REPRESENTATIONAL COMPETENCE OF FORM FOUR SCIENCE STUDENTS ON BASIC CHEMICAL CONCEPTS

SIM JOONG HIONG

FACULTY OF EDUCATION
UNIVERSITY OF MALAYA
KUALA LUMPUR

2010
REPRESENTATIONAL COMPETENCE OF FORM FOUR SCIENCE STUDENTS ON BASIC CHEMICAL CONCEPTS

SIM JOONG HIONG

THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

FACULTY OF EDUCATION
UNIVERSITY OF MALAYA
KUALA LUMPUR

2010
ACKNOWLEDGEMENTS

The journey through a Ph.D is tough but truly rewarding. I never know I could make it.

I am deeply indebted to my dear supervisor, Associate Professor Dr. Esther G. S. Daniel. I appreciate her interest, support, and sacrifices throughout the project. Her amazing feedback, numerous questions, and wise suggestions make a difference in the quality of my work. Every discussion session with her is both brain-nurturing and heart-nourishing. Thank you Dr. Esther.

Sincere thanks to Professor Dr. Siow Heng Loke for bringing me into the wonderful world of research. Professor Siow was also the first person who insisted I sign up for my Ph.D. You definitely have inspired me.

My special thanks to Ms Poh Seok Hong and Mr. Ling Sing We for reviewing the initial drafts of the Test on Chemical Concepts (TCC), Test on Chemical representations (TCR), and Test on Representational Competence (TRC). Their willingness to help as inter-raters for the TRC is greatly appreciated.

Plenty of gratitude goes to all the participants who generously donated their time to complete the tests and retests, questionnaires and interviews. Without your enthusiasm and fine spirit of co-operation, there would be no data for this study.

I am grateful to IPPP, UM, for the research grant. I thank the Ministry of Education, Perak Education Department, and Principals of the seven participating schools for granting me the permission to conduct the study.

To my dear husband J.P. Liew and our three lovely children Sony, Alice and Crystal who have supported me in all my endeavours, I extend my gratitude and love.

With utmost respect, I dedicate this thesis to my late parents.
Kecekapan Perwakilan (Representational Competence) Konsep Kimia Asas
Pelajar Tingkatan Empat Sains

ABSTRAK

Tujuan am kajian ini adalah untuk menyiasat kecekapan perwakilan pelajar Tingkatan 4 sains tentang konsep kimia asas. Antara tujuan utama kajian ini ialah: (i) menyiasat pemahaman pelajar tentang konsep kimia asas, (ii) menilai pemahaman pelajar tentang perwakilan kimia (chemical representations), (iii) mentaksir kecekapan perwakilan pelajar, dan (iv) mengkaji pengaruh pembolehubah kognitif terpilih ke atas kecekapan perwakilan. Sampel kajian ini terdiri daripada 411 orang pelajar Tingkatan empat sains dari tujuh buah sekolah menengah bandar di Negeri Perak. Tujuh instrumen digunakan untuk mengutip data kajian. Pakej statistik (The Statistical Package for the Social Sciences, SPSS) digunakan untuk menganalisis data kuantitatif. Dapatan utama kajian ini ialah:

Skor min untuk Test of Chemical Concepts (TCC), Test of Chemical Representations (TCR) dan Test of Representational Competence (TRC) ialah 13.68 (45.60%), 18.63 (51.75%), dan 16.90 (42.25%) masing-masing.

Pelajar dengan aras pemahaman (a) konsep kimia, dan (b) perwakilan kimia yang tinggi menunjukkan aras kecekapan perwakilan lebih tinggi secara signifikan. Tidak ada perbezaan signifikan antara pelajar dengan aras pemahaman (a) konsep kimia, dan (b) perwakilan kimia yang sederhana dan rendah.

Peratus konsepsi alternatif untuk 18 item dalam TCC melebihi 50%; min atau peratus min konsepsi alternatif untuk lima kategori konsep kimia paling asas juga melebihi 50%. Peratus konsepsi alternatif untuk 13 item dalam TCR melebihi 50%; domain isi kandungan (content domain) dengan peratus min konsepsi alternatif paling
tinggi (71.93%) ialah ‘tiga aras perwakilan jirim’ (the three levels of representation of matter).

Peratus kesukaran untuk 23 item dalam TRC melebihi 50%; kategori dengan peratus min kesukaran paling tinggi (78.83%) ialah ‘kebolehan bergerak antara pelbagai perwakilan merentasi aras’ (the ability to translate between different representations across levels).

