
 296 

CHAPTER 6 

 

THE REGRESSION MODEL 

 

 

6.0 Introduction 

As stated in Chapter 5, the regression model that emerged from the findings 

will be discussed in this chapter.  The procedure to formulate a regression model that 

incorporates representational competence as the criterion variable, with prior 

knowledge, developmental level, working memory capacity, and learning 

orientations as the predictor variables involves a six-stage model-building framework.  

These stages are:  (i) specifying objectives of the multiple regression, (ii) establishing 

the research design of the multiple regression analysis, (iii) assessing the 

assumptions in multiple regression analysis, (iv) estimating the regression model and 

assessing overall model fit, (v) interpreting the regression variate, and (vi) validating 

the regression model.  The following sub-sections present the detailed procedure of 

each of these stages.  The chapter concludes by linking the regression model to 

theory. 

6.1 Objectives of the Multiple Regression      

 Multiple regression analysis is a multivariate statistical technique used to 

examine the relationship between a single dependent (criterion) variable, and a set of 

independent (predictor) variables.       

 Application of multiple regression falls into two broad classes of research 

problems:  prediction and explanation.  Prediction involves the extent to which the 

regression variate (one or more independent variables) can predict the dependent 

variable.  Explanation examines the regression coefficients (their magnitude, sign, 

and statistical significance) for each independent variable and attempts to develop a 
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theoretical reason for the effects of the independent variables.  An application of 

multiple regression can address either or both types of research problems.  In this 

study, multiple regression analysis was employed as the statistical technique to 

predict representational competence in chemistry.  In addition, factors affecting 

representational competence would also be identified and explained. 

6.2  Research Design of the Multiple Regression Analysis    

 As multiple regression is a dependence technique, the variables involved 

must be divided into dependent and independent variables, and both types of 

variables must be metric.  To apply the regression procedure, representational 

competence had been selected as the dependent variable (Y), to be predicted by 

independent variables affecting representational competence.  The five independent 

variables were:  (i) understanding of chemical concepts or prior knowledge I (X1), 

(ii) developmental level (X2), (iii) understanding of chemical representations or prior 

knowledge II (X3), (iv) learning orientation (X4), and (v) working memory capacity 

(X5).  In this study, representational competence was measured using the Test of 

Representational Competence (TRC) while understanding of chemical concepts, 

understanding of chemical representations, developmental level, learning orientations, 

and working memory capacity were assessed by the Test of Chemical Concepts 

(TCC), Test of Chemical Representations (TCR), Classroom Test of Scientific 

Reasoning (CTSR), Learning Approach Questionnaire (LAQ), and Digit Span 

Backwards Test (DSBT) respectively.  Hence, TRCt score became a measure of 

representational competence (Y) while the independent variables X1, X2, X3, X4, and 

X5 were measured by the TCCt score, CTSR score, TCRt score, LAQ score, and 

DSBT score respectively.  A total of six instruments were used to collect data for the 

six variables in this study.  For the purpose of model-building, only subjects who 
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were administered all the six instruments (n=192) were included in the multiple 

regression analysis.  See Chapter 5 - Table 5.1.       

 In terms of statistical power and sample size, Table 4.5 (Hair et al., 2006, 

p.174) shows the minimum percentage of variance explained (R
2
) that can be found 

statistically significant with a power of 0.80 for varying numbers of independent 

variables and sample sizes.  At a significant level (α) of 0.01, R
2 

values of 10% and 

above could be detected with 5 independent variables and a sample size of 200.  If 

the significant level is relaxed to 0.05, then the analysis could identify relationships 

explaining about 8% of the variance.  In terms of generalizability and sample size, 

the sample of 192 observations also meets the minimum ratio of observations to 

independent variables (5:1), with an actual ratio of approximately 38:1 (192 

observations with 5 independent variables).  However, if a stepwise procedure is 

employed, the recommended level increases to 50:1 (Hair et al., 2006, p.175).  Hence, 

the sample size of n=192 (approximately 200) with 5 independent variables should 

meet the criteria of both statistical power and generalizability to employ multiple 

regression analysis. 

6.3 Testing for Statistical Assumptions in Multiple Regression Analysis 

 

Several statistical assumptions about the relationships between the 

independent and dependent variables that affect the statistical procedure used for 

multiple regression must be made.  Useful insight is gained in examining the 

individual variables.  Analyses to examine the variate and its relationship with the 

dependent variable for meeting the assumptions of multiple regression must be 

performed after the regression model has been estimated.  In this section, the three 

basic assumptions to be addressed for the individual variables are linearity, 

homoscedasticity, and normality. 
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6.3.1 Linearity 

 

To assess linearity of the data through visual inspection, scatter plots of the 

individual variables were obtained (Figures 6.1a to 6.1e).   
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    (a)  TRCt scores vs TCCt scores              (b)  TRCt scores vs CTSR scores 
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    (c)  TRCt scores vs TCRt scores             (d)  TRCt scores vs LAQ scores 
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    (e)  TRCt scores vs DSBT scores 

 

Figure 6.1:  Scatter plots of the independent variables 
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Examination of the scatter plots of the individual variables did not reveal any 

apparent non-linear patterns or relationships between the dependent variable and 

independent variables.  Thus, transformations are not necessary. 

 

6.3.2 Homoscedasticity 

 

Homoscedasticity refers to the assumptions that dependent variable(s) exhibit 

equal levels of variance across the range of predictor variable(s).  According to Hair 

et al., (2006), homoscedasticity is desirable because the variance of the dependent 

variable being explained in the dependence relationship should not be concentrated 

in only a limited range of the independent values.   

Tests for homoscedasticity of two metric variables in methods such as 

multiple regression are best examined graphically, based on the dispersion of the 

dependent variable across the values of the independent variables.  In scatter plots, 

departures from an equal dispersion are shown by such shapes as cones (small 

dispersion at one side of the graph, large dispersion at the opposite side) or diamonds 

(a large number of points at the centre of the distribution).  See Figures 6.1a to 6.1e.  

Test for homoscedasticity found that only one independent variable (DSBT 

scores) violated this assumption.  Another independent variable (LAQ scores) had 

minimal violation.  However, no corrective action was needed as a quick check of 

multiple regression analysis using SPSS showed that these two independent variables 

LAQ scores (X4) and DSBT scores (X5) were not statistically significant contributors 

to the regression model. 

 

6.3.3 Normality 

 

Normality is required to use the F and t statistics.  Hence, the most 

fundamental assumption in multivariate analysis such as multiple regression analyses 
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is normality.  In this chapter, both the graphical plots and statistical tests were used to 

assess the actual degree of departure from normality.   

 

6.3.3.1 Graphical analysis of normality 

 
 

            (a)                  (b)   
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(e) (f)  

  

Figure 6.2:  Normal probability plots 
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Normal P-P Plot of CTSR
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Normal P-P Plot of LAQ
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Normal P-P Plot of DSBT
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A reliable approach of graphical analysis is the normal probability plot, 

which compares the cumulative distribution of actual data values with the cumulative 

distribution of a normal distribution.  The normal distribution forms a straight 

diagonal line, and the plotted data values are compared with the diagonal.  If a 

distribution is normal, the line representing the actual data distribution closely 

follows the diagonal.  See Figures 6.2a to 6.2f. 

 

6.3.3.2 Statistical tests of normality 

(i) Statistical tests of normality assess the degree to which the skewness and 

peakedness of the distribution vary from the normal distribution where 

Zskewness=skewness/√6/N and Zkurtosis=kurtosis/√24/N.  If either calculated z value 

exceeds the specified critical value, then the distribution is non-normal in terms of 

that characteristic.  Critical values are +/-2.58 for α=0.01 and +/-1.96 for α=0.05.  

(ii) Specific statistical tests for normality - the modified Kolmogorov-Smirnov test 

calculates the level of significance for the differences from a normal distribution.  

The Kolmogorov-Smirnov statistic with a Lilliefors significance level for testing 

normality is produced with the normal probability plot.  If the significance level is 

>0.05, normality is assumed. 

When viewing the shape characteristics, significant deviations were found for 

skewness (X2, X5 and Y) and kurtosis (X5).  The normal probability plots can also be 

used to identify the shape of the distribution.  Figures 6.2(c), (e) and (f) contain the 

normal probability plots for the three variables found to have non-normal distribution.  

