

then the TS decreased slightly. This improvement in tensile strength could be due to the 

interaction between –OH and –NH2 groups of CS and –OH groups of AG and PVA. It was 

also found that the pure CS recorded a higher percentage of elongation than all the ternary 

blended films. This indicates that the ternary blended films were more brittle than the pure 

CS film. Similar observations were obtained from CS/PVA blended films unlike CS/AG 

blended films, which behave differently. 
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          Figure 7.3: Tensile strength of pure chitosan film and its ternary blended films with  
                             agar and PVA having various proportions. 
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           Figure 7.4: Elongation % of pure chitosan film and its ternary blended films with  
                              agar and PVA having various proportions. 
 
 
 

 

7.4  TGA measurements 

Figure 7.5 shows the TGA curves of the pure CS and CS/AG/PVA ternary blended films at 

different ratios. The ternary blended films show identical TGA curves (very close 

degradation behavior) marked by the presence of two weight losses in the temperature 

range of 40-500oC. The first weight loss, which appears at about 130oC is due to the 

moisture vaporization. The second weight loss, which starts at about 150oC and 

indiscriminately continues up to 500oC can be ascribed to the thermal degradation of the 

main chain scissions of CS, PVA, and AG. It can be also seen that all the blended films 

have only one onset degradation temperature trend regardless of composition indicating the 

existence of interactions among the three components in the blends (Wu et al, 2008). This 

behavior can be attributed to the formation of hydrogen bonding among the functional 
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groups present in the blend components. It can be suggested that the three components 

involved in the blended films, i.e., CS, AG, and PVA are highly compatible. It is 

noteworthy mentioning that the blended films did not undergo complete degradations at the 

end of the heating run due to the formation of complex residues containing C, N and O. 

These observations show a good agreement with the CS/AG and CS/PVA blended films 

reported in the previous chapters. The weight loss data obtained from TGA for these blends 

are summarized in Table 7.2.  
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Figure 7.5: TGA curves of pure chitosan film and  its ternary blended films with agar and  
                   PVA having different proportions. 
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Table 7.2: The weight loss (%) of the pure chitosan film and its ternary blended films with 
agar and PVAhaving various proportions at different temperatures. 

 
Temperature 

(oC) 
Pure 
CS 90/05/05 80/10/10 70/15/15 60/20/20 50/25/25 

100 5.7 7.0 7.5 9.3 8.9 7.7 
200 7.9 9.0 9.4 11.5 11.2 9.1 
300 30.4 33.1 33.9 36.6 36.4 32.56 
400 53.5 55.3 55.7 60.3 61.6 60.2 
500 58.3 60.7 61.3 66.0 68.4 67.7 

 

 

7.5  DSC measurements 

Figure 7.6 shows the DSC curve of the first run of CS film and its ternary blended films 

with AG and PVA having various proportions. The pure CS film shows a broad 

endothermic peak at about 79oC, which is attributed to the bound water in the film. The 

blended films exhibited broad endothermic peaks range from about 77.3 to 79.6oC (Table 

7.3). Figure 7.6 also shows that there is no much difference in the endothermic peak area of 

the films, i.e., they don’t vary much in their water-holding capacity. Another point to be 

noted is that all ratios have lower values of TD than the pure CS except the ratio 70/15/15 

which showed higher TD. This variation on the position could be due to the physical and 

molecular changes caused by blending of the three polymers.  

 

Figure 7.7 shows the second heating run of the DSC, which was conducted to decrease the 

water content in the films as it has been mentioned earlier. The first point to note is the 

absence of the endothermic peak confirming that this peak is attributed to the water content 

in the samples. Also, smaller peaks of melting transition at different temperatures appeared 

in the DSC curves of CS/AG/PVA blended films with various blend ratios ranging from 

217.3 to 219.6°C as shown in Table 5.7. Based on these observations, it can be concluded 
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that the interaction among CS, AG and PVA may occur to form films with better 

thermostability. Similar behavior and results were obtained from the first heating runs of 

CS/AG blended films and from the first and second runs of CS/PVA blended films. 
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                 Figure 7.6: The DSC first - run curves of the pure chitosan film and its ternary  
                                    blended films with agar and PVA having various proportions. 
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         Figure 7.7: The DSC second - run curves of the pure chitosan film and its ternary  
                            blended films with agar and PVA having various proportions. 
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Table 7.3: The thermal properties of the pure chitosan film and its ternary blended films 
with agar and PVA at different ratios. 