Kesemua sembilan peserta temuduga tidak biasa dengan istilah perwakilan kimia. Peserta dari 1 High group boleh memberi contoh perwakilan kimia sedangkan peserta dari 2 Low group tiada idea tentang perwakilan kimia. Peserta dari Low group mempunyai pandangan makroscopik tentang jirim, memberi focus terhadap ciri-ciri permukaan perwakilan (surface features of representations) dan menggunakan perwakilan sebagai depictions. Kebolehan mereka mentafsir atau menghasilkan perwakilan konsep kimia dan bergerak antara perwakilan adalah terhad; Peserta dari 3 Medium group mempunyai pandangan mikroscopik jirim tetapi istilah mikroscopik hanya digunakan apabila dirangsang dan penggunaan perwakilan kimia kadang-kadang tidak betul; Peserta dari High group mempunyai pandangan makroscopik serta mikroscopik tentang jirim, menggunakan istilah mikroscopik secara tepat dan spontan, boleh menghasilkan perwakilan submikroskopik dengan menggunakan perwakilan kimia yang betul, serta boleh bergerak antara perwakilan tanpa masalah. Kesemua sembilan peserta temuduga tidak boleh menggunakan perwakilan aras berganda (multiple levels of representations) dalam deskripsi mereka. Aras kecekapan perwakilan ialah: aras 1 (tiga orang), aras 2 (tiga orang), aras 3 (dua orang), dan aras 4 (seorang).

1 subjek dengan skor TRC dalam peratusan 25% yang atas
2 subjek dengan skor TRC dalam peratusan 25% yang bawah
3 subjek dengan skor TRC dalam peratusan 50% di tengah
Model regresi dengan tiga pembolehubah tidak bersandar menerangkan 71% varians kecekapan perwakilan \((Prior\ knowledge \approx 58\%,\ developmental\ level \approx 14\%)\). \textit{Predictor} terbaik untuk kecekapan perwakilan ialah pemahaman konsep kimia \((prior\ knowledge\ I)\), yang menyumbang 55.5\% terhadap varians. Model regresi merupakan \textit{good fit}. Hubungan statistik secara menyeluruh adalah signifikan, \(F(3,188) = 156.405, p < 0.001\).

Berdasarkan dapatan kajian, beberapa implikasi tertentu dibincangkan dan cadangan bagi kajian lanjut disyorkan.
Representational Competence of Form Four Science Students on Basic Chemical Concepts

ABSTRACT

The general purpose of this study was to investigate Form four science students’ representational competence on basic chemical concepts. The main aims of the study were: (i) to investigate students’ understanding of basic chemical concepts, (ii) to evaluate their understanding of chemical representations, (iii) to assess their representational competence in chemistry, and (iv) to examine the influence of selected cognitive variables on their representational competence. A total of 411 Form four science students from seven urban secondary schools in Perak participated in this study. Data was obtained from seven instruments consisting of five paper-and-pencil tests, one questionnaire and interviews. The Statistical Package for the Social Sciences (SPSS) was used to analyze quantitative data collected. The main findings of this study were:

Mean scores for the Test of Chemical Concepts (TCC), Test of Chemical Representations (TCR) and Test of Representational Competence (TRC) were respectively 13.68 (45.60%), 18.63 (51.75%), and 16.90 (42.25%).

Students with a high level of understanding of (a) chemical concepts, and (b) chemical representations, had significantly higher overall level of representational competence compared to both the medium and the low groups, at p<0.001. However, students with medium and low levels of understanding of (a) chemical concepts, and (b) chemical representations, showed no significant difference in their overall levels of representational competence.

Percent alternative conceptions for 18 of the 30 items in the TCC exceeded 50%; mean or percent mean alternative conceptions for all five categories of the most
basic chemical concepts exceeded 50%. Percent alternative conceptions for 13 of the 36 items in the TCR exceeded 50%; the content domain with the highest percent mean alternative conception were ‘the three levels of representation of matter’ (71.93%).

Percent difficulty for 23 of the 40 items in the TRC exceeded 50%; the category with the highest percent mean difficulty was the ability to translate between different representations across levels (78.83%).

All the nine participants in the interviews were unfamiliar with the term ‘chemical representations’. However, participants from the \(^1\)High group gave correct examples of chemical representations while participants from the \(^2\)Low group totally had no idea about chemical representations. Participants from the Low group held a macroscopic view of matter, focused on the surface features of representations and used representations as depictions. Their ability to interpret or generate representations of chemical concepts, and to translate between representations, is limited; Participants from the \(^3\)Medium group had a microscopic view of matter. Microscopic terms were used only when prompted, and chemical representations were sometimes incorrectly used; Participants from the High group had both a macroscopic view and a microscopic view of matter, able to use microscopic terms appropriately and spontaneously, could generate submicroscopic representations using correct chemical representations, and able to translate fluently between representations. None of the nine participants in the semi-structured interviews could use multiple levels of representations in their description. The representational competence levels of the nine participants were: three at level 1, three at level 2, two at level 3, and one at Level 4.