These three variables (X2, X5 and Y) were also found to violate the statistical tests.  

Of the five independent variables, only X2 and X5 show any deviation from 

normality in the overall normality tests (See Table 6.1).  Overall, departures from 

normality are not so extreme in any of the variables.  
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Table 6.1 

Distributional characteristics and testing for normality 

 
Variables Shape descriptors 

 

        Skewness                  Kurtosis 

Statistical test for 

normality (the 

Kolmogorov-Smirmov 

test) 

 

Normal 

Probability 

Plots 

Independent 

Variables 

 

Statistic Z 

value 

Statistic Z value Statistic Significance Description of 

distribution 

TCCt (X1) .418 2.388 -.069 -.198 1.290 .072 normal 

        

CTSR (X2) 

 

 

TCRt (X3) 

 

.602 

 

 

-.203 

3.440 

 

 

-1.160 

-.577 

 

 

-.052 

-1.653 

 

 

-.148 

1.734 

 

 

1.461 

.005 

 

 

.028 

Negative  

Distribution 

 

≈normal 

 

LAQ (X4) 

 

.003 0.017 1.202 3.444 0.747 .632 normal 

DSBT (X5) 

 

-1.595 -9.114 1.905 5.458 5.325 .000 Uniform 

distribution 

 

Dependent 

Variable 

TRCt (Y) 

.665 3.800 -.432 -1.238 1.893 .002 Negative  

Distribution 

 

 

 

6.3.4 Section Summary 

   

The series of graphical and statistical tests directed towards assessing the 

assumptions underlying the multivariate techniques revealed relatively little in terms 

of violations of the assumptions.  Where violations were detected, they were 

relatively minor and should not present any serious problems in the course of the 

data analysis.  Although normality can have serious effects in small samples (fewer 

than 50 cases), the impact effectively diminishes when sample sizes reaches 200 

cases or more, as large sample sizes tend to diminish the detrimental effects of non-

normality.  According to Hair et al., (2006), even analysis with small sample sizes 

can sometimes withstand small, but significant departures from normality.  In this 

study, the use of multiple regression analysis to more accurately predict the criterion 

variable of representational competence far outweighs the little violation, and with 

the relatively large sample size (n=192), the procedure should be attempted. 
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6.4 Estimating the Regression Model and Assessing Overall Model Fit 

 

To derive the regression equation, the method of estimation must be decided 

and the number of independent variables to be retained determined.  Three basic 

tasks to be accomplished at this stage are:  (i) selecting a method for specifying the 

regression model to be estimated, (ii) assessing the statistical significance of the 

overall model in predicting the dependent variable, and (iii) determining whether any 

of the observations exert an undue influence on the results.  The detail procedure for 

each of these tasks was discussed in the following sub-sections. 

 

6.4.1 Selecting an estimation technique 

 

There are 5 independent variables to choose for inclusion in the regression 

equation.  The set of independent variables can either be exactly specified and the 

regression model used in a confirmatory approach or estimation technique used to 

pick and choose among the set of independent variables.  Estimation techniques that 

can be used include:  (i) confirmatory specification, (ii) sequential search methods, 

and (iii) combinatorial approach.   

 

6.4.1.1 Estimating the regression model using sequential search method 

 

In this study, the sequential search method - the stepwise regression, was 

used for estimating the regression model.  The stepwise estimation procedure is 

designed to develop a regression model with the fewest number of statistically 

significant independent variables and maximum predictive accuracy.  The ability of 

the stepwise method to add and delete makes it the preferred method of estimation 

technique.  Moreover, the stepwise procedure maximizes the incremental explained 

variance at each step of model making.  Although with computerised estimation 

procedures using SPSS, multiple regression analysis can be done almost instantly, 
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the procedure of the stepwise regression analysis needs to be discussed with 

reference to the findings of this study. 

 

Procedure of the stepwise regression analysis 

 

Stepwise estimation:  Step 1 - Entering the 1
st
 variable, X1 

 

Start with the simple regression model by selecting the one independent 

variable that is the most highly correlated with the independent variable.  The 

equation would be Y=b0 + b1X1.  Table 6.2 displays all the correlations among the 5 

independent variables and the correlations with the dependent variable (Y), which is 

representational competence in this study. 

 

Table 6.2 

Correlation matrix (n=192) 

 

 Y X1 X2 X3 X4 X5 

Dependent Variable       
Y    TRCt scores 

 
      

Independent Variables       
X1   TCCt  score 

 

0.745*** 1.000     

X2    CTSR score 

 

0.731*** 0.575*** 1.000    

X3    TCRt  score 

 

0.365*** 0.293*** 0.181** 1.000   

X4    LAQ   score 

 

0.178** 0.136* 0.087 0.100 1.000  

X5    DSBT score 

 

0.036 0.010 0.123* 0.006 -0.147* 1.000 

*** correlation significant at p<0.001   

  ** correlation significant at p<0.01    

    * correlation significant at p<0.05 

 

Examination of the correlation matrix (see Table 6.2) reveals that TCCt 

scores (X1) has the highest bivariate correlation of 0.745 with the dependent variable.  

The first step is to build a regression equation using just this single independent 

variable.  Table 6.3 shows the regression results of this first step. 
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Table 6.3 

Step 1 of the multiple regression analysis 

 

 

Step 1 – Variable entered:  TCCt score (X1) 

 
Multiple R .745 

 

Coefficient of Determination (R
2
) .555 

 

Adjusted R
2
 .552 

 

Standard error of the estimate 5.643 

 

 

Analysis of variance (ANOVA) 

 
 Sum of Squares 

 

df Mean Square F Sig. 

 

Regression 

 

7535.787 

 

1 

 

7535.787 

 

236.648 

 

.000
a
 

 

Residual 

 

6050.332 

 

190 

 

31.844 

  

 

Total 

 

13586.120 

 

191 

   

 

Variables entered into the regression model 

 
 Regression 

Coefficients 

 

Statistical 

Significance 

Correlations Collinearity 

Statistics 

Variable 
Entered 

 

 
B 

Std. 
Error 

 
Beta 

 
t 

 
Sig. 

Zero- 
order 

 
Partial 

 
Part 

 
Tolerance 

 
VIF 

(Const.) -3.286 

 

1.480  -2.221 .028 - - - - - 

X1 

TCCt 

scores 

 

1.576 

 

.102 

 

.745 

 

15.383 

 

.000 

 

.745 

 

.745 

 

.745 

 

1.000 

 

1.000 

 

Variables not entered into the regression model 

 
  

 

Beta In 

 

Statistical 

Significance 
 

 
Partial 

Correlation 

Collinearity  

Statistics 

 

t 

 

Sig. 

 

Tolerance 

 

VIF 

 

X2  CTSR scores 

 

.453a 

 

9.186 

 

.000 

 

.556 

 

.670 

 

1.493 

 

X3  TCRt scores 

 

.161 a  

 

3.257 

 

.001 

 

.231 

 

.914 

 

1.094 

 

X4  LAQ scores 

 

.078 a  

 

1.603 

 

.111 

 

.116 

 

.982 

 

1.019 

 

X5  DSBT scores 

 

.029 a  

 

.597 

 

.551 

 

.043 

 

1.000 

 

1.000 

 

a  Predictors in the Model: (Constant), TCCt 
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A discussion of the overall model fit as well as the first step of the model 

estimation is given below: 

(i) The multiple R is the same as the bivariate correlation (0.745) because in the 

first step of the stepwise estimation, the equation contains one variable. 

(ii) The coefficient of determination or R
2 

which is (0.745
2 

= 0.555 or 55.5%) 

indicates the percentage of total variation of representational competence (Y), 

explained by the regression model consisting of TCCt score (X1). 

(iii) The standard error of the estimate is a measure of the accuracy of predictions.  

It is a measure to assess the absolute size of the prediction error. 

(iv) ANOVA and F ratio – The ANOVA analysis provides the statistical test for 

the overall model fit in terms of the F ratio.  The total sum of squares 

(7535.787 + 6050.332 = 13586.120) is the squared error that would occur if 

only the mean of Y is used to predict the dependent variable, Y.  Using the 

values of TCCt scores (X1) to predict the dependent variable (Y) reduces the 

square error by 55.5% (7525.787/13586.120).  This reduction is statistically 

significant, F (1, 190) = 236.648, p < 0.001.   

