THE PRODUCTION OF ANTIOXIDANTS VIA SOLID SUBSTRATE FERMENTATION USING *LENTINUS* SQUARROSULUS (MONT.)

SITI MARJIANA BINTI ISMAIL

FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

2011

TABLE OF CONTENTS

		Pages		
ACKNOWL	EDGEMENTS	i		
ABSTRACT		ii		
ABSTRAK		iv		
LIST OF FIC	GURES	ix		
LIST OF TA	BLES	Х		
LIST OF PL	ATE	xi		
LIST OF AB	BREVIATIONS	xii		
CHAPTERS	5			
1.0 INTRO	DUCTION	1		
2.0 LITERATURE REVIEW				
2.1	Oxidative stress	4		
2.2	Oxidation of lipid-rich foods	5		
2.3	Natural antioxidants	8		
2.4	Mushrooms as a source of antioxidants	9		
2.5	Principles of methods for antioxidants determination			
	2.5.1 DPPH radical scavenging ability	12		
	2.5.2 Lipid peroxidation	14		
2.6	Antioxidant activity of phenolic compounds	16		
2.7	Lentinus squarrosulus (Mont.)	18		
2.8	Comparison of antioxidants production from mushroom mycelia and			
	fruiting body	21		
3.0 MATER	RIALS AND METHODS			

3.1	Chemicals								23
3.2	Preparation	of	L.	squarrosulus	inoculum	and	solid	substrate	
	fermentation	for	antio	oxidant product	ion				23

3.3	Liquid fermentation of L. squarrosulus for the production of	
	antioxidants	24
3.4	Extraction of antioxidants using methanol and dichloromethane	25
3.5	Determination of antioxidant capacity using DPPH (2,2-Diphenyl-1-	
	picrylhydrazyl) free radical scavenging activity	25
3.6	Inhibition of lipid peroxidation of selected antioxidant extracts using	
	buffered egg yolk and cooking oil	27
3.7	Determination of total phenolic content (TPC)	29
3.8	Statistical analysis	30

4.0 RESULTS

4.1	Production of antioxidants by L. squarrosulus mycelia grown on soya	
	bean, maize and rice supplemented with different concentration of	
	nitrogen sources	31
4.2	Comparison of antioxidant capacities of methanolic extracts from L.	
	squarrosulus grown in liquid media and maize supplemented with	
	0.04% peptone using radical scavenging activity of DPPH	37
4.3	Inhibition of lipid peroxidation of methanolic extracts from L.	
	squarrosulus grown in liquid media, maize supplemented with 0.04%	
	peptone and unfermented maize using egg yolk and cooking oil	37
4.4	Total phenolic content (TPC)	43

5.0 DISCUSSION

5.1	Antioxidants production from Lentinus squarrosulus mycelia grown		
	on soya bean, maize and rice supplemented with different		
	concentrations of nitrogen sources and methanolic extract of mycelia		
	from liquid fermentation	45	
5.2	Inhibition of lipid peroxidation by Lentinus squarrosulus antioxidant		
	extracts	50	
5.3	Total phenolic content (TPC)	53	

6.0 CONCLUSIONS

55

REFERENCES

APPENDICE	CS	58
Appendix A	Media and reagents	65
Appendix B	DPPH radical scavenging assay for maize, rice and soya bean:	
	Experimental and statistical data for Lentinus squarrosulus methanolic	
	and dichloromethane extracts.	68
Appendix C	Antioxidant activity of Lentinus squarrosulus grown on liquid GYMP	
	media, maize supplemented with 0.04% peptone and unfermented	
	maize using DPPH radical scavenging assay	172
Appendix D	Antioxidant activity of ascorbic acid, quercetin dehydrate and BHA	
	(positive controls) using DPPH radical scavenging assay	176
Appendix E	Inhibition of lipid peroxidation activity using buffered egg yolk	182
Appendix F	Inhibition of lipid peroxidation activity of positive controls	184
Appendix G	Inhibition of lipid peroxidation activity using cooking oil	187
Appendix H	Experimental and statistical data for Total Phenolic Content (TPC)	
	assay	188

57

LIST OF FIGURES

Page

Figure 2.1	Diphenylpicrylhydrazyl (free radical) chemical structure	13
Figure 2.2	Diphenylpicrylhydrazine (non- radical) chemical structure	13
Figure 2.3	Life cycle of a typical Basidiomycota	20
Figure 4.1	DPPH radical scavenging activity of ascorbic acid (at	33
	steady state 2 minutes), quercetin dehydrate (at steady state	
	75 minutes) and BHA (at steady state 60 minutes)	
Figure 4.2	IC50 values (mg/ml) of methanolic extracts of Lentinus	38
	squarrosulus grown in liquid GYMP media and maize	
	supplemented with 0.04% peptone using DPPH radical	
	scavenging assay	
Figure 4.3	Comparison of inhibition of lipid peroxidation by ascorbic	39
	acid, quercetin dihydrate and BHA	
Figure 4.4	Comparison of inhibition of lipid peroxidation activity by	40
	methanolic extract from L. squarrosulus mycelia grown in	
	liquid GYMP media, maize supplemented with 0.04%	
	peptone and unfermented maize extracts using buffered	
	egg yolk	
Figure 4.5	Absorbance values for different concentrations of	42
	unfermented, fermented maize and liquid fermentation of	
	L. squarrosulus antioxidant extracts to demonstrate the	
	inhibition of lipid peroxidation activity in cooking oil	
Figure 4.6	Total phenolic content (TPC) values for antioxidant	43

Figure 4.6 Total phenolic content (TPC) values for antioxidant 43 extracts and controls (ascorbic acid, quercetin dihydrate and BHA)

ix

LIST OF TABLES

		Page
Table 2.1	Comparison of amino acid compositions of mycelium and	22
	fruit body of Agaricus bisporus	
Table 4.1	IC_{50} values (mg/ml) of methanolic and dichloromethane	34
	antioxidant extracts from Lentinus squarrosulus grown on	
	soya bean supplemented with various concentrations of	
	nitrogen sources	
Table 4.2	IC_{50} values (mg/ml) of methanolic and dichloromethane	35
	antioxidant extracts from Lentinus squarrosulus grown on	
	maize supplemented with various concentrations of	
	nitrogen sources	
Table 4.3	IC_{50} values (mg/ml) of methanolic and dichloromethane	36
	antioxidant extracts from Lentinus squarrosulus grown on	
	rice supplemented with various concentrations of nitrogen	

sources

Х

LIST OF PLATE

Page

Plate 4.1	Lentinus squarrosulus inoculum grown on the Glucose-	31
	Yeast-Malt-Peptone (GYMP) agar, after 14 days of	
	incubation at 37°C	

•

LIST OF ABBREVIATIONS

Butylated hydroxyanisole	BHA
Butylated hydroxytoluene	BHT
Deoxyribonucleic acid	DNA
Dichloromethane	DCM
Dimethyl sulfoxide	DMSO
2,2-diphenyl-1-picrylhydrazyl	DPPH
Ferric radical antioxidant power	FRAP
Glucose-Yeast-Malt-Peptone	GYMP
Malondialdehyde	MDA
Myeloperoxidase	MPO
Oxygen radical absorbance capacity	ORAC
Polyunsaturated fatty acid	PUFA
Propylgallate	PG
Reactive oxygen species	ROS
Solid substrate fermentation	SSF
Tert-butylated hydroxyquinone	TBHQ
Thiobarbituric acid	TBA
Thiobarbituric acid reactive substances	TBARS
Thiochloroacetic acid	TCA