\(^1\) subjects whose TRC scores were in the top 25%
\(^2\) subjects whose TRC scores were in the bottom 25%
\(^3\) subjects whose TRC scores were in the middle 50%
The regression model with three independent variables explains almost 71% of the variance of representational competence (prior knowledge ≈58%, developmental level ≈14%). The best predictor of representational competence is ‘understanding of chemical concepts’ or prior knowledge I, which alone accounts for 55.5% of the variance. The regression model was a good fit. The overall relationship was significant, \(F (3, 188) = 156.405, p < 0.001 \).

Arising from the findings, some implications and recommendation were discussed, and further research suggested.
CONTENTS

ACKNOWLEDGEMENTS ii
ABSTRAK iii
ABSTRACT vi
CONTENTS ix
LIST OF FIGURES xx
LIST OF TABLES xxvi
LIST OF ACRONYMS xxix

CHAPTER 1: THE PROBLEM AND ITS SETTINGS

1.0 Introduction ... 1
1.1 Education in Malaysia .. 1
 1.1.1 The Malaysian education system 2
 1.1.2 Chemical education in Malaysian schools 2
 1.1.3 Malaysian chemistry curriculum 3
 1.1.4 Malaysian chemistry classroom 5
1.2 Background of the Study ... 6
1.3 Statement of the Problem .. 8
1.4 Rationale of the Study ... 11
1.5 Objectives of the Study .. 15
1.6 Research Questions .. 17
1.7 Definition of terms .. 18
1.8 Significance of the Study ... 23
1.9 Scope and Limitations of the Study 25
1.10 Chapter Summary ... 26
CHAPTER 2: REVIEW OF RELATED LITERATURE

2.0 Introduction... 27

2.1 Learning Difficulties in Chemistry... 27

2.1.1 The nature of chemistry: Multi-level learning....................................... 28

2.1.2 The challenge of multiple representations... 29

2.1.3 The abstract nature of chemistry.. 31

2.1.4 Alternative conceptions.. 32

2.1.5 Language... 34

2.2 Representations and Chemistry... 35

2.2.1 What is a representation? .. 36

2.2.1.1 Definition or meaning of the term “representation”....................... 36

2.2.1.2 Internal or external representations... 36

2.2.2 Representations in chemistry... 38

2.2.2.1 History of chemical representations.. 39

2.2.2.2 Representations as a language.. 41

2.2.3 The three levels of chemical representation of matter................. 41

2.2.4 The roles of representations in chemistry learning......................... 44

2.2.5 Chemists’ versus students’ uses of representations......................... 46

2.3 Alternative Conceptions in Chemistry... 48

2.4 Representational Competence in Chemistry.. 51

2.4.1 Distinguishing and defining the terminologies.................................. 52

2.4.2 Representational skills of experts and novices................................... 56

2.4.3 Students’ conceptions of chemical representations and their Representational competence 58

2.4.4 Students’ difficulties in using representations of chemical concepts 59
2.4.4.1 Difficulties in comprehending and interpreting representations .. 59
2.4.4.2 Difficulties in translating or moving between the three levels of representations 62
2.4.4.3 Mental transformation between 2-D and 3-D representations .. 63
2.4.5 Assessing representational competence: Past methodologies .. 64

2.5 Possible Cognitive Variables Influencing Representational Competence 70
2.5.1 Working memory capacity ... 71
2.5.2 Prior knowledge ... 72
2.5.3 Learning orientations ... 73
2.5.4 Developmental level or formal reasoning ability ... 74
2.5.5 Relationship between selected cognitive variables and chemistry learning 75

2.6 Chapter Summary .. 78

CHAPTER 3: CONCEPTUALIZATION OF THE STUDY

3.0 Introduction ... 80
3.1 Theoretical Framework of the Study ... 81
3.1.1 Learning theories related to this study ... 81
3.1.1.1 The information-processing theory .. 82
3.1.1.2 The schema theory ... 83
3.1.1.3 Ausubel’s theory of meaningful learning .. 86
3.1.1.4 Piaget’s theory of cognitive development .. 87
3.1.2 Common elements of the learning theories ... 88
3.1.3 Proposed theoretical framework for the study .. 89
3.1.3.1 Sensory memory, long-term memory, and representational competence 91
3.1.3.1.2 Working memory and representational competence