 

Stepwise estimation:  Step 2 - Adding a 2
nd

 variable, X2 

 

 In this study, a 0.10 level is set for dropping variables from the equation.  The 

next step in a stepwise estimation is to check and delete any of the variables in the 

equation that now fall below the significant threshold, and once done, add the 

variable with the highest statistically significant partial correlation.  From Table 6.3, 

CTSR score (X2), with a partial correlation coefficient of 0.556 would be the next 

independent variable to be entered.  The following section provides the details of the 

newly formed regression model and the issues regarding its overall model fit, the 
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estimated coefficients, the impact of multicollinearity, and identification of a variable 

to add in the next step. 

Table 6.4 

Step 2 of the multiple regression analysis 

 

 

Step 2 – Variable entered:  CTSR score (X2) 

 
Multiple R .832

b
 

 

Coefficient of Determination (R
2
) .692 

 

Adjusted R
2
 .689 

 

Standard error of the estimate 4.704 

 

 

Analysis of variance 

 
 Sum of Squares 

 

df Mean Square F Sig. 

Regression 9403.208 

 

2 4701.604 212.437 .000
b
 

Residual 4182.911 

 

189 22.132   

Total 13586.120 

 

191    

 

Variables entered into the regression model 

 
 Regression 

Coefficients 

 

Statistical 

Significance 

Correlations Collinearity 

Statistics 

Variable 
Entered 

 

 
B 

Std. 
Error 

 
Beta 

 
t 

 
Sig. 

Zero- 
order 

 
Partial 

 
Part 

 
Tolerance 

 
VIF 

(Const.) 

 

-2.905 1.234  -2.353 .020 - - - - - 

X1 

 

1.025 .104 .484 9.819 .000 .745 .581 .396 .670 1.493 

X2 .783 

 

.085 .453 9.186 .000 .731 .556 

 

.371 .670 1.493 

 

Variables not entered into the regression model 

 
  

 

Beta In 

 

Statistical 

Significance 

 

 
Partial 

Correlation 

Collinearity  

Statistics 
t Sig. Tolerance VIF 

X3  TCRt scores 

 
.155

b
 3.787 .000 .266 .914 1.094 

X4  LAQ scores 

 
.074

b
  1.822 .070 .132 .981 1.019 

X5  DSBT scores 

 
-.025

b
  -.603 .547 -.044 .979 1.021 

b  Predictors in the Model: (Constant), TCCt, CTSR 
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Overall model fit 

With the addition of X2, the multiple R and R
2 

values have both increased (see Table 

6.4).  R
2
 increased by 0.137 or 13.7%, yielding a total variance explained (R

2
) of 

0.692 or 69.2%.  The adjusted R
2
 also increased to 0.689 and the standard error of 

the estimate decreased from 5.643 to 4.704.  Both of these measures demonstrate the 

improvement in overall model fit. 

 

Estimated coefficients 

The regression coefficient for X2 is 0.783 and the beta coefficient is 0.453 (see Table 

6.4).  Although not as large as the beta for X1 (0.484), X2 still has a substantial 

impact on the overall regression model.  The coefficient is statistically significant at 

p<0.001.   

 

Impact of multicollinearity 

Multicollinearity poses a problem.  With a tolerance value of 0.670 for both X1 and 

X2, 33% of either variance is explained by the other.  Multicollinearity results in 

substantial change for either the value of b1 (from 1.576 to 1.025) or the beta value of 

X1 (from 0.745 to 0.484) in step 1 of the regression analysis.  It further indicates that 

the variables X1 and X2 are moderately correlated, with a correlation coefficient of 

0.575 (Table 6.2).  However, the t values indicate that both X1 and X2 are statistically 

significant predictors of Y.   

 

Identifying variables to add 

Since both X1 and X2 make significant contributions, neither will be dropped in the 

stepwise estimation procedure.  Looking at the partial correlation for the variables 

not in the equation in Table 6.4, X3 has the highest partial correlation (0.266), which 

is also statistically significant at p< 0.001.   
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 Stepwise estimation:  Step 3 - A 3
rd

 variable, X3 is added 

  The next step in stepwise estimation follows the same pattern of (i) first 

checking and deleting any variables in the equation falling below the significant 

threshold and then, (ii) adding the variable with the highest statistically significant 

partial correlation.  The followings section gives the details of the newly formed 

regression model and the issues regarding its overall model fit, the estimated 

coefficients, the impact of multicollinearity, and identification of a variable to add in 

the next step. 

 

Overall model fit 

 

Entering X3 into the regression equation gives the results shown in Table 6.5.  The 

value of R
2
 increased by (0.714 - 0.692 = 0.220) or 2.2%, the adjusted R

2
 increased 

to 0.709, the standard error of the estimate decreased to 4.547.  The new variable 

entered, X3, makes relatively little contribution to overall model fit. 

 

Estimated coefficients 

The addition of X3 brought a 3
rd

 statistically significant predictor of representational 

competence into the regression equation.  However, the beta coefficient of 0.155 is 

the lowest among the three predictor variables in the model. 

 

Effects of multicollinearity 

Of the three variables in the regression model, the highest tolerance value is for X3 

(0.914), indicating that only 8.6% of variance of X3 is accounted for by the other two 

variables, X1 and X2.  Moreover, with the inclusion of X3, the tolerance values of X1 

and X2 have been reduced to 0.633 (from 0.670) for X1 and to 0.669 (from 0.670) for 

X2 in step 2 of the regression analysis.  Judging from the change in tolerance values 

of X1 and X2, it could be inferred that the variables X3 and X2 are relatively 
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independent whereas X3 and X1 are relatively more correlated to each other.  The 

simple correlations between X3 and X2 (r=0.181, p<0.01) and between X3 and X1 

(r=0.293, p<0.001), also supports these inferences (see Table 6.2). 

 

Identifying variable to add  

At this stage, only three variables (X1, X2, and X3) have the statistically significant 

partial correlation necessary for inclusion in the regression equation.  By viewing the 

bivariate correlations of each variable with Y in Table 6.2, it can be seen that X4 is 

weakly correlated with Y (r= 0.178, p<0.01), while the independent variable X5 had 

non-significant bivariate correlation (r=0.036) with the dependent variable.  The 

partial correlations of both X4 and X5 are non-significant at each stage of the 

regression analysis. 

 

  As expected, in subsequent steps in the stepwise analysis, the 4
th

 and 5
th

 

variables (X4 and X5) are not entered into the regression equation, and neither are any 

of the variables entered previously removed.   

  For purposes of conciseness, details of these subsequent steps and the 

repeating stepwise estimation were omitted.  The final regression model shall be the 

regression model with three variables included (X1, X2, and X3).  That is:  the model 

at step 3 of the regression analysis.  See Table 6.5.   

  In this estimation, the probability of F to enter and to remove was set at 0.05 

and 0.10 respectively.  When the stepwise procedure was repeated at a more stringent 

threshold of 0.01 and 0.05 respectively, the regression results remained unchanged.   

 

Overall model fit 

 

The final model (see Table 6.5) with three independent variables explains almost 

71% of the variance of representational competence (Y).  The adjusted R
2
 of 0.709 
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indicates no over-fitting of the model and that the results should be generalizable 

from the perspective of the ratio of observations to independent variables in the 

equation (192/3 = 64:1) for the final model. 

 

Estimated coefficients 

 

The three regression coefficients, plus the constant, are all statistically significant at 

p< 0.001.  See Table 6.5 

 

Impact of multicollinearity 

The impact of multicollinearity, in particular between X1 and X2, is substantial.  With 

tolerance values of 0.633 and 0.669 for X1 and X2 respectively, at least one-third 

(36.7% and 33.1% respectively) of their variance is accounted for by the other 

variables in the equation.  Although multicollinearity will always affect a variable’s 

contribution to the regression model (p.219, Hair et al., 2006), both X1 and X2 are 

still substantial contributors in the regression model.  In contrast, X3, despite a high 

tolerance value of 0.914, is a marginal contributor in the regression model (β =0.155).  

See Table 6.5.   