 
Blend 

composition 
CS/AG/PVA 

100/0/0 90/05/05 80/20/20 70/15/15 60/20/20 50/25/25 

TD (first run) 
 79.0 77.3 77.3 79.6 77.3 77.3 

∆H (J/g) 
(first run) 227.6 244.1 255.7 283.9 214.3 246.1 

Tm (second 
run) ND 219.6 219.6 217.3 217.3 219.6 

 
 
 
 
7.6  Swelling behavior 

Figure 7.8 shows the degree of swelling of the pure CS film together with its ternary 

blended films with AG and PVA at various ratios. All the ternary blended films showed 

much higher degree of swelling comparing with the pure CS film, indicating their higher 

hydrophilicity. The degree of swelling for the ternary blended films ranges from 488 to 

855%, which indicates that the swelling behavior is influenced by the AG and PVA 

contents in the blend. This is acceptable since both of AG and PVA contain hydrophilic 

groups (-OH). These observations are intermediate between those obtained from CS/AG 

and CS/PVA blended films reported in the previous chapters.   
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         Figure 7.8: The degree of swelling of the pure chitosan film together with its ternary  
                            blended films with AG and PVA at various ratios. 
 
 

 

7.7  Contact angle measurements (surface hydrophilicity) 

Figure 7.9 shows the static water contact angle of the pure CS film and its ternary blened 

films with AG and PVA at various proportions. There is a general decrease in the static 

water contact angle with increasing the AG and PVA contents in the blend i.e., an increase 

in the wettability of the surface of the ternary blended films. This means that the surface 

became more hydrophilic as the concentrations of AG and PVA increased. The contact 

angle of the pure CS was 88o±1.91 while the contact angle of the ternary blended films 

ranged from about 88± 2.15 to 80o± 0.75. The lowest value of contact angle was recorded 

for the blended film of 50/25/25 indicating best hydrophilicity. This was in agreement with 

the SEM images since this ratio showed roughest surface among all surfaces investigated. 
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However, generally, the contact angles for all the blended films were less than 90o, 

indicating good hydrophilicity of the surfaces. These results are in good agreement with 

those obtained from CS/AG and CS/PVA blended films in that all the blended films show 

improvement in the wettability of the surfaces. 
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Figure 7.9: The relationship between the water-contact angle and the agar or PVA content      

                    for the chitosan/agar/PVA ternary blended films having various ratios (0% = 
                    pure CS). 
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8.0  Chapter 8: Conclusions and recommendation for future work  

8.1  Conclusions 

A number of aqueous mixture solutions of chitosan/agar (CS/AG), chitosan/ poly vinyl 

alcohol (CS/PVA) and chitosan/agar/poly vinyl alcohol (CS/AG/PVA) at different 

proportions were prepared. The effects of temperature, shear rate, shearing time and storage 

time on the rheological properties, i.e., the apparent viscosity and the shear stress as a 

function of shear rate were investigated for these systems. Also, blended films of 

chitosan/agar chitosan/PVA and chitosan/agar/PVA were prepared at various proportions.  

The chemical structure and the morphology of the obtained blended films were investigated 

using Fourier transform infrared (FTIR) and field emission scanning electron microscope 

(FESEM). The thermal stability of the blended films was studied using thermal gravimetric 

analysis (TGA) and differential scanning calorimetry (DSC). In addition, the swelling, 

contact angle and mechanical properties of the blended films were investigated. Based on 

the present study, various conclusions could be drawn as stated in the next paragraphs. 