3.1.3.1.3 Working memory, long-term memory, and representational competence

3.1.3.1.4 Long-term memory and representational competence

3.2 Conceptual Framework of the Study

CHAPTER 4: METHODOLOGY

4.0 Introduction

4.1 The Sample

4.2 The Instruments

4.2.1 The Test on Chemical Concepts (TCC)

4.2.1.1 Development of the TCC

4.2.1.2 Validity of the TCC

4.2.1.3 Reliability of the TCC

4.2.2 The Test on Chemical Representations (TCR)

4.2.2.1 Development of the TCR

4.2.2.2 Validity of the TCR

4.2.2.3 Reliability of the TCR

4.2.3 The Test on Representational Competence (TRC)

4.2.3.1 Development of the TRC

4.2.3.2 Validity of the TRC

4.2.3.3 Reliability of the TRC

4.2.4 The Classroom Test of Scientific Reasoning (CTSR)

4.2.4.1 Scoring procedure and classification of developmental level

4.2.4.2 Validity of the CTSR

4.2.4.3 Reliability of the CTSR
4.2.5 The Digit Span Backwards Test (DSBT)......................... 133
 4.2.5.1 Administration and scoring of the DSBT.............. 133
 4.2.5.2 Validity of the DSBT................................. 134
 4.2.5.3 Reliability of the DSBT................................. 135
4.2.6 The Learning Approach Questionnaire (LAQ).............. 135
 4.2.6.1 Scoring system and categorization scheme......... 136
 4.2.6.2 Validity of the LAQ................................. 138
 4.2.6.3 Reliability of the LAQ................................. 139
4.2.7 The Interviews... 139
 4.2.7.1 The interview sample................................. 140
 4.2.7.2 Choice of interview type............................ 141
 4.2.7.3 Purposes of the interview............................ 141
 4.2.7.4 The interview protocols............................ 142
 4.2.7.5 Pilot study of the interview........................ 142
4.3 Data Collection... 143
 4.3.1 Preliminary procedures................................. 143
 4.3.2 Administration of the tests and questionnaires........ 144
 4.3.3 The interviews.. 145
4.4 Data Analysis... 149
4.5 Chapter Summary... 151

CHAPTER 5: FINDINGS AND DISCUSSION

5.0 Introduction... 153
5.1 Students’ Understanding of Basic Chemical Concepts, Chemical Representations, and their Representational Competence 154
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.1</td>
<td>A description of students’ overall levels of understanding of basic chemical concepts</td>
<td>155</td>
</tr>
<tr>
<td>5.1.2</td>
<td>A description of students’ overall levels of understanding of chemical representations</td>
<td>156</td>
</tr>
<tr>
<td>5.1.3</td>
<td>A description of students’ overall levels of representational Competence in chemistry</td>
<td>157</td>
</tr>
<tr>
<td>5.1.4</td>
<td>Section summary……………………………………...</td>
<td>158</td>
</tr>
<tr>
<td>5.2</td>
<td>Comparing Students with Different Levels of Understanding of Chemical Concepts and Chemical Representations in Their Representational Competence</td>
<td>158</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Comparing students of different levels of understanding of chemical concepts in their representational competence</td>
<td>159</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Comparing students of different levels of understanding of chemical representations in their representational competence</td>
<td>164</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Section summary……………………………………...</td>
<td>168</td>
</tr>
<tr>
<td>5.3</td>
<td>Form Four Students’ Alternative Conceptions of (i) Basic Chemical Concepts and (ii) Chemical Representations</td>
<td>169</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Form four students’ alternative conceptions of basic chemical concepts</td>
<td>169</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Form four students’ alternative conceptions of chemical representations</td>
<td>182</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Section summary……………………………………...</td>
<td>189</td>
</tr>
<tr>
<td>5.4</td>
<td>Difficulties in Interpreting and Using Chemical Representations</td>
<td>190</td>
</tr>
<tr>
<td>5.5</td>
<td>A Comparison of Form Four Students of High, Medium, and Low Overall Levels of Representational Competence, in their Representations of Basic Chemical Concepts</td>
<td>197</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Students’ conceptions of chemical representations……</td>
<td>198</td>
</tr>
<tr>
<td>5.5.1.1</td>
<td>Recall without any specific prompts………………</td>
<td>198</td>
</tr>
<tr>
<td>5.5.1.2</td>
<td>Questions based on items in the TCR………………</td>
<td>203</td>
</tr>
<tr>
<td>5.5.1.3</td>
<td>Symbolic representations…………………………..</td>
<td>208</td>
</tr>
<tr>
<td>5.5.1.4</td>
<td>Submicroscopic representations…………………..</td>
<td>226</td>
</tr>
</tbody>
</table>
CHAPTER 6: THE REGRESSION MODEL

6.0 Introduction... 296
6.1 Objectives of the Multiple Regression................................. 296
6.2 Research Design of the Multiple Regression Analysis.............. 297
6.3 Testing for Statistical Assumptions in Multiple regression Analysis 298
 6.3.1 Linearity... 299
 6.3.2 Homoscedasticity... 300
 6.3.3 Normality.. 300
 6.3.3.1 Graphical analysis of normality......................... 301
 6.3.3.2 Statistical analysis of normality...................... 302
 6.3.4 Section summary... 303
6.4 Estimating the Regression Model and Assessing Overall Model Fit 304
 6.4.1 Selecting an estimation technique............................... 304
 6.4.1.1 Estimating the regression model using sequential Search method 304
 6.4.1.2 Section summary... 314
 6.4.2 Assessing the variate for meeting the assumptions of Regression analysis 315
 6.4.2.1 Linearity of the phenomenon.............................. 315
 6.4.2.2 Normality of the error term distribution............... 317
6.4.3 Identifying unusual observations................................. 318
6.5 Interpreting the Results of Regression................................. 318
 6.5.1 Interpreting and using the regression coefficients.......... 318
 6.5.1.1 Prediction... 319
 6.5.1.2 Explanation.. 320
 6.5.2 Measuring the degree and impact of multicollinearity...... 321
 6.5.2.1 Diagnosing multicollinearity.......................... 322
 6.5.2.2 The effects of multicollinearity....................... 322
 6.5.2.3 Multicollinearity in the regression model............. 323
6.6 Validating the Regression Model....................................... 324
 6.6.1 Assessment of the adjusted R^2 and degrees of freedom... 324
 6.6.2 Evaluating other regression models............................ 324
 6.6.2.1 Estimating the regression model using the combinatorial approach 325
 6.6.2.2 Estimating the regression model using the confirmatory specification 327
 6.6.3 Section summary... 330
6.7 Linking the Regression Model with Theory............................ 331
 6.7.1 Prior knowledge... 332
 6.7.2 Developmental level... 334
 6.7.3 Unexplained variance.. 335
6.8 Chapter Summary... 337

CHAPTER 7: IMPLICATIONS AND CONCLUSIONS
7.0 Introduction.. 339
7.1 Summary of the Findings.. 340
7.1.1 Students’ understanding of basic chemical concepts, chemical representations, and their representational competence 340

7.1.2 Comparing students with different levels of understanding of chemical concepts and chemical representations in their representational competence 340

7.1.3 Students’ alternative conceptions of basic chemical concepts And chemical representations 341

7.1.4 Students’ difficulties in interpreting and using chemical Representations 342

7.1.5 A comparison of form four students of High, Medium, and Low levels of representational competence in their representations of basic chemical concepts 342

7.1.6 Correlations between selected cognitive variables and... competence 346

7.1.7 The regression model………………………………… 346

7.2 Implications of the Study……………………………………… 346

7.3 Suggestions for Further Research………………………………… 355

7.4 Conclusion…………………………………………… 357

SELECTED BIBLIOGRAPHY 361

APPENDICES

Appendix 1: National Education System Chart 388

Appendix 2: Preliminary Survey Questionnaire (Teachers’ version) 389

Appendix 2a: Preliminary Survey Questionnaire (Students’ version) 393

Appendix 3: Content area of the TCC (pilot study) 397

Appendix 3a: Content area of the TCC (actual study) 398

Appendix 4: Table of specification for the TCC (actual study) 399

Appendix 5: Test on Chemical Concept (pilot study) 400

Appendix 5a: Test on Chemical Concept (actual study) 403
Appendix 6: Item analysis of the TCC (pilot study) 408
Appendix 7: Test score reliability of the TCC (pilot study) 410
Appendix 7a: Test score reliability of the TCC (actual study) 412
Appendix 8: Concept map of the 3 levels of chemical representations 415
Appendix 9: Content domain of the TCR (pilot study) 416
Appendix 9a: Content domain of the TCR (actual study) 418
Appendix 10: Table of specifications for the TCR (pilot study) 420
Appendix 10a: Table of specifications for the TCR (actual study) 421
Appendix 11: Test on Chemical Representations (pilot study) 422
Appendix 11a: Test on Chemical Representations (actual study) 427
Appendix 12: Item analysis of the TCR (pilot study) 432
Appendix 13: Test score reliability of the TCR (pilot study) 434
Appendix 13a: Test score reliability of the TCR (actual study) 436
Appendix 14: Table of specifications for the TRC (pilot study) 437
Appendix 14a: Table of specifications for the TRC (actual study) 438
Appendix 15: Test on Representational Competence (pilot study) 439
Appendix 15a: Test on Representational Competence (actual study) 450
Appendix 16: Item analysis of the TRC (pilot study) 463
Appendix 16a: Item analysis of the TRC (actual study) 465
Appendix 17: Test score reliability of the TRC (pilot study) 468
Appendix 17a: Test score reliability of the TRC (actual study) 471
Appendix 18: The Classroom Test of Scientific Reasoning (CTSR) 475
Appendix 18a: Test score reliability of the CTSR (actual study) 486
Appendix 19: The Learning Approach Questionnaire (LAQ) 488
Appendix 19a: Test score reliability of the LAQ (actual study) 490
<table>
<thead>
<tr>
<th>Appendix 20: The Digit Span Backwards Test (DSBT)</th>
<th>492</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix 20a: Test score reliability of the DSBT (actual study)</td>
<td>497</td>
</tr>
<tr>
<td>Appendix 21: Interview Protocols 1 & 2</td>
<td>498</td>
</tr>
<tr>
<td>Appendix 22a: Sample of the interview transcript (Low)</td>
<td>501</td>
</tr>
<tr>
<td>Appendix 22b: Sample of the interview transcript (Medium)</td>
<td>508</td>
</tr>
<tr>
<td>Appendix 22c: Sample of the interview transcript (High)</td>
<td>514</td>
</tr>
<tr>
<td>Appendix 23: Focus Card 1</td>
<td>520</td>
</tr>
<tr>
<td>Appendix 24: Focus Card 2</td>
<td>521</td>
</tr>
<tr>
<td>Appendix 25: Worksheet 1</td>
<td>522</td>
</tr>
<tr>
<td>Appendix 25a: The Online Quiz</td>
<td>523</td>
</tr>
<tr>
<td>Appendix 26: Worksheet 2</td>
<td>524</td>
</tr>
<tr>
<td>Appendix 26a: Pages from the Form 4 Chemistry Text Book</td>
<td>525</td>
</tr>
<tr>
<td>Appendix 27a: Permission to conduct the study</td>
<td>527</td>
</tr>
<tr>
<td>(from the Ministry of Education, Malaysia)</td>
<td></td>
</tr>
<tr>
<td>Appendix 27b: Permission to conduct the study</td>
<td>529</td>
</tr>
<tr>
<td>(from the State Education Department, Perak)</td>
<td></td>
</tr>
<tr>
<td>Appendix 27c: Permission to conduct the study</td>
<td>530</td>
</tr>
<tr>
<td>(from the Principals of the participating schools)</td>
<td></td>
</tr>
<tr>
<td>Appendix 27d: Letter of information and consent from the interviewees</td>
<td>531</td>
</tr>
<tr>
<td>Appendix 28: Cumulative frequency curves</td>
<td>532</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 2.1	The three conceptual levels of chemistry	29
Figure 2.2	The relationship between the three levels of chemical representations and real and represented chemical data	42