 

  The regression model at this stage consists of three independent variables:  X1, 

X2, and X3.  Examining the partial correlation of variables not in the equation at this 

stage, none of the remaining variables have a significant partial correlation at p< 0.05 

needed for entry.  Moreover, all of the variables in the regression model remain 

statistically significant at p< 0.001, avoiding the need to remove a variable in the 

stepwise process (see Table 6.5).  Thus, no more variables are considered for entry or 

exit and the model is finalized. 
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Table 6.5 

Step 3 of the multiple regression analysis 

 

 

Step 3 – Variable entered:  TCRt  score (X3) 

 
 

Multiple R 

 

.845
c
 

 

Coefficient of Determination (R
2
) 

 

.714 

 

Adjusted R
2
 

 

.709 

 

Standard error of the estimate 

 

4.547 

 

Analysis of variance 

 
  

Sum of Squares 

 

df 

 

Mean Square 

 

F 

 

Sig. 

 

Regression 

 

9699.731 

 

3 

 

3233.244 

 

156.405 

 

.000
c
 

 

Residual 

 

3886.389 

 

188 

 

20.672 

  

 

Total 

 

13586.120 

 

191 

   

 

Variables entered into the regression model 

 
  

Regression 

Coefficients 

 

Statistical 

Significance 

 

Correlations 

 

Collinearity 

Statistics 
 
Variable 

Entered 

 
 

B 

 
Std. 

Error 

 
 

Beta 

 
 

t 

 
 

Sig. 

 
Zero- 

order 

 
 

Partial 

 
 

Part 

 
 

Tolerance 

 
 

VIF 

 

Const. 

 

-9.731 

 

2.161 

  

-4.502 

 

.000 

 

 

 

 

 

 

  

 

X1 

 

.933 

 

.104 

 

.441 

 

8.988 

 

.000 

 

.745 

 

.548 

 

.351 

 

.633 

 

1.580 

 

X2 

 

.777 

 

.082 

 

.450 

 

9.440 

 

.000 

 

.731 

 

.567 

 

.368 

 

.669 

 

1.494 

 

X3 

 

.421 

 

.111 

 

.155 

 

3.787 

 

.000 

 

.365 

 

.266 

 

.148 

 

.914 

 

1.094 

 

Variables not entered into the regression model 

 
  

 

Beta In 

 

 

Statistical 

Significance 

 

 
Partial 

Correlation 

 

Collinearity  

Statistics 
 
t 

 
Sig. 

 
Tolerance 

 
VIF 

 

X4  LAQ scores 
 

.065
c
 

 

1.644 

 

.102 

 

.119 

 

.978 

 

1.023 
 

X5  DSBT scores 
 

-.025
c
 

 

-.626 

 

.532 

 

-.046 

 

.979 

 

1.021 

 

c  Predictors in the Model: (Constant), TCCt, CTSR, TCRt 
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6.4.1.2 Section summary 

 

  Table 6.6 provides a step-by-step summary detailing the measures of overall 

fit for the regression model derived, in predicting representational competence.   

 

Table 6.6 

Model summary of stepwise multiple regression
 

 

Model Summary
d 

 

                            Overall Model Fit                                                  R
2
 Change Statistics 

S 

t 

e 

p 

 

 

 

 

R 

 

 

 

R
2
 

 

 

 

R
2
 adj 

 

 

Std. Error  

of the 

Estimate 

 

 

R
2
 

Change 

 

 

 

F 
 
Change 

 

 

 

df1 

 

 

 

df2 

 

 

Sig. F
  

Change 

 

1 

 

.745
a
 

 

.555 

 

.552 

 

5.643 

 

.555 

 

236.648 

 

1 

 

190 

 

.000
a
 

 

2 

 

.832
b
 

 

.692 

 

.689 

 

4.704 

 

.137 

 

212.437 

 

2 

 

189 

 

.000
b
 

 

3 

 

.845
c
 

 

.714 

 

.709 

 

4.547 

 

.022 

 

156.405 

 

3 

 

188 

 

.000
c 

 

 
a  Predictors: (Constant), TCCt 

b  Predictors: (Constant), TCCt, CTSR 

c  Predictors: (Constant), TCCt, CTSR, TCRt 

d  Dependent Variable: TRCt 

 

   

  From Table 6.6, it could be seen that the first two variables added to the 

equation made substantial contributions to the overall model fit, with substantive 

increase in the R
2
 and adjusted R

2
, while decreasing the standard error of the estimate.  

It could be inferred that variables X1 and X2 are important in assessing overall model 

fit.  With only the first variable (X1), almost 55% of the variance in representational 

competence is explained.  The second variable (X2) explains about 14% of the 

remaining variance, while the third variable, although statistically significant, makes 

much smaller contribution.  X3 only explains about 2% of the variance. 
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6.4.2 Assessing the variate for meeting the assumptions of regression analysis 

 

In multiple regression, once the variate is derived, it acts collectively in 

predicting the dependent variable, which necessitates assessing the assumptions not 

only for the individual variables but also for the variate itself.  Therefore, testing for 

assumptions must occur not only in the initial phases of the regression, but also after 

the model has been estimated.  Graphical analyses such as partial regression plots, 

residual plots, and normal probability plots are the most widely used methods of 

assessing assumptions for the variate.  There are also statistical tests that can 

complement the visual examination of the residual plots.   

 

6.4.2.1 Linearity of the phenomenon 

The concept of correlation is based on a linear relationship, thus making it a 

critical issue in regression analysis.  Partial regression plots show the relationship of 

a single independent variable to the dependent variable, controlling for the effects of 

all other independent variables.  The scatterplot of points depicts the partial 

correlation between the two variables, with the effects of other independent variables 

held constant. 

Visual examination of the partial regression plots (Figures 6.3a to 6.3e) does 

not reveal any non-linear relationship between the dependent variable and any of the 

independent variable.  Hence, no corrective action is deemed necessary. 
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   (a)             (b) 

 

 

  
     

(c)              (d) 

 

 

 
                   (e) 

 

 

Figure 6.3:  Partial regression plots of the independent variables 
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6.4.2.2 Normality of the error term distribution 

 

The most frequently encountered assumption violation is non-normality of 

the independent or dependent variables or both.  The simplest diagnostic test for 

normality is a visual check of the histogram (Figure 6.4) that compares the observed 

data values with a distribution approximating the normal distribution. 

 
 

 

Figure 6.4:  Histogram of the dependent variable 

 

A better method is the use of normal probability plots where the standardized 

residuals are compared with the normal distribution.  The normal distribution makes 

a straight diagonal line, and the plotted residuals are compared with the diagonal.  If 

a distribution is normal, the residual line closely follows the diagonal.  See Figure 6.5. 

Visual examination of the histogram (Figure 6.4) and the normal probability 

plot (Figure 6.5) shows little or no violation of normality of the dependent variable.     
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Figure 6.5:  Normal probability plot of regression standardised residuals 

 

 

6.4.3 Identifying unusual observations 

 

To increase the predictive accuracy of the model and the validity of the 

estimated coefficients, influential observations such as outliers need to be identified.  

Inspection of the partial regression plots shows only one outlier is detected in Figure 

6.3d.  However, since learning orientations (measured by the LAQ score) is not a 

significant contributor to the final regression model, no action was needed.         

 

 

6.5 Interpreting the Results of Regression or the Regression Variate 

 

After the model estimation is completed, the regression variate needs to be 

interpreted by assessing the estimated regression coefficients for their explanation of 

the dependent variables. 

 

6.5.1 Interpreting and using the regression coefficients 

 

Multiple regression provides a means of objectively assessing the degree and 

character of the relationship between dependent and independent variables by 

forming the variate of independent variables and then examining the magnitude, sign, 
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and statistical significance of the regression coefficient for each of the independent 

variable.  In this way, the independent variable, in addition to their collective 

prediction of the dependent variable, may also be considered for their individual 

contribution to the variate and its predictions.  The regression coefficients for the 

regression equation with 3 independent variables (X1, X2, and X3), all statistically 

significant at p<0.001, are shown in Table 6.7 below. 

 

Table 6.7 

Coefficients of variables in the regression equation 

 

 Variables Regression coefficients 

 

Statistical significance 

b 

 

Std. error β t sig. 