 

This study has shown that the pseudoplastic non-Newtonian behavior was observed only at 

high concentrations of AG for CS/AG and CS/AG/PVA blended solutions at the range of 

temperature studied which suggests the existence of interaction among the blend solutions’ 

components. However, all the CS/PVA blended solutions displayed a Newtonian behavior. 

In addition, the relationship between the apparent viscosity and the temperature could be 

described with the Arrhenius equation for all blended solutions. This study has also shown 

that curves of the apparent viscosity of CS/AG blended solutions exhibited similar behavior 

at all shearing times of 15-75 s. However, the solution containing ratio of 50% of agar 

exhibited a decrease in viscosity and shear stress with increasing shear rate. In addition, all 
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CS/PVA blended solutions showed similar behavior at all shearing times of 15-75 s. 

Furthermore, the curves of the apparent viscosity of the CS/AG/PVA ternary system 

showed almost no change in the apparent viscosity at all shearing times applied for lower 

concentrations than 15% of each of AG and PVA. However, a rheopectic behavior was 

observed at higher concentrations of the two polymers. When the storage period was 

extended to three weeks, all the CS/AG blended solutions as well as the CS/AG/PVA 

ternary blended solutions recorded remakably higher increase in the viscosity as the time 

prolonged compared to chitosan solutions, especially, in the first week. However, the 

CS/PVA blends recorded a decrease in the viscosity with time in general compared to the 

pure chitosan solution. Based on the above findings, it can be concluded that the interaction 

between the three components has occurred except in the CS/PVA blends in which it was 

difficult to observe any interaction by rheological measurement. 

 
 
 
Blends of CS and AG in film forms were prepared at various proportions in the range of 

90/10-50/50 (v:v). Investigations of the properties of the obtained blend films of 

chitosan/agar revealed that there is a high compatibility between CS and AG as confirmed 

by the results of FTIR, TGA and FESEM results. Introducing agar was found to decrease 

the tensile strength and the elongation % of the CS/AG blended films and such effect is a 

function of AG content. On the other hand, introducing AG to the blended films was found 

to enhance the thermal stability of some blended films under the influence of strong 

intermolecular hydrogen bonding existing between the amino groups of CS and the 

hydroxyl groups of AG. Studying the swelling behavior of the blended films showed that 

the water uptake was increased for all blend films compared to the pure CS film, indicating 

an enhancement in the hydrophilicity. Static water contact angle measurements confirmed 
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the increasing affinity of the blended films towards water suggesting that blending of AG 

with CS improves the wettability of the obtained films. 

 

In addition, blended films of CS and PVA were prepared at various proportions in the range 

of 90/10-50/50 (v:v). Investigation of the properties of the obtained blends displayed some 

interaction between CS and PVA as revealed by the results of FTIR, FESEM and TGA due 

to the intermolecular hydrogen bonding existing between the amino groups of CS and the 

hydroxyl groups of PVA. The blended films also showed an increase in the tensile strength 

and a decrease in elongation at break with increasing PVA content. Studying the swelling 

behavior showed much higher water uptake for all blended films compared to that of the 

pure CS film, indicating an enhancement in the hydrophilicity. The water contact angle 

measurements confirmed the increase in the hydrophilicity of the blended films 

 
 
Furthermore, blended films of CS/AG/PVA were prepared at various proportions. 

Investigations of the obtained blended films with FTIR, FESEM and thermal stability 

studies revealed that miscibility between CS, AG and PVA was achieved together with a 

relatively smooth and homogeneous surface morphology as depicted from FESEM images. 

The mechanical properties of the blended films showed an increase in the tensile strength 

and a decrease in the elongation % at break with the increase in the content of the AG and 

PVA. The water uptake of all blended film was found to increase drastically compared to 

the pure CS film, indicating a sharp rise in the hydrophilicity upon addition of both of AG 

and PVA. These observations indicate the existence of strong interamolecular hydrogen 

bonds between the amino groups of CS and the hydroxyl groups of AG and PVA. The 

water contact angle measurements confirmed the increase in the hydrophilicity of the 

ternary blended films, which reached its maximum value at the composition ratio 50/25/25 
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as indicated by its minimum value of water contact angle (80o). This suggests that the 

blending of CS with AG and PVA improves the surface wettability of the blended films. 