Figure 2.3	Three levels of chemical representation of matter	42
Figure 2.4	Examples of each of the three levels of chemical representation of matter	42
Figure 2.5	A sugar crystal being broken down by water	49
Figure 2.6	Sugar being broken down by water	50
Figure 2.7	Sample pre-test and post-test for students using ChemSense	68
Figure 3.1	The Atkinson-Shiffrin Model	82
Figure 3.2	Proposed information-processing model for the study	91
Figure 3.2(a)	Sensory memory and long-term memory	91
Figure 3.2(a1)	What do you see in this figure?	92
Figure 3.2(a2)	Figure 3.2(a1) flipped upside down	93
Figure 3.2(b)	The working memory	95
Figure 3.2(c)	The working memory and long-term memory	97
Figure 3.2(c1)	Structural formula of ethanoic acid	98
Figure 3.2(d)	The long-term memory	99
Figure 3.3	Conceptual framework of the study	104
Figure 4.1	Scoring for the LAQ	137
Figure 5.1	Box plots of TRCt scores for three levels of TCCt scores	160
Figure 5.1a	Normal probability plots of TCCt scores and TRCt scores	162
Figure 5.2	Box plots of TRCt scores for three levels of TCRt scores	165
Figure 5.2a	Normal probability plots of TCRt scores and TRCt scores	166
Figure 5.3	L3a	199
Figure 5.4 M1a 200
Figure 5.5 M2a 201
Figure 5.6 M3a 201
Figure 5.7 H1a 202
Figure 5.8 H2a 203
Figure 5.9 H2b 210
Figure 5.10 H3b 211
Figure 5.11 L1a 212
Figure 5.12 L2a 213
Figure 5.13 L2b 213
Figure 5.14 L3b 214
Figure 5.15 L3c 214
Figure 5.16 M1b 215
Figure 5.17 M3b 216
Figure 5.18 Ball-and-stick models of some simple molecules 217
Figure 5.19 L2c 219
Figure 5.20 M1c 223
Figure 5.21 M2b 224
Figure 5.22 M3c 224
Figure 5.23 H1b 225
Figure 5.24 H2c 225
Figure 5.25 H3c 226
Figure 5.26 L1b 229
Figure 5.27 L2d 230
Figure 5.28 L3d 230
<table>
<thead>
<tr>
<th>Figure</th>
<th>Label</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.29</td>
<td>M1d</td>
<td>231</td>
</tr>
<tr>
<td>5.30</td>
<td>M3d</td>
<td>231</td>
</tr>
<tr>
<td>5.31</td>
<td>H1c</td>
<td>232</td>
</tr>
<tr>
<td>5.32</td>
<td>H2d</td>
<td>233</td>
</tr>
<tr>
<td>5.33</td>
<td>H3d</td>
<td>233</td>
</tr>
<tr>
<td>5.34</td>
<td>L1c</td>
<td>238</td>
</tr>
<tr>
<td>5.35</td>
<td>L2e</td>
<td>238</td>
</tr>
<tr>
<td>5.36</td>
<td>L3e</td>
<td>239</td>
</tr>
<tr>
<td>5.37</td>
<td>M1e</td>
<td>239</td>
</tr>
<tr>
<td>5.38</td>
<td>M2c</td>
<td>240</td>
</tr>
<tr>
<td>5.39</td>
<td>M3e</td>
<td>240</td>
</tr>
<tr>
<td>5.40</td>
<td>H1d</td>
<td>241</td>
</tr>
<tr>
<td>5.41</td>
<td>H2e</td>
<td>242</td>
</tr>
<tr>
<td>5.42</td>
<td>H3e</td>
<td>242</td>
</tr>
<tr>
<td>5.43</td>
<td>L1d</td>
<td>243</td>
</tr>
<tr>
<td>5.44</td>
<td>L2f</td>
<td>244</td>
</tr>
<tr>
<td>5.45</td>
<td>L3f</td>
<td>245</td>
</tr>
<tr>
<td>5.46</td>
<td>m1f</td>
<td>246</td>
</tr>
<tr>
<td>5.47</td>
<td>M2d</td>
<td>246</td>
</tr>
<tr>
<td>5.48</td>
<td>M3f</td>
<td>246</td>
</tr>
<tr>
<td>5.49</td>
<td>H1e</td>
<td>247</td>
</tr>
<tr>
<td>5.50</td>
<td>H2f</td>
<td>248</td>
</tr>
<tr>
<td>5.51</td>
<td>H3f</td>
<td>249</td>
</tr>
<tr>
<td>5.52</td>
<td>L1e</td>
<td>250</td>
</tr>
<tr>
<td>5.53</td>
<td>L2g</td>
<td>251</td>
</tr>
</tbody>
</table>
Figure 5.54 L3g 251
Figure 5.55 M1g 252
Figure 5.56 M2e 253
Figure 5.57 H1f 254
Figure 5.58 H2g 254
Figure 5.59 H3g 254
Figure 5.60 L1f 255
Figure 5.61 L2h 256
Figure 5.62 L3h 257
Figure 5.63 M1h 258
Figure 5.64 M2f 258
Figure 5.65 M3g 259
Figure 5.66 H1g 260
Figure 5.67 H2h 260
Figure 5.68 H3h 261
Figure 5.69 Different representations of the water molecule by the High group 262
Figure 5.70 Different representations of the water molecule by the Medium group 263
Figure 5.71 Different representations of the water molecule by the Low group 263
Figure 5.72 L1h 264
Figure 5.73 L2i 265
Figure 5.74 L3i 265
Figure 5.75 M1i 266
Figure 5.76 M1j 266
Figure 5.77 M2g 266
Figure 5.78 M3h 267
Figure 5.104 M2j 288
Figure 5.105 M3k 289
Figure 5.106 H1k 290
Figure 5.107 H2l 291
Figure 5.108 H3l 292
Figure 6.1 Scatter plots of the independent variables 299
Figure 6.2 Normal probability plots of all the six variables 301
Figure 6.3 Partial regression plots of the independent variables 316
Figure 6.4 Histogram of the dependent variable 317
Figure 6.5 Normal probability plot of regression standard residuals 318
Figure 6.6 The emerging model 338
LIST OF TABLES