[Constant] 

 

-9.731 2.161 - -4.502 .000 

X1 TCCt score 

 

.933 .104 .441 8.988 .000 

X2 CTSR score 

 

.777 .082 .450 9.440 .000 

X3 TCRt score 

 

.421 .111 .155 3.787 .000 

 

 

The regression coefficients play two key functions in meeting the objectives 

of prediction and explanation for any regression analysis.  Comparison between 

regression coefficients allows for a relative assessment of each variable’s importance 

in the regression model. 

 

6.5.1.1 Prediction 

Prediction is an integral element in regression analysis.  It is important for a 

regression model to have accurate prediction to support its validity.  Independent 

variable with larger regression coefficient (b) makes a greater contribution to the 

predicted value.   
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All the three independent variables, including the constant, were statistically 

significant at p < 0.001, suggesting that they all make a substantive contribution to 

the prediction.  In the predictive process, apart from predicting the value of Y 

(representational competence), the constant provides no insight for interpretation.  In 

assessing regression coefficients, the sign of the regression coefficients indicates the 

relationship (+/-) between the independent and dependent variables.  Besides the 

constant term, all the other variables have positive coefficients, suggesting that 

higher values of these independent variables (X1, X2, and X3) lead to higher value of 

Y. 

The regression equation derived in this study in the form 

Y = b0 + b1X1 + b2 X2 + b3X3, that is:  Y = -9.731 + 0.933X1 + 0.777X2 + 0.421X3, 

can be used to estimate the representational competence of a student.  The expected 

value of Y could be calculated if values for X1, X2, and X3 were available.  For 

example:  The representational competence of a student with the set of data X1=24, 

X2=20, X3=22 could be calculated by substituting the values for X1, X2, and X3 into 

the regression equation and calculate the predicted value of Y.   

Y= -9.731 + 0.933(24) + 0.777(20) + 0.421(22)    = 37.463 

The regression equation would predict that this student would have a TRCt score of 

37.46. 

 

6.5.1.2 Explanation 

 

For explanatory purposes, the regression coefficients become indicators of 

the relative impact and importance of the independent variables in their relationship 

with the dependent variable.  Insight into the relationship between independent and 

dependent variables is gained by examining the relative contributions of each 

independent variable. 



 321 

In order to use the regression coefficients for explanatory purposes, all the 

independent variables must be comparable in both scale and variability.  These 

objectives can be achieved by standardizing the regression coefficients to give the 

standardized or beta coefficients.  Beta coefficients reflect the relative impact on the 

dependent variable of a change in one standard deviation in each independent 

variable.  It allows for a direct comparison between coefficients as to their relative 

explanatory power of the independent variables.   

Interpretation using the regression versus the beta coefficients (β) yields 

substantially different results.  For example, the regression coefficients (b) indicate 

that X1 (0.933) is the most important while X3 (0.421) is only marginally important.  

The beta coefficients (β), however, show a different set of results.  While X3 (0.155) 

remains marginally important, X1 (0.441) and X2 (0.450) are now almost as 

important, approximately three times more important compared to X3 (see Table 6.7). 

 

 

6.5.2 Measuring the degree and impact of multicollinearity 

 

In interpreting the regression variate, it is necessary to assess the degree of 

multicollinearity and to determine its impact on the results.  The two most common 

measures for assessing collinearity are tolerance and variance inflation factor (VIF).  

Tolerance value is the amount of a variable unexplained by the other independent 

variables.  Small tolerance values (and therefore large VIF values) denotes high 

collinearity.  Generally accepted levels of multicollinearity are: tolerance values up 

to 0.10, corresponding to a VIF of 10.  However, problems with multicollinearity 

may also be seen at much lower levels of collinearity and multicollinearity. 
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6.5.2.1 Diagnosing multicollinearity 

 

In this study, tolerance values for the variables in the regression equation 

range from 0.633 (X1) to 0.914 (X3), indicating a rather narrow range of 

multicollinearity effects.  (see Table 6.8).  Likewise, the VIF values range from 

1.580 (X1) to 1.094 (X3).  Although none of these values indicate levels of 

multicollinearity that should seriously distort the regression variate, their effects on 

both the estimation and interpretation process need to be examined. 

 

6.5.2.2 The effects of multicollinearity 

 

(i) Multicollinearity creates “shared” variance between variables, thus decreasing the 

ability to predict the dependent measure as well as ascertain the relative contributions 

of each independent variable.  As multicollinearity increases, the total variance 

explained decreases.  Moreover, the amount of unique variance for the independent 

variable is reduced to levels that make estimation of their individual effects quite 

problematic particularly in explanation. 

(ii) Multicollinearity can have substantive effect not only on the predictive ability of 

the regression models, but also on the estimation of the regression coefficients and 

their statistical significance tests.  The impact of multicollinearity had been discussed 

during the estimation process (see Section 6.4.1).   

(iii) Multicollinearity creates problems in interpretation.  As multicollinearity occurs, 

the process for identifying the unique effects of independent variables becomes 

increasingly difficult.  Since the regression coefficients represent the amount of 

unique variance explained by each independent variable, hence, as multicollinearity 

results in larger portions of shared variance and lower levels of unique variance, the 

effects of the individual independent variables become less distinguishable. 

 



 323 

6.5.2.3 Multicollinearity in the regression model  

Although bivariate correlations of > 0.70 may result in problems, even lower 

correlations may be problematic if they are higher than the correlations between the 

independent and dependent variables.  In this study, a correlation of 0.575 between 

X1 and X2 represents “shared” variance of almost 33%.  This can impact both 

explanation and estimation of the regression results.   

Even values much lower than the suggested thresholds may result in 

interpretation or estimation problems, particularly when the relationships with the 

dependent measure is weaker.  A correlation of 0.293 between X1 and X3 creates a 

“shared” variance of about 9%, almost as high as the explained variance of Y by X3 

(correlation = 0.365; variance explained ≈ 13%). 

Table 6.8 

Collinearity statistics of variables in the regression equation 

 

Variable 

 

Tolerance (>0.5) VIF (<10) 

X1 (TCCt score) 

 

0.633 1.580 

X2 (CTSR score) 

 

0.699 1.494 

X3 (TCRt score) 

 

0.914 1.094 

 

With a bivariate correlation of 0.745 and 0.731 with the dependent variable 

respectively, both X1 and X2 are, by themselves, important predictors of 

representational competence, Y (see Table 6.2).  However, with a bivariate 

correlation of 0.575, X1 and X2 are fairly highly correlated.  Hence, when included in 

the regression equation, their part correlation are respectively X1=0.351, X2=0.386, 

and X3=0.148.  This has resulted in less unique explanatory power for each 

individual independent variable.  For example, with a tolerance value of 0.633 for X1, 

36.7% of variance is explained by the other independent variables.    
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6.6 Validating the Regression Model 

 

To ensure that the regression results are not specific only to the sample used 

in estimation but more generalizeble to the population, the regression model just 

derived needs to be validated.  Obtaining another sample from the population and 

assess the correspondence of the results from the two samples is limited by such 

factors as time pressure, cost, or availability of respondents.  Hence, in this study, the 

validity of the results shall be assessed in two different approaches.  These are:  (i) 

assessment of the adjusted R
2
 and the degrees of freedom, and (ii) evaluating 

alternative regression models. 

 

6.6.1 Assessment of the adjusted R
2 

and degrees of freedom 

From Table 6.6, the values of R
2 

and adjusted R
2 

are 0.714 and 0.709 

respectively, a difference of only 0.005.  Thus, it can be seen that with 3 predictor 

variables in the regression model, there is little loss in predictive power.  This 

indicates a lack of over-fitting of the model.       

 In addition, in multiple regression, the degree of generalizability is 

represented by the degree of freedom (df), calculated as:  df = sample size – no. of 

estimated parameters.  The larger the df, the more generalizable are the results.  With 

3 variables in the model for a sample size of n=192, an adequate ratio of observations 

to variables (64:1) in the variate is maintained. 

6.6.2 Evaluating other regression models 

 

Estimation of the regression model using alternative methods such as the 

combinatorial approach or the confirmatory approach could help to validate the 

results obtained through stepwise multiple regression. 
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6.6.2.1 Estimating the regression model using the combinatorial approach 

 

The combinatorial approach is primarily a generalized search process across 

all possible combinations of independent variables and the best-fitting set of 

variables is identified.  With computerized estimation procedures, regression models 

can be generated almost instantly for any number of measures of predictive fit.   

With 5 potential independent variables to be included, there are 5! or 120 

possible combinations or regression models.  However, at this stage, the researcher is 

only interested in regression models with different number of independent variables 

regardless of the arrangement.  The independent variables were entered, one at a time, 

in decreasing order of their bivariate correlation with the dependent variable (see the 

correlation matrix in Table 6.2).  Hence, TCCt score (X1) was entered first, followed 

by CTSR score (X2), TCRt score (X3), LAQ score (X4), and DSBT score (X5).  Using 

SPSS, five regression models were generated.  Table 6.9 shows the multiple 

regression results using the combinatorial approach with different number of 

independent variables. 

  The regression model derived using the combinatorial approach also 

indicated that there were only three statistically significant predictors of 

representational competence.  These are:  TCCt score (X1), CTSR score (X2) and 

TCRt score (X3).  The 4
th

 variable, LAQ score (X4) is statistically not significant and 

contributes just 0.004 and 0.003 to the values of R
2
 and adjusted R

2
 respectively.  

The 5
th

 variable, DBST score (X5) is also statistically not significant, does not 

contribute to the R
2
 value and instead, it causes the adjusted R

2
 value to decrease 

while increasing the standard error of the estimate.  Hence, in terms of prediction, 

model 3 which explains almost 71% of the variance of representational competence 

has the best overall model fit.  See Table 6.9. 
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Table 6.9 

Model summary of the combinatorial approach 
 

 

Model Summary
f 

 

Overall Model Fit 

 

R
2
 Change Statistics 

M 

o 

d 

e 

l 

 

 

 

 

R 

 

 

 

R
2
 

 

 

Adjusted 

R
2
 

 

Std. Error 

of the 

Estimate 

 

 

R
2
 

Change 

 

 

 

F
 
Change 

 

 

 

df1 

 

 

 

df2 

 

 

Sig. F
 

Change 

1 

 

.745
a
 .555 .552 5.643 .555 236.648 1 190 .000 

2 

 

.832
b
 .692 .689 4.704 .137 84.377 1 189 .000 

3 

 

.845
c
 .714 .709 4.547 .022 14.344 1 188 .000 

4 

 

.847
d
 .718 .712 4.526 .004 2.701 1 187 .102 

5 

 

.847
e
 .718 .711 4.537 .000 .146 1 186 .703 

a  Predictors: (Constant), TCCt 

b  Predictors: (Constant), TCCt, CTSR 

c  Predictors: (Constant), TCCt, CTSR, TCRt 

d  Predictors: (Constant), TCCt, CTSR, TCRt, LAQ 

e  Predictors: (Constant), TCCt, CTSR, TCRt, LAQ, DSBT 

f  Dependent Variable: TRCt 

 

 

Table 6.10 

Variables entered into the regression model  

(stepwise regression and combinatorial approach) 

 
 

 

Variable 

Entered 

 

Regression 

Coefficients 

 

Statistical 

Significance 

 

Correlations 

Collinearity 

Statistics 

 
B 

Std. 
Error 

 
Beta 

 
t 

 
Sig. 

Zero- 
order 

 
Partial 

 
Part 

 
Tolerance 

 
VIF 

 

Const. 

 

-9.731 

 

2.161 

  

-4.502 

 

.000 

 

 

 

 

 

 

  

 

X1 

 

.933 

 

.104 

 

.441 

 

8.988 

 

.000 

 

.745 

 

.548 

 

.351 

 

.633 

 

1.580 

 

X2 

 

.777 

 

.082 

 

.450 

 

9.440 

 

.000 

 

.731 

 

.567 

 

.368 

 

.669 

 

1.494 

 

X3 

 

.421 

 

.111 

 

.155 

 

3.787 

 

.000 

 

.365 

 

.266 

 

.148 

 

.914 

 

1.094 

 

  The variables entered into the regression equation using stepwise regression, 

combinatorial approach as well as confirmatory approach, all share the same sets of 

regression coefficients, correlations and collinearity statistics (see Tables 6.5, 6.10 

and 6.12).  Hence, in terms of explanation, there is no difference between the 

different regression models. 
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6.6.2.2 Estimating the regression model using the confirmatory specification 

 

This approach includes all the variables at the same time (simultaneous 

regression).  The potential impacts of multicollinearity on the selection of 

independent variables and the effects on overall model fit can be judged.  This 

approach is particularly appropriate for validation purposes (Hair et al., 2006, p.228).  

Hence, it was used for validating the results of regression in this study.  Tables 6.11 

to 6.16 show the multiple regression results using the confirmatory approach with (i) 

all three, (ii) all four, and (iii) all five independent variables directly entered into the 

regression equation at one time. 

 

Table 6.11 

Model summary of the confirmatory approach (with 3 predictor variables) 

 

Model Summary
b
 

 

Overall Model Fit 

 

R
2
 Change Statistics 

M 

o 

d 

e 

l 

 

 

R 

 

 

R
2
 

 

Adjusted 

R
2
 

Std. Error 

of the 

Estimate 

 

R
2
 

Change 

 

 

F 
 
Change 

 

 

df1 

 

 

df2 

 

Sig. F
 

Change 

 

1 

 

.845
a
 

 

.714 

 

.709 

 

4.547 

 

.714 

 

156.405 

 

3 

 

188 

 

.000
a
 

 

a  Predictors: (Constant), TCRt, CTSR, TCCt, 

b  Dependent Variable: TRCt 

 

 

Table 6.12   
Variables entered into the regression model - Coefficients

a
 

(with 3 predictor variables) 

 
 
 

Variable 

Entered 

 

Regression 

Coefficients 

 

Statistical 

Significance 

Correlations Collinearity 

Statistics 

 
B 

Std. 
Error 

 
Beta 

 
t 

 
Sig. 

Zero- 
order 

 
Partial 

 
Part 

 
Tolerance 

 
VIF 

 

(Const.) 

 

-9.731 

 

2.161 

  

-4.502 

 

.000 

 

 

 

 

 

 

  

 

X1  

 

.933 

 

.104 

 

.441 

 

8.988 

 

.000 

 

.745 

 

.548 

 

.351 

 

.633 

 

1.580 

 

X2 

 

.777 

 

.082 

 

.450 

 

9.440 

 

.000 

 

.731 

 

.567 

 

.368 

 

.669 

 

1.494 

 

X3 

 

.421 

 

.111 

 

.155 

 

3.787 

 

.000 

 

.365 

 

.266 

 

.148 

 

.914 

 

1.094 

 
a Dependent variable:  TRCt 
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Table 6.13 

Model summary of the confirmatory approach (with 4 predictor variables)
 

 

Model Summary
b
 

 

Overall Model Fit 

 

R
2
 Change Statistics 

M 

o 

d 

e 

l 

 

 

R 

 

 

R
2
 

 

Adjusted 

R
2
 

Std. Error 

of the 

Estimate 

 

R
2
 

Change 

 

 

F Change 

 

 

df1 

 

 

df2 

 

Sig. F
 

Change 

 

1 

 

.847
a
 

 

.718 

 

.712 

 

4.526 

 

.718 

 

119.040 

 

4 

 

187 

 

.000
a
 

 

a  Predictors: (Constant), LAQ, CTSR, TCRt, TCCt 

b  Dependent Variable: TRCt 

 

 

Table 6.14 

Variables entered into the regression model - Coefficients
a
 

(with 4 predictor variables) 

 
 

 
Variable 

Entered 

 

Regression 

Coefficients 

 

Statistical 

Significance 

Correlations Collinearity 

Statistics 

 
B 

Std. 
Error 

 
Beta 

 
t 

 
Sig. 

Zero- 
order 

 
Partial 

 
Part 

 
Tolerance 

 
VIF 

 

(Const.) 