 

8.2  Recommendation for future work  

1. Since the blended films obtained in this work showed some improvements in their 

physical properties which could promotes their use in various applications, it is 

recommended to test the oxygen and water vapor permeability to explore their suitability 

for  food packaging application or packaging for medical supplies.  

 

2. Crosslinking of these blended films is highly recommended to further improve, for 

example the mechanical properties of the blended films, which is important criteria to be 

matched with the requirement for specific applications. Cytotoxic synthetic crosslinking 

reagents, such as glutaraldehyde and tripolyphosphate, should be avoided, especially, if the 

pharmaceutical and biomedical applications are considered. Instead, naturally occurring 

cross-linking agents, such as genipin, might be attempted. If crosslinking is considred the 

level of crosslinking has to be optimized to avoid underming of other properties such as 

swelling. 

 

3. Since these blended films have shown high degree of swelling and known to be 

biodegradable and non-toxic, this may indicate that they could be used for biomedical 

applications such as wound healing upon loading with healing agent. 
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Appendix   
 

a. Relationship between the R2 and the blend concentration. 

 
Blend ratio (CS/AG) Equation  R2 

100/0 Y = - 0.2296x + 22.591 0.9821 
90/10 Y = - 0.1248x + 13.548 0.9869 
80/20 Y = - 0.1128x + 12.888 0.9796 
70/30 Y = - 0.1144x + 12.764 0.9567 
60/40 Y = - 0.3766x + 29.076 0.9934 
50/50 Y = - 0.6552x + 62.342 0.9972 
0/100 Y = - 4.0746x + 288.86 0.9398 

 
 
 
Blend ratio (CS/PVA) Equation R2 

100/0 Y = - 0.2296x + 22.591 0.9821 
90/10 Y = - 0.2016x + 19.772 0.9966 
80/20 Y = - 0.1128x + 11.206 0.9973 
70/30 Y = - 0.1128x + 11.206 0.9973 
60/40 Y = - 0.1200x + 11.817 0.9615 
50/50 Y = - 0.0864x + 9.142 0.9818 
0/100 Y = - 0.0312x + 3.1313 0.8824 

 
 
 

Blend ratio 
CS/AG/PVA 

Equation R2 

100/0/0 Y = - 0.2296x + 22.591 0.9821 
90/05/05 Y = - 0.2012x + 19.752  0.9964 
80/10/10 Y = - 0.1464x + 17.724 0.9553 
70/15/15 Y = - 0.1318x + 18.168 0.9912 
60/20/20 Y = - 0.3532x + 35.557 0.9873 
50/25/25 Y = - 0.528x + 45.715 0.8648 
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b. The Arrhenius Equation 

The Arrhenius Equation can be written as: 

 

η = A . e-Ea/RT 

 

where A is a constant related to molecular motion, Ea is the activation energy for viscous 

flow at a constant shear rate, R is the gas constant and T is the temperature (in kelvin). 

 
 
Graphical determineation of the activation energy 
 
 
 
       ln (η) = ln (A . e-Ea/RT )               Taking the natural log 
 
           
       ln (η) =  ln(A) + ln(e-Ea/RT )                      Expand expression 
 
 
       ln (η) =  ln(A) – (1/R.T). Ea                               Expand expression  
 
 
       ln (η) =  ln(A) – (Ea /R). (1/T)                       ln (η) =  – (Ea /R). (1/T) +  ln(A)    
    
 
This has the form y = mx + b   
 
where 1/T is the x axis , ln(η) is the y axis, ln(A) is the y intercept and (-Ea/R) is the slope. 

                              
 
 
Sample calculation of the activation energy 
 
 
 
Plotting  ln(η) against 1/T gives a straight line with a slope of – Ea/R as shown in the 

following Figure (for pure CS). 
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y = 2.02x - 3.8398
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The best fitted line showed an equation of y = 2.02x -3.8398  where 

 

– (Ea /R) = 2.020 

Therefore 

Ea = 16.79 kJ mol-1 
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