Table 1.1 Content organization of SPM Chemistry 4
Table 2.1 Summary of representational competence levels 67
Table 4.1 Number of classes and number of students in the selected schools 108
Table 4.2 Profile of the subjects in terms of gender 108
Table 4.3 Profile of the subjects in terms of ethnic background 109
Table 4.4 Composition of items in the TCR (pilot study) 115
Table 4.5 CTSR item summary 130
Table 4.6 Classification of developmental level based on CTSR scores 131
Table 4.7 Item to subscale key of the LAQ 136
Table 4.8 Scoring system for the LAQ 137
Table 4.9 Categorization scheme of the LAQ 138
Table 4.10 Profile of the interview participants 140
Table 4.11 Administration of tests/questionnaires (actual study) 145
Table 4.12 Summary of methodology 152
Table 5.1 Instruments, variables, and the actual sample sizes 154
Table 5.2 Mean, standard deviation, minimum and maximum of TCC scores 155
Table 5.3 Mean, standard deviation, minimum and maximum of TCR scores 156
Table 5.4 Mean, standard deviation, minimum and maximum of TRC scores 157
Table 5.5 A comparison of students of different levels of understanding of chemical concepts in their representational competence 159
Table 5.6 ANOVA of TRCt scores for subjects with different levels of TCCt scores 163
Table 5.7 Multiple comparisons (Post Hoc Scheffe Tests) of TRCt mean scores 163
Table 5.8 A comparison of students of different levels of understanding of chemical representations in their representational competence 164
Table 5.9 ANOVA of TRCt scores for subjects with different levels of TCRt scores 167
Table 5.10 Multiple comparisons (Post Hoc Scheffe Tests) of TRCt mean scores 168
Table 5.11 Percent alternative conceptions for items in the TCC by category of chemical concepts 169
Table 5.12 Percent mean alternative conceptions for items in the TCC by category of chemical concepts 171
Table 5.13 Items in the TCC with alternative conceptions exceeding 50% 173
Table 5.14 Students’ responses to the TCC (Part B) 177
Table 5.15 Percent alternative conceptions for items in the TCR 183
Table 5.16 Percent mean alternative conceptions for the TCR (by content domain) 184
Table 5.17 Items in the TCR with alternative conceptions exceeding 50% 186
Table 5.18 Correct responses for items in the TRC 191
Table 5.19 Students’ responses to items in the TRC (Part A) 192
Table 5.20 Percent mean difficulty by category of representational competence 193
Table 5.21 Participants’ varying options for their wrong responses 228
Table 5.22 Scores of the participants for Worksheet (1) 229
Table 5.23 Scoring criteria of representational competence levels 282
Table 5.24 Representational competence levels of the participants 294
Table 6.1 Distributional characteristics and testing for normality 303
Table 6.2 Correlation matrix 305
Table 6.3 Step 1 of the multiple regression analysis 306
Table 6.4 Step 2 of the multiple regression analysis 308
Table 6.5 Step 3 of the multiple regression analysis 313
Table 6.6 Model summary of stepwise multiple regression 314
Table 6.7 Coefficients of variables in the regression equation 319
Table 6.8	Collinearity statistics of variables in the regression equation	323
Table 6.9	Model summary of the combinatorial approach	326
Table 6.10	Variables entered into the regression model (stepwise regression and combinatorial approach)	326
Table 6.11	Model summary of the confirmatory approach (with 3 predictor variables)	327
Table 6.12	Variables entered into the regression model - Coefficients\(^a\) (with 3 predictor variables)	327
Table 6.13	Model summary of the confirmatory approach (with 4 predictor variables)	328
Table 6.14	Variables entered into the regression model - Coefficients\(^a\) (with 4 predictor variables)	328
Table 6.15	Model summary of the confirmatory approach (with 5 predictor variables)	328
Table 6.16	Variables entered into the regression model - Coefficients\(^a\) (with 5 predictor variables)	329
Table 6.17	The final regression model – Model summary\(^d\)	330
Table 7.1	Mean, standard deviation, minimum and maximum of TCC, TCR, and TRC scores	340
LIST OF ACRONYMS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCC</td>
<td>Test of Chemical Concepts</td>
</tr>
<tr>
<td>TCR</td>
<td>Test of Chemical representations</td>
</tr>
<tr>
<td>TRC</td>
<td>Test of Representational Competence</td>
</tr>
<tr>
<td>CTSR</td>
<td>Classroom Test of Scientific Reasoning</td>
</tr>
<tr>
<td>LAQ</td>
<td>Learning Approach Questionnaire</td>
</tr>
<tr>
<td>DSBT</td>
<td>Digit Span Backwards Test</td>
</tr>
<tr>
<td>SSI</td>
<td>Semi-structured Interviews</td>
</tr>
<tr>
<td>TCCt score</td>
<td>Total TCC score</td>
</tr>
<tr>
<td>TCRt score</td>
<td>Total TCR score</td>
</tr>
<tr>
<td>TRCt score</td>
<td>Total TRC score</td>
</tr>
<tr>
<td>IPM</td>
<td>Information processing model</td>
</tr>
<tr>
<td>IPT</td>
<td>Information processing theory</td>
</tr>
<tr>
<td>SR</td>
<td>Sensory registry</td>
</tr>
<tr>
<td>SM</td>
<td>Sensory memory</td>
</tr>
<tr>
<td>WM</td>
<td>Working memory</td>
</tr>
<tr>
<td>LTM</td>
<td>Long-term memory</td>
</tr>
<tr>
<td>I</td>
<td>Interviewer</td>
</tr>
<tr>
<td>R</td>
<td>Interviewee</td>
</tr>
<tr>
<td>L</td>
<td>Low</td>
</tr>
<tr>
<td>M</td>
<td>Medium</td>
</tr>
<tr>
<td>H</td>
<td>High</td>
</tr>
</tbody>
</table>

xxix