 

-14.064 

 

3.403 

  

-4.133 

 

.000 

 

 

 

 

 

 

  

 

X1 

 

.918 

 

.104 

 

.434 

 

8.851 

 

.000 

 

.745 

 

.543 

 

.344 

 

.628 

 

1.593 

 

X2 

 

.776 

 

.082 

 

.449 

 

9.466 

 

.000 

 

.731 

 

.569 

 

.368 

 

.669 

 

1.494 

 

X3 

 

.410 

 

.111 

 

.150 

 

3.692 

 

.000 

 

.365 

 

.261 

 

.143 

 

.910 

 

1.099 

 

X4 

 

.079 

 

.048 

 

.065 

 

1.644 

 

.102 

 

.178 

 

.119 

 

.064 

 

.978 

 

1.023 

 

a Dependent variable:  TRCt 

 

 

Table 6.15 

Model summary of the confirmatory approach (with 5 predictor variables)
 

 

Model Summary
b
 

 

Overall Model Fit 

 

R
2
 Change Statistics 

M 

o 

d 

e 

l 

 

 

R 

 

 

R
2
 

 

Adjusted 

R
2
 

Std. Error 

of the 

Estimate 

 

R
2
 

Change 

 

 

F Change 

 

 

df1 

 

 

df2 

 

Sig. F
 

Change 

 

1 

 

.847
a
 

 

.718 

 

.711 

 

4.537 

 

.718 

 

94.827 

 

5 

 

186 

 

.000
a
 

 

a  Predictors: (Constant), DSBT, TCRt, LAQ, CTSR, TCCt 

b  Dependent Variable: TRCt 
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Table 6.16 

Variables entered into the regression model - Coefficients
a
 

(with 5 predictor variables)
 

 
 

 

Variable 
Entered 

 

Regression 

Coefficients 

 

Statistical 

Significance 

Correlations Collinearity 

Statistics 

 

B 
 

Std. 

Error 

 

Beta 

 

t 

 

Sig. 

Zero- 

order 

 

Partial 

 

Part 

 

Tolerance 

 

VIF 

 

(Const.) 

 

-13.039 

 

4. 339 

 

.433 

 

-3.005 

 

.000 
 

 

 

 

 

 

  

 
X1 

 
.916 

 
.104 

 
.452 

 
8.792 

 
.000 

 
.745 

 
.542 

 

.342 

 

.626 

 

1.598 
 

X2 

 

.781 

 

.083 

 

.150 

 

9.398 

 

.000 

 

.731 

 

.567 
 

.366 

 

.655 

 

1.527 
 
X3 

 
.410 

 
.111 

 
.062 

 
3.688 

 
.000 

 
.365 

 
.261 

 

.144 

 

.910 

 

1.099 
 

X4 

 

.076 

 

.048 

 

-.015 

 

1.562 

 

.120 

 

.178 

 

.114 
 

.061 

 

.955 

 

1.047 
 
X5 

 
-.119 

 

.311 

 
.433 

 
-.382 

 
.703 

 
.036 

 
-.028 

 

-.015 

 

.957 

 

1.045 

 

a Dependent variable:  TRCt 

 

 

 

 Although with four and even five predictor variables (Tables 6.13 and 6.15), 

the overall relationship was still significant [F (4, 187) = 119.040, p < 0.001;            

F (5, 186) = 94.827, p < 0.001], only three of the predictor variables were 

statistically significant, at p < 0.001 (Tables 6.14 and 6.16).  Hence, estimation of the 

regression model using the confirmatory specification (Table 6.12) reaffirms the 

regression results derived through both the stepwise procedure (see Table 6.5 - 

Variables entered into the regression model) and the combinatorial approach (see 

Table 6.10).  That is:  there were only three statistically significant predictors of 

representational competence which collectively explains about 71% of the variance 

of representational competence.  These were:  understanding of chemical concepts or 

prior knowledge I, (X1), developmental level, (X2) and understanding of chemical 

representations or prior knowledge II, (X3). 
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6.6.3 Section summary 

 

Unless estimated from the entire population, no regression model is the final 

and absolute model.  This study is only an attempt to look for the best model.  A 

model summary of the final regression model is given in Table 6.17.  

 

Table 6.17 

The final regression model - Model summary
d
  

 

Predictor 

Variable 

Multiple  

R 

 

R
2
 

Adjusted 

R
2
 

R
2 

change 

 

b 

 

β 

Cumulative % 

of variance 

explained 

X1  

TCCt score 

 

.745
a
 

 

.555 

 

.552 

 

.555 

 

.933*** 

 

.441*** 

 

55.5 

X2  

CTSR 

score 

 

.832
b
 

 

.692 

 

.689 

 

.137 

 

.777*** 

 

.450*** 

 

69.2 

X3  

TCRt score 

 

 

.845
c
 

 

.714 

 

.709 

 

.022 

 

.421*** 

 

.155*** 

 

71.4 

a Predictors:  (Constant), TCCt              ***  p < .001 

b Predictors:  (Constant), TCCt, CTSR 

c Predictors:  (Constant), TCCt, CTSR, TCRt 

d Dependent variable:  TRCt 

 

 

The regression model with three independent variables (TCCt score, CTSR 

score, and TCRt score) explains more than 71% of the variance of representational 

competence.  Prior knowledge (understanding of chemical concepts, X1, and 

understanding of chemical representations, X3) accounts for approximately 58% of 

the variance, while developmental level accounts for the remaining 14%.  The 

regression model was a good fit (adjusted R
2
 = 71%).  The overall relationship was 

significant, F (3, 188) = 156.405, p < 0.001.  With other variables held constant, 

TRCt score were positively related to TCCt score, CTSR score, and TCRt score.  

TRCt score increases by 0.933, 0.777, and 0.421 for every extra point of TCCt score, 

CTSR score, and TCRt score respectively.  The effect of TCCt score, CTSR score, 

and TCRt score were all statistically significant at p< 0.001. 
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6.7 Linking the Regression Model with Theory 

 

As mentioned earlier in Section 6.1, two objectives of the multiple regression 

analysis in this study were to predict representational competence and to identify the 

factor influencing representational competence.  Since the predictor variables of 

representational competence had already been identified and prediction of 

representational competence discussed in Section 6.5.1.1, the main task of this 

section is to explain the influence of the three predictor variables on representational 

competence in terms of theory.   

 The final regression model in Table 6.17 shows that with only the 1
st
 variable 

(X1), almost 55.5% of the variance of representational competence is explained.  The 

2
nd

 variable (X2) explains almost 14% of the remaining variance, while the 3
rd

 

variable, X3 only explains approximately 2% of the variance. 

  In terms of prediction, the regression coefficients (b) indicate that X1 

(b1=0.933) is the most important predictor variable of representational competence 

while X3 (b3=0.421) is only marginally important.   

However, the regression coefficients (β) allows for a direct comparison 

between coefficients as to their relative explanatory power of the independent 

variables.  The beta coefficients (β) show that while X3 remain marginally important, 

X2 is just as important as X1 and had substantial influence on representational 

competence, Y.  Individually, bivariate correlations of X1 and X2 with Y are 

respectively r=0.745 and r=0.731, at p<0.001 (Table 6.2).  Collectively, beta 

coefficients of X1 and X2 are respectively 0.441 and 0.450 (Table 6.17).  Hence, it 

could be inferred that understanding of chemical concepts (X1) is as important as 

developmental level (X2) as factors influencing representational competence. 
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The theoretical and conceptual frameworks of the study proposed in Chapter 

3 support the findings and the regression model that emerged from the findings.  The 

theoretical framework repeatedly points to prior knowledge as the most important 

factor influencing representational competence, in particular prior knowledge I or 

understanding of chemical concepts (X1).  The theoretical framework also 

emphasized developmental level (X2), as an important factor influencing 

representational competence, as well as understanding of chemical concepts.   

 

 

6.7.1 Prior knowledge 

With reference to the proposed theoretical framework in Chapter 3, the 

influence of prior knowledge on representational competence is important at several 

stages of information processing.   

Firstly, within the sensory memory, prior knowledge helps to activate and 

control the perception filter (Figure 3.2a).  Much of the sensory information will be 

filtered out if the learner does not possess the essential prior knowledge or concept 

due to missing schema in the LTM.  For example:  chemical representations such as 

chemical symbols and chemical formulae appear meaningless to a learner who does 

not understand basic chemical concepts like elements and compounds, atom and 

molecules.  Likewise, chemical equations are just chunks of letters and numbers to 

those who do not understand what a chemical reaction is.  Hence, prior knowledge 

within the LTM plays an important role in the selection process.   In the context of 

this study, prior knowledge of the subjects includes understanding of basic chemical 

concepts or prior knowledge I and chemical representations or prior knowledge II.  

This is because representation of chemical concepts requires the learners not only to 

understand the chemical concepts and chemical representations involved, but also the 
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ability to link the three levels of representations, as well as to translate between 

representations at the same level and across the levels.  These are aspects of 

representational competence assessed in this study. 

Secondly, it is believed that linkages exist between WM and the LTM store.  

While processed information in the WM is passed to the LTM for storage, 

knowledge from prior learning is also being retrieved from the LTM to help with 

processing in the WM (Figure 3.2b).  Problems can occur at this stage if there is a 

lack of prior knowledge due to missing schema in the LTM.  According to Johnstone 

and Kellett (1980), items in the WM are handled as `chunks’ of information, varying 

from single digits or characters to abstract concepts and complex formulae or 

structures.  Integrating a large number of information bits into smaller number is one 

way of chunking.  Schemata within the LTM enable learners to treat multiple 

elements as a single entity (chunking).  The more a learner knows about a topic, the 

easier it is for chunking since chunking usually depends on some existing schemata 

in the LTM.  See the example in Section 3.1.3.3 and Figure 3.2(c1).  With a mean 

DSBT score of 7.33, the subjects of this study appear to possess large WM capacity, 

yet the regression model shows that WM capacity (X5) is not a significant factor 

influencing representational competence while prior knowledge accounted for 58% 

of the variance of representational competence.  Such findings suggest that low level 

of representational competence is most likely due to the lack of prior knowledge 

rather than a lack of WM capacity.  Perhaps the type of information and the level of 

processing (Craik and Lockhart, 1972) also have affected information processing at 

this stage.  Chunking might be easy for digits in the DBST but not for complex, 

unfamiliar chemical formulae, structures and equations.  In addition, digits are easier 

to hold and manipulate, while making translations between chemical representations 
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could involve not only retrieving conceptual knowledge of chemical representations, 

but also creating mental images of them.  There is a lot of information to hold and 

process, and processing occurs at a deeper level.  Hence, the importance of prior 

knowledge overrides WM capacity as factor influencing representational competence. 

Further more, according to Keig and Rubba (1993), making translation 

between representations is an information processing task that requires conceptual 

understanding about the representations.  Finding of a positive, moderate correlation 

(r=0.293, p<0.001) between understanding of chemical concepts, X1 (or prior 

knowledge I) and understanding of chemical representations, X3 (or prior knowledge 

II) also supports the theory.  The fact that both the variables (X1 and X3) are 

significant contributors to the regression model and that together they account for 

almost 58% of the variance of representational competence further supports the 

importance of prior knowledge in influencing representational competence.  

 

 

6.7.2 Developmental level  

Many concepts in chemistry are very abstract (Cantu & Herron, 1978).  

Herron (1978) also maintains that concepts such as atom and molecule should be 

considered formal in the Piagetian sense.  Hence, it is likely that they cannot be 

totally understood without some formal reasoning.  Findings of a bivariate 

correlation of r=0.575 at p<0.001 between understanding of chemical concepts (X1) 

and developmental level (X2) supports this claim.  The fact that developmental level 

(X2) is a significant contributor to the regression model which accounts for almost 

14% of the variance of representational competence further supports the importance 

of developmental level in influencing representational competence.  
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Although chemical representations are apparently visual representations, they 

are also conceptual constructs and are therefore more abstract compared to pictorial 

diagrams.  Chemical phenomena are interpreted at the microscopic level, requiring 

learners to think increasingly in abstraction.  For learners who are unable to visualize 

and interpret molecular and symbolic representations, they only recognize the surface 

features of chemical representations and see or use representations as depictions.  As 

a result, their understanding of chemistry tends to stay at the macroscopic or sensory 

level.  Hence, formal operational thinkers who are capable of thinking abstractly not 

only can understand abstract chemical concepts more readily, but also can interpret 

chemical representations, logically use symbolic representations to represent and 

explain abstract chemical concepts, and can translate fluently between the three 

levels of representations, while those who remain in concrete operational stage may 

be limited in their understanding of chemical concepts, and in their representational 

competence.   

 

 

6.7.3 Unexplained variance 

The three predictor variables in the regression model explained almost 71% 

of the variance of representational competence.  29% of the variance remained 

unexplained.  The percentage of variance explained could have exceeded 71%.  This 

apparently lower percentage could be due to the following factors: 

(i)  Multicollinearity creates `shared’ variance between variables.  As 

multicollinearity increases, the total variance explained decreases as the amount of 

unique variance for each independent variable is reduced.  In this study, a correlation 

of 0.575 (p<0.001) between X1 and X2 (see Table 6.2) shows X1 and X2 are 

moderately correlated, and represents `shared’ variance of almost 33%.  The 
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tolerance value of 0.633 for X1 and 0.699 for X2 respectively (Table 6.8) implies at 

least 30% of the variance of X1 and X2 is explained by the other independent 

variables.  In addition, a correlation of 0.293 between X1 and X3 creates a `shared’ 

variance of about 9%, almost as high as the explained variance of Y by X3 (r=0.365, 

variance explained =13%). 

(ii) In selecting independent variables, specification error might have occurred, 

resulting in the omission of relevant variables influencing representational 

competence from the set of independent variables.  This could bias regression 

estimates.   

(iii) Exclusion of independent variables that are not statistically significant but 

might have practical significance could have caused the total variance explained to 

decrease.  Although the partial correlation of both X4 and X5 are non significant at 

each stage of the regression analysis (Table 6.5), bivariate correlations of each 

variable shows X4 is very weakly but positively correlated with Y (r=0.178, p<0.01), 

while the independent variable X5 had non significant correlation (r=0.036) with the 

dependent variable.  See Table 6.2.  However, it is believed that the weak correlation 

between LAQ score, (X4) and Y could be due to some meaningful learners switching 

to using a surface approach in certain learning tasks.  This might be the cause of their 

apparently low LAQ score.  Examination of the responses in the LAQ data of the 192 

subjects show there were respectively 156, 123, and 110 students who chose either 

`A’ or `B’ as their responses for items No. 3, 5 and 19.  These responses relate to 

memorisation, a phenomenon associated more with a surface approach (see Appendix 

19).  Hence, in the LAQ, such items were placed under the rote subscale (Table 4.7) 

and the score is reversed (Table 4.8), leading to lowest score for response `A’.  A 

check on the reliability of the LAQ score for this study reveals an alpha coefficient of 
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0.77 for the meaningful learning subscale while that of the rote learning subscale is 

relatively much lower at alpha=0.47 (Appendix 19a).  This reflects internal 

inconsistency of items within the rote learning subscale.   

The weak correlation between working memory capacity, X5 and Y is probably 

caused by the almost uniform distribution and generally high DSBT scores 

(mean=7.33, s.d.=1.079).  Further research is needed. 

 

6.8 Chapter Summary 

The model that emerged from the findings of this study shown in Figure 6.6 

summarizes the variables influencing representational competence and the inter-

relationships among them. 

In Chapter 7, the implications and conclusion of the study will be put forward. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 338 

 

       X1 

 

                     

               rx1=0.745
***

 

                         β1=0.441
***

                                                                                                                                                                                         

                     r=0.293
***      

     r=0.575
***

 

 

                       

           

           

       rx3=0.365
*** 

         rx2=0.731
***

 

       β3=0.155
***

           β2=0.450
***

 

                                                                                             

X3                                                   X2

                    r=0.181
**

      

 

 

 

Independent variables 

X1 = Understanding of chemical concepts (prior knowledge I) 

X2 = Developmental level  

X3 = Understanding of chemical representations (prior knowledge II) 

 

Dependent variable, Y = Representational competence 

b = regression coefficient (In the equation:  b0=-9.731, b1=0.933, b2=0.777, b3=0.421) 

β = standardized regression coefficient  

r = bivariate correlational coefficient 

*** p<0.001;   ** p<0.01 

 

 

 

 

Figure 6.6:  The emerging model 

 

 

 

REPRESENTATIONAL 

COMPETENCE  

IN CHEMISTRY 

 
 

Y=-9.731+0.933X1+0.777X2+0.421X3 

 